PROGRESSIVE LIGHT PATH BUILDING

Laszlé Szirmay-Kalos, Gyorgy Antal and Mateu Sbert

Department of Control Engineering and Information Technology, TU of Budapest
Budapest, Miiegyetem rkp. 11, H-1111, HUNGARY
szirmay@iit.bme.hu

ABSTRACT

The paper proposes a global illumination method that builds up the light paths progres-
sively taking into account all relevant previous information. The basis of the method is a
self-correcting stochastic iteration scheme, which works with a population of photon hits.
In each iteration step a ray is generated randomly either from a light source or by reflect-
ing an earlier hit, then the ray is traced to obtain a new hit. In order to limit the size of
the hit population, hits are decimated randomly after certain iteration steps. Comparing
the new approach to random walk techniques, this method can reuse the illumination and
visibility information gathered with previous rays. By defining the decimation strategy
properly, the view-importance can be built into the algorithm.

Keywords: Global illumination, stochastic iteration, light-tracing

1 Introduction

Global illumination algorithms are expected
to find the possible light paths connecting the
light sources to the camera [16]. Paths can be
build starting at the light sources (shooting)
[14, 4], starting at the camera (gathering) [7],
or even simultaneously starting two paths,
one from the eye and one from the camera
and connecting them (bi-directional meth-
ods) [9, 20]. Random walk algorithms usually
build up the light paths independently, that
is, having a path established and its carried
power computed, this path is thrown away,
and the new path is started from scratch.
This means that random walk methods do
not reuse the visibility and illumination in-
formation gathered by previous walks, which
can be very inefficient if the lighting situation
is difficult, that is when just a small fraction
of the paths may contribute to the image.
Having the random process eventually found
a light path of non-zero contribution, this

knowledge is used just once, then the hope-
less search is started again. It is not surpris-
ing that methods aiming at faster solutions
try to reuse the previous information, for ex-
ample, by combining the random walk with
finite-element techniques [3] or using special
data structures and heuristics [23, 22]. The
method called Metropolis light transport [21]
has proposed the perturbation of the current
path to obtain a new light path. Although
it remembers only the last path, even this
limited memory can significantly improve the
speed if the lighting is difficult. However,
when the lighting is not difficult the start-
up bias problem of this algorithm may in-
validate the benefits of the approach [19].
Adaptation can be built into random walk
approaches also by building a data structure
during walks, which can store “discretized
importance” information about regions and
sets of directions [10]. The Rayvolution algo-
rithm [11] demonstrated that the concepts of
genetic algorithms are also worth considering



to find adaptive global illumination methods.

Two-phase approaches also offer the reuse
of the information gathered in the first-
phase. An efficient way of storing the re-
sult of the first phase is the photon map [5].
These methods can be viewed as special bi-
directional methods where a gathering path
is connected to all shooting paths simultane-
ously [8, 6].

In this paper we propose a shooting like one-
phase approach. The adaptation strategy
used in the single phase is different from what
is used in Metropolis sampling and in dis-
cretized importance based techniques. The
new strategy is able to use a much greater
portion of the information about previous
paths than the Metropolis algorithm to guide
the generation of new light paths, and this in-
formation is more precise than that is stored
in discretized importance maps. In theory, it
would be possible to use the gathered knowl-
edge of all previous paths, but it would re-
quire prohibitive memory. In order to reduce
the storage demand, the data structure re-
membering the previous path is decimated
regularly in a way which can extract relevant
information.

Mathematically, the method is based on an
improved stochastic iteration solution of the
rendering equation of the following form

L(#w) = LY(#,w) + (TL)(#w) (1)

where L(#,w) is the radiance at point Z in
direction w, L? is the emission, and 7T is the
light-transport operator.

We first review how stochastic iteration can
be adapted when the radiance is transferred
by rays carrying power on all wavelengths si-
multaneously and when the local albedo can
only be approximated. Then the concept of
self-correcting iteration is explained and used
with transferring the radiance by single rays.
We also discuss the random hit population
control and finally present implementation
details and running time statistics.

