
ALGORITHMS TO TEST RAY-TRIANGLE INTERSECTION.
COMPARATIVE STUDY

Rafael J. Segura1, Francisco R. Feito

Departamento de Informática
Universidad de Jaén

Escuela Politécnica Superior
Avda. Madrid, 35, 23071, Jaén

Spain
{rsegura,ffeito@ujaen.es}

ABSTRACT

In this article we present an algorithm to determine the intersection between rays and triangles based on
the idea of the study of signs with respect to triangles. One of the advantages of this approach is its
robustness due to its lack of trigonometric operations or complex divisions which might alter the result of
the calculations. The algorithm is similar (or even better) in time to other existing algorithms, but it is
based exclusively on the study of signs, so that the results obtained are more precise. A comparative study
of times between the algorithm and other similar algorithms is presented.

Keywords: algorithm complexity, computer graphics, triangle-meshes, optimal algorithm, geometric
algorithms.

                                                          
1 Author for correspondence

1. INTRODUCTION

The problem of the intersection of a ray (segment or
line) with a triangle is one of the classical problems
in the field of Computer Graphics. The calculation
for such intersection is fundamental for many
problems: ray casting, ray-tracing, detection of
collisions between objects, inclusion test, operation
between solids, etc.., especially having in mind that
most methods used today work on triangulated
polygons. Several authors [Agrawal94] have warned
of some problems presented in the field of
Computational Geometry and Geometric Modellling:
first of all, numerical errors when determining real
values, and secondly, logical errors when these real
values are compared. In this article we propose a
robust and efficient algorithm of detection of
intersections, which uses exclusively the study of
sign of triangles, being these operations in the which
no precision errors are involved.

Different solutions exist for the study of
intersection between rays and triangles, although the

most important ones, thanks to their simplicity and
efficiency, are the algorithms proposed by Snyder
[Snyder87], Badouel [Badouel90] and Moller
[Moller97]. 

These algorithms are focused especially on
the solution of visualization problems, so that the
segment is established in its parametric form. The
algorithm that we propose does not use this notion
due to the fact that it is basically focused on the
calculation of operations between objects; for this
reason, the segment is given in the shape QQ’,
instead of a point Q and a direction R.

The algorithm proposed by Snyder
[Snyder87] is worse (in time) than Badouel’s; so we
will concentrate exclusively on the study of Badouel
and Moller’s algorithms, to compare the new
solution with them

In the first section, we present the algorithm
proposed by Badouel and Moller. In the next one we
present a summary of the theoretical fundamentals of



the new algorithm [Segura98]. Then, we will present
the algorithm and finally we will make a comparative
study of times of the three algorithms.

2. BADOUEL’S ALGORITHM

Badouel’s algorithm is based on the study of
barycentrics coordinates, following the line of
Snyder’s algorithm. Let V0V1V2 be a triangle. The
position of point P inside the triangle can be
expressed as shown in fig.1, or either in equation 1.

20100 VVVVPV βα +=   (1)

20VVβ

10VVα
V0

V1

V2
P

Barycentrics coordinates of point P
Figure 1.

It is said that point P is inside the triangle if
it is true that

1    ,0     ,0 ≤+≥≥ βαβα

Equation 1 is decomposed in a system of three
equations, as shown in equation 2.

( ) ( )
( ) ( )
( ) ( )








−+−=−
−+−=−
−+−=−

02010

02010

02010

zzzzzz
yyyyyy
xxxxxx

p

p

p

βα
βα
βα

      (2)

Then, the triangle is projected into one of
the planes xy, xz, or yz, finding for it the largest
value of coefficients in the equation of the plane on
which the triangle is to be found. Let io be the
coordinate which is to be eliminated when the
triangle is projected, and i1 and i2 be the other
coordinates. Then we define

222222

111111

01201100

02201100

iii

iii

VVvVVvVPv
VVuVVuVPu

iii

iii

−=−=−=
−=−=−=

Substituting in equation (2) we obtain





+⋅=
+⋅=

210

210

·
·
vvv
uuu

βα
βα

(3)

For the implementation of Badouel’s algorithm
the code written in C language shown in [Badouel90]
has been used. So that the execution time of this
algorithm is not penalized, it has not been taken into
account when recording the times of precomputing
the normal vector of the plane on  which the triangle
lies.

3. MOLLER’S ALGORITHM

The modifications of Moller’s  algorithm
[Moller97] compared to Badouel’s are specially
concentrated on creating a series of transformations
to the triangle. The objective is that two of the edges
will be aligned with the axis of coordinates (see
fig.2), being M=[-D V1-V0 V2-V0], and u, v being the
barycentric coordinates of the point (as we saw in the
previous section), and t the parameter of the ray
equation. In this way, the calculations are notably
simplified, resulting in equation 4.