2 Stochastic iteration with a single
ray

The concept of stochastic iteration has been
proposed in [18] as a tool to attack the non-
diffuse global illumination problem. Here we
briefly summarize the idea for a single ray
and discuss the calculation of the image con-
tribution. In stochastic iteration a random
transport operator is used instead of the light
transport operator in the iteration sequence,
which gives back the original light transport
operator in the average case:

Lyp=L+T"Ly_1, E[T*L]=TL. (2)
Then the pixel colors are computed as an av-
erage of the estimates of all iteration steps

1o
Py, = EZ ML; = 7—m'-/'\/le‘i‘(l - 7—m)'Pm—l

i=1
(3)
where 7, = 1/m and M is the measuring
operator that computes the pixel color from
the radiance of the surfaces visible in it.

Let the random transport operator use a sin-
gle ray having random origin ¢; and direc-
tion w; generated with a probability den-
sity p(y/,w) that is preferably proportional to
the cosine weighted radiance of this point at
the given direction. This ray transports the
power

. L(¢,w') cos 0
‘I’(y,wl) = W

to that point Z which is hit by the ray, where
it is reflected, modifying the radiance func-
tion. On a single wavelength, the probability
of reflection is the BRDF times the cosine of
the outgoing angle, i.e.

fr(wi, Z,w) - cos Oz,

but the cosine angle is compensated when the
power is converted to radiance. Formally, the
random transport operator is

(T"L)(Z,w) =

L(§,w') cos O

p(g’w,) 6(£_h(?jlawl)) 'fr(wiafaw)a

(4)



where h(%;, w;) is the visibility function which
selects that point which is visible from ¢; in
direction w;. Using the definition of the solid
angle, dwy = dE - cos 0% /|j — Z|?, a symmetry
relation can be established

. _ d¥-cosb,
diy - dwg - cosp = dif - ———==% - cos Oy =
g ] 7 — 7|2 g
dif - cos 0
-_,7#2‘1/@050; = df - dwl; - cos 0%,
|5 — 7

which allows us to easily prove that the re-
quirement of equation (2) holds, that is, the
expectation of the random transport opera-
tor defined in equation (4) really gives back
the original light transport operator.

Let us discuss how this algorithm works.
Suppose that the first random operator 7;* is
applied to L thus the light sources should be
sampled with probability density p. resulting
in a point ¢, direction wy, and ray power

Lé(41,wr) cos Oy,

Q1 (71, w1) = -
( ) pe(thl)

This power is sent to a single point ¥y =
h(#1,w1) that is hit by the ray. Before con-
tinuing with the second step of the iteration,
the radiance should be measured, that is,
an image estimate should be computed from
L¢ + T*L¢. We can separately calculate the
effect of the light sources on the image and
then add the effect of 7, L¢. Note that 7;*L¢
is concentrated in a single point, thus its con-
tribution can be computed by tracing a ray
from the eye to this point, and if this point
is not occluded, then adding

Dy - fr(wlafa weye) - cos Oz - g(f)

to that pixel in which # is visible. Function
g is the weight associated with the pixel in
which Z is visible [4]:

f2

T — eye[2- S, - cos? Oix

where f is the focal distance of the camera,
i.e. the distance between the eye and the
plane of the window, eye is the eye position,
Sy is the area of the pixel, and 6y is the an-
gle between the pixel normal and the viewing
direction.

The second operator 75 should be applied to
Ly = L*+T;*L¢, thus the domain of non-zero
radiance is modified, which requires a new
probability density to be constructed. Sup-
pose that first it is decided randomly whether
the selected point is the new point Z or the
light source is sampled again. Let the prob-
ability of selecting the new point be sz,
which may depend on both point # and pre-
vious direction wq. If the hit point is selected,
then the direction is sampled with a proba-
bility density pz,, (w2). If the light source is
selected, then we can use again the probabil-
ity density p. that was applied in the previous
step. The new combined probability density
is

Pzw; (?723 w?) =
Pel2,w2) - (L= 8zw,) +p(w2) 0(42 —Z) - 55 4, -

Having defined the ray, it is traced and the
contribution of the hit onto the camera is
computed.