( )
( )
( )
( )













=














×
×

×

×
=













DQ
TP
EQ

EP

DET
TED

EET

DEDv
u
t

·
·
·

·
1

·
·

·

·
1

1

1

2

21

12

 (4)

being E1=V1-V0, E2=V2-V0, T=O-V0, P=(D×E2),
Q=(T×E1)

For the implementation of Moller’s
algorithm, the code written in C language which
appears in reference [Moller97] has been used.

The advantages presented by Moller’s
algorithm compared to Badouel’s are particularly
focused on the reduction of the storage of times and
spaces, as it is not necessary to store the normal
vector of the plane on which the triangle is. The time
of  this algorithm is better than Badouel’s, but for
solids with many triangles the time of both
algorithms is similar.



O
D

V0

V2

V1

b)

c)

O
M-1[O-V0]

1

1

D

O
D

V0

V2

V1

a)

Transformations and base change of ray in Moller’s
algorithm: a) Initial position; b) Translation to
origin; c) Rotation and scaling to determine the

barycentric coordinate.
Figure 2.

4. THEORETICAL FUNDAMENTALS.

Definition 1. [Orour94]
Let A, B, C and D be four points in R³. The signed
volume of the tetrahedron of vertices D, A, B, and C,
denoted by [DABC], is defined as follows:

[ ]

1
1
1
1

*
6
1

                 

*
6
1

ddd

ccc

bbb

aaa

dcdcdc

dbdbdb

dadada

zyx
zyx
zyx
zyx

zzyyxx
zzyyxx
zzyyxx

DABC =
−−−
−−−
−−−

=

        (5)

being D= (xd, yd, zd), A=(xa, ya, za), B=(xb, yb, zb)
and C=(xc, yc, zc). It is easy to demonstrate that the
tetrahedron has a positive orientation (that is, the rest
of vertices are seen anticlockwise from the opposite
side of a point) if the signed volume is positive.

The definition of the signed volume allows us to
determine easily whether a segment cuts or not a
triangle in space. Previously it is assumed that the
extremes of the segment are in opposite sides of the
plane determined by the vertices of the triangles. In
order to do it, it is only necessary that the points
have signed distance to the plane of different sign.
Only in that case it is possible that an intersection
between the segment and the polygon exists. In the
case that both points are coplanar with the polygon
(thta is, the signed distance to the plane is 0), the
problem will be reduced to the 2D case.

Lemma. [Segura98]
Let ABC be a triangle in R³ and Q and Q’ be two
points that determine a segment in R³, placed on
different sides of the plane determined by ABC, and
ordered so that the tetrahedron QABC has positive
orientation (i.e., the signed volume of QABC is
positive). Then segment QQ’ cuts triangle ABC if
and only if:

[ ]( ) [ ]( )
[ ]( ) 0

00
'

''

≥

∧≥∧≥

ACQQsign

CBQQsignABQQsign

where







<−
=
>

=
01
00
01

)(
xif
xif
xif

xsign

Proof.
Segment QQ’ will cut triangle ABC if and only if Q’
is contained in the trihedral of edges QA, QB, and
QC. This is equivalent to say that Q’ sees triangles
ABQ, BCQ, and CAQ clockwise; this is equivalent
to say that tetrahedra Q’AQB, Q’CBQ and Q’ACQ
have positive orientation and so their volumes have
positive sign (see figure 3). If one of the signs is zero
it means that Q’ is coplanar with the respective
triangle, which indicates that QQ’ will cut the



triangle in the respective edges. In the case that two
of the signs are zero, it will mean that the
intersection between segment QQ’ and triangle ABC
will take place in one of the vertices of that triangle.

A

B

C

Q

Q’

Study of point Q’ with respect to the trihedral QABC
Figure 3.

5. ALGORITHM TO TEST SEGMENT-
TRIANGLE INTERSECTION IN 3D.

Taking into account the previous definitions, an
algorithm to detect when an intersection between a
segment defined by points Q and Q’ and a triangle
T=ABC takes place, can be formulated. The
algorithm is shown in figure 4. The focus followed to
obtain the algorithm is based on solid modelling by
simplicial coverings proposed by Feito
[Feito97,Feito98]. This scheme of representation
presents many advantages compared to other
focuses, though the most outstanding is its
simplicity.

int testIntersectSegment(point Q,point Q’){
int i=sign3D(Q,Q’,A,C);
int j=sign3D(Q,Q’,B,C);
int k=sign3D(Q,Q’,A,B);
if (((i==0)&&(j==0))||// Intersects in C
    ((i==0)&&(k==0))||// Intersects in A
    ((j==0)&&(k==0))) // Intersects in B

return VERTEX;
if ((i==0) && (i==k)) // Intersects in AC

return EDGE_AC; 
if ((j==0) && (i==k)) // Intersects in BC

return EDGE_BC; 
if ((k==0) && (i==j)) // Intersects in AB

return EDGE_AB;
if ((i==j)&&(j==k)) // Intersects inside

return IN;
return OUT; // Does not intersect
}

Algorithm to test intersection segment-triangle.
Function sign3D is defined as the signed volume of

the tetrahedron formed by the four points.
Figure 4.

As can be seen, the algorithm proposed only
detects whether an intersection between the ray and
the triangle exists. In the case that the value of the
point of intersection wants to be obtained, it would
be necessary to calculate it by the calculation of
intersection between the ray and the plane which
contains the triangle.

6. COMPARING WITH OTHER METHODS
OF CALCULATION OF INTERSECTION.

The previous algorithm has been implemented
using C language. Once implemented, a study of the
times obtained by the algorithm has been carried out,
and it has been compared with implementations of
the algorithms proposed by Moller and Badouel,
obtaining the results which can be seen in table 1 and
in figure 6. The results have been carried out over a
terrain generated by [Conde97], over a mesh of more
than 500,000 triangles (fig.5). Due to the difficulty
of the mesh, we can consider that in that the amount
of triangles coincides equally with the best and worst
cases of the three studied algorithms. Besides, we
have generated 5,000 random rays and we have done
the trials with them (every random ray has been
tested with every triangle of the mesh using the three
algortihms). The C compiler has been used, with all
options of optimization. The trials have been carried
out in a Silicon Graphics Indy, with 32 MB and
using Irix 5.3 as operating system. The time is
measured in seconds, but as the time is very little, we
have done every test 100 times.

Triangles-mesh used for the study of time of the
algorithms

Figure 5.

For the calculation of function sign3D the
method proposed by Yamaguchi [Yamagu90] has
been used, which reduces the number of operations
needed to resolve a 4x4 determinant.



The comparative study has been done
excluding for every algorithm tested the time
necessary to obtain the input of the algorithm. So,
the cost to obtain the plane of the triangle in
Badouel’s algorithm has not been considered. Also,
the time needed to obtain the parameter of the ray
(origin and direction vector in Moller’s and
Badouel’s algoritthm, or origin and end in the
proposed algorithm) is not considered.

From table 1, it can be seen that the
algorithm is better than Moller’s, and also better than
Badouel’s. In the second column, the number of
successful intersection is shown. In the last column
of the table, differences between the new algorithm
and Moller’s is shown: the new algorithm is 15%
better than Moller’s, and also is better than
Badouel’s method.

Triangles Inters. New Moller Badouel Diference
(%)

5 1 0,0079 0,0095 0,0102 16,99

50 3410 0,0832 0,0998 0,1044 16,70

500 42922 0,8135 0,9639 1,0300 15,60

5000 499085 7,9306 9,1963 10,2528 13,76

50000 6324496 78,3664 92,5751 102,2474 15,35

500000 66707323 832,2615 978,7353 1066,4127 14,97

Time in seconds of the three algorithms
Table 1.

Comparing performance of the three algorithms 
(without computing the intersection point)

0,00

5,00

10,00

15,00

20,00

25,00

5 50 500 5000 50000 500000
Triangles

%

Diference New-Moller (%) 

Diference New-Badouel (%)

Study of time of the three algorithms.
Figure 6.

In the results obtained in table 1 it is not
considered the time necessary to obtain the
intersection point in the new algorithm. If we
consider this time (only when intersection exists),
then the time obtained is slighty better than Moller’s
(about 8% better) as you can see in table 2. So, the
difference is shorter but still better for the new
algorithm.

Despite that, the new algorithm presents
some advantages: we make no use of divisions or
other operations in which precision errors play an
important part. In fact, the algorithm is based on the
study of the sign of the values obtained, so,
operations on bit level could be used for their study.
Another advantage is that it is only necessary to
calculate the point of intersection between the
segment and the triangle in those cases in which this
intersection exists, so that, again, we are eliminating
possible errors in the calculations of these
intersections due to precision errors.

Triangles Inters. New Moller Badouel Diference
(%)

5 1 0,0082 0,0089 0,0133 7,87

50 3658 0,0915 0,1003 0,1057 8,76

500 43657 0,8657 0,9548 1,0349 9,33

5000 501369 8,3942 9,2040 10,2567 8,80

50000 6174496 83,1855 92,5242 102,4570 10,09

500000 676857418 880,6022 972,7677 1070,8090 9,47

Time in seconds of the three algorithms, considering
the cost of computint the intersection point.

Table 2.

Comparing performance of the three algorithms 
(computing the intersection point)

0,00

5,00

10,00

15,00

20,00

5 50 500 5000 50000 500000

Triangles

%

Diference New-Moller (%)
Diference New-Badouel (%)

Study of time of the three algorithms considering the
cost of computing the intersection point

Figure 7.