The algorithm keeps doing this in each itera-
tion. First it is decided randomly whether
the new ray will start at the hit point or
at the light source. Then either the light
source or the directions around the hit point
are sampled, and the resulting ray is traced,
which defines a hit point of the following it-
eration step. Before repeating the random
selection, the effect of the hit point and the
light sources on the camera is computed and
averaged in an image. This average will con-
verge to the final solution. Interestingly this
iteration is similar to a sequence of variable
length random walks, since at each step the
point that is last hit by the ray is selected
with a given probability as the starting point
of the next ray. If not the hit is selected,
then the iteration is continued by sampling
the light source, which can be considered as
terminating the previous walk. The termina-
tion probability is sz, at each step.

So far, we have had complete freedom to
choose probabilities p. (¥, w), pzw, (wi+1) and
Sz, According to the concept of impor-
tance sampling, these should be set to force
the random variable representing the trans-
ported power to have low variance, that
is close to constant. The variance of the
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Figure 1: Four possible evolutions of two iteration steps

transported ray is reduced if p. is propor-
tional to L°(y,w')cos@y or its luminance
if the calculation takes place on different
wavelengths. Similarly pz ,, (wi+1) should be
proportional to the cosine weighted BRDF,
ie. to fr(wi,Z wit1)cosBz(w;r1) or its cor-
responding luminance. Finally probability s
should mimic the ratio of the power (or lumi-
nance) reflected at the last visited point and
the total power (total luminance). It can be
shown that for closed scenes s will converge
to the average albedo. For open scenes, s will
be smaller and equal to the average contrac-
tion of the light-transport operator.

3 Self-correcting iteration

Note that stochastic iteration uses the radi-
ance estimate L,, only for the calculation of
the final pixel colors (equation (3)). A better
iteration scheme can be obtained if it is also
used to continue the iteration in the following
way':

L. = L+ T} Ly, (5)
Lp = 7L, + (1 —=7n) Lpn_1, (6)
P, = ML,. (7)

This scheme is called as the self-correcting

iteration since it is similar to the radiosity it-
eration of [12]. Comparing self-correcting it-
eration to the discussed stochastic iteration,
we can conclude that while in stochastic it-
eration the last hit point competes with the
light source surface to be the origin of the
next ray, in self-correcting iteration all pre-
vious hit points have some chance to spawn
the next ray. Since it uses more information
about the past, it converges faster.

Hit point ¢ is characterized by its incoming
direction hits[i].w™, incoming power hits[i].®
and location hits[i].Z#. Suppose that at step m
hit point ¢ is selected with probability s;, and
the light source is sampled with probability
1—s1—...—sy if n is the number of hit points.
If hit point 7 is selected, then the direction of
the ray is sampled from density p;(wy,) and
the ray carries

f?"(wia T, wm) cos Oz

D, -
Di (wm)

power to a new hit point. This step corre-
sponds to equation (5).

Then, according to equation (6), this new hit
point is merged with the current hit popula-
tion. This is done by multiplying the incom-
ing power of the newly born hit point by 7,



and the incoming power of all previous hit
points by 1 — 7,,.

The following program summarizes a self-
correcting iteration step, where “hits[]” is the
array of photon hits, np;; is the number of
hits, and m is the current index of the itera-
tion.

Iterate( hits[], npic, m )

Select i with prob. s; or the light source with 1 — E S;

if light source is selected then
Sample light source with pe(Z,w) to get £ and w
® = L°(Z,w) - cos §/pe(Z,w)/(1 = s5)
else
Z = hits[i].Z
Sample the directional sphere with
Phits[i].7, hits[i].win (W) Tesulting in w

® = hits[i].® - f,( hits[i].w™, hits[i].Z, w) - cos hz/

Phits[i].7,hits[i].win (W)/ Si

endif
for i =1 to npi do hits[i].® *= (1 —1/m)
§ = Trace Ray(Z,w)
if ray hits object then

hits[npie + 1] = (F,w, ®/m)

Nhit = Npit++
endif

end

Running the iteration for a number of steps,
the light source and the hit population are
measured by operator M in the sense of equa-
tion (7).
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Figure 2: A self-correction iteration step

As in stochastic iteration, probabilities sz ,in
and pz ,in should be defined to decrease the
variance of the carried power, which corre-
sponds to importance sampling. Thus it is
recommended to set the directional proba-
bility pz ,in to be proportional to the cosine
weighted BRDF. Similarly, if we aim at the
reduction of the variance of the output radi-
ance, then hit selection probability s; should

be approximately proportional to the prod-
uct of the incoming power of hit 7 and the
local albedo at the hit point. However, con-
sidering the fact that just a fraction of the
paths may eventually reach the camera, and
our ultimate objective is to reduce the vari-
ance of the image, other hit selection proba-
bilities are also worth considering.