In inclusion test problem or similar ones, it
is not necessary to compute the intersection point
between the segment ant the triangle: it is only
necessary to know whether intersection exists or not.
So, we think that the new algorithm is better to be
used in that kind of problems. In [Feito00], the new
algorithm has been used to solve the problem of
inclusion-test in triangles meshes using the ray-
casting solution, i.e., counting the number of
intersections. The time obtained with the new
algorithm is better than Moller’s algorithm, because
the new algorithm returns whether intersection exists
or not, and in the case that intersection exists, the



algorithm returns where it is (inside, an edge or a
vertex). And so, the study of special cases (necessary
to make if we use Moller’s algorithm) is reduced.

Obviously, for dealing with large triangular
meshes we need to use some techniques to reduce
the number of intersection, for example hierarchical
testing (BSP, octrees, ...) or others. But in this paper
we only consider the problem of test the intersection.
This solution is valid also when some of those
techniques is applied. And the solution could be
improved if we use triangles strip because we can
use some results from one triangle to the following
one. For it, we can notice that the determinants for
one of the edge shared for two (or more) triangles
does not change and we can conserve this result
when the following triangle of the strip is studied.

7. CONCLUSIONS

We have just presented an algorithm to
determine when the intersection between the rays
and triangles takes place. The validity of the
algorithm has been demonstrated, and a comparative
study of the obtained times with other algorithms has
been carried out, resulting to be better than Moller
and Badouel’s algorithm.

The algorithm is more robust than the other
two algorithms mentioned in the article due to the
absence of complex operations. Also, the speed of
the algorithm could be increased resolving the
operations of sign on bit level of the processor.

The main problem of the solution proposed
is that the intersection point is not computed: the
algorithm computes only whether intersection exists
or not. So, we must compute the point of intersection
if we need it. In order to solve the ray-casting
problem or similar ones, the new algorithm will be
better if the number of intersection is low. But for
problems like inclusion test or similar ones, it is only
necessary to know whether intersection exists or not,
because we only need to count the number of
intersections. And so, the algorithm proposed is
better than other algorithms because if intersection
exists, we know where the point of intersection is,
and so, the treatment of special cases (intersection in
edges or vertices) improves.

The authors wish to thank to the anonymous
reviewers for their constructive comments which led
to several improve ments in the final version of this
paper.

REFERENCES

[Agrawal94] Agrawal, A., Requicha, A.: A paradigm
for the robust design of algorithms for
geometric modelling, Eurographics’94,
Computer Graphics Forum, Vol.13, No.3,
pp.33-44, 1994.

[Snyder87] Snyder, M., Barr, A.H.: Raytracing
complex models containing surface
tesselations, Proceedings of the 14th annual
conference on Computer Graphics, 1987,
Vol.21, No.4, pp.119-128, 1987.

[Badouel90] Badouel, F.: An efficient Ray-Polygon
intersection, Graphic Gems, Academic Press,
pp:390-393, 1990.

[Moller97] Moller, T., Trumbore, B.: Fast, minimun
storage ray-triangle intersection, Journal on
Graphic Tools, Vol.2, No.1, pp.21-28, 1997.

[ORour94] O’Rourque, J.: Computational Geometry
in C, Cambridge University Press, 1994.

[Segura98] Segura, R.J., Feito, F.R.: An algorithm
for determining intersection segment-polygon
in 3D, Computer & Graphics, Vol.22, No.5,
pp.587-592, 1998.

[Feito97] Feito, F.R., Torres, J.C., Boundary
representation of polyhedral heterogeneus
solids in the context of a graphic object
algebra, The Visual Computer, No. 13, 1997.

[Feito98] Feito, F.R., Segura, R.J., Torres, J.C.,
Representing polyhedral solids by simplicial
coverings, CSG’98, Set-Theoretic Solid
Modelling. Techniques and applications,
Informations Geometers Ltd., UK., pp:203-
219, 1998.

[Yamagu90] Yamaguchi, F., Niizeki, M., Fukunaga,
H., Two robust point-in-polygon tests based
on the 4×4 determinant method. Advanced on
degign automation (ASME), Vol. 23, No. 1,
pp:89-95, 1990.

[Conde97] Conde, F.A., Feito, F.R., Montejo, A.,
Rojas, J., Visualización realista del terreno a
partir de datos de elevación digitales, fotos de
satélite y datos vectoriales, Mapping, Spain,
No. 36, 1997.

[Feito00] Feito, F.R., Ruiz, J., Segura, R.J., Torres,
J.C., Point membership clsssification respect
triangle meshes: an aptimized algorithm,
Technical Report, Departamento de
Informática, Universidad de Jaén, Spain,
2000.