3.1 Definition of hit selection proba-
bilities

From the point of view of the impact on the
image, the hit selection strategy should em-
phasize those hits whose children are likely
to contribute the image and the contribution
power should be made approximately con-
stant. The image impact is proportional to
the outgoing power and to the visibility in-
dicator and is inversely proportional to the
square distance. Thus we should prefer those
hits that can generate large outgoing power
and their possible children are not hidden
from the camera and are close to it.

To achieve this goal, heuristics can be used,
which build some form of view-importance
into the algorithm. It is reasonable to be-
lieve that if the children of a hit have had
large contribution to the image so far, then
the neighborhood of this hit is not hidden
and this hit is worth keeping as a mother of
new hit points. From this point of view, the
importance of a hit point can be character-
ized by the luminance of the average image
contribution of the hit’s children. Note that
the impact of the child hit is the luminance
of

;- fr(wi, &i, weye) cos Oz - g(Z) (8)

if Z is visible through some pixel and zero
otherwise.

On the other hand, important hits may exist
which have no children or their children have
had no impact on the image yet. To take into
account also these hits, we can also define the
importance of a hit as the weighted sum of
its output luminance (i.e. the luminance of
the product of the incoming power and the
local albedo). In order to convert this im-
portance to a form similar to equation (8),



we have to estimate how much contribution
a hit could have if it were visible and its ori-
entation allowed to reflect into the direction
of the camera. This consideration leads to
the following estimated potential impact of a
parent:

a(wi)  f?

H..o— )
"7 —eye|2-4m S,

= (I)i'a(wi)'g*(f)a (9)

where a(w;) is the albedo. Note that here
the reflection probability density f,-cos 6 has
been replaced by its average a /4.

The importance of a hit can then be defined
as the weighted average of its potential im-
pact and the real impact of its children. The
weighting factor is denoted by .

The algorithm of computing the hit selection
probabilities is as follows:

Computelmportance( hits[], nn )

Tiotar =0
for i =1 to nyi: do
hits[i].s =0  // hit selection probability
hits[¢].nchild =0 // number of children
endfor

for : =1 to ny;; do

hits[é].s += Lum( potential impact of hits[i]

pi = hits[i].parent // id of the parent hit
hits[pi].s += X - Lum(impact of hits[i]
hits[pé].nchild ++

endfor

for : =1 to nyi; do
hits[é].s /= (hits[¢].nchild+1)
Tiotqr += hits[i].s

endfor

for i =1 to ny¢ do hits[i].s /= Liotal

end

4 Random purge of the hit population

The self-correction iteration in the version
proposed so far is not appropriate for prac-
tical implementations since each iteration
step may increase the hit population by one,
which results in memory overflow sooner or
later. To avoid the overpopulation of hits, the
algorithm is broken into phases. Each phase
is like the presented self-correcting iteration.
The image estimates are computed at the end
of each phase and the final image is obtained
as the average of images of the phases. The

phases can either start from scratch or con-
tinue the previous phase with a strongly dec-
imated hit population. The killing of hits
happens in a way that the expectation of the
power does not change. Each hit point is con-
sidered for killing. Suppose that the survival
of hit ¢ happens with probability k;. If it is
killed then its power will be zero. However,
when it is given clemency, then its power is
divided by k;, which guarantees the correct
expectation:

@.
E[®IY] = k; - k—z +(1—k) 0=,

)

During this, those hits should stay alive
which are likely to spawn ancestors that can
have significant contribution on the image.
Note that this is the same requirement as se-
lecting the hit point to spawn the next hit,
thus setting k; proportional to s; seems to be
a good strategy.

5 Implementation details and simula-
tion results

In the current implementation a hit-point is
represented by the following parameters: in-
coming power on all wavelengths, incoming
direction, location, pointer to the surface in
order to get the BRDF, the surface normal,
luminance of the product of the incoming
power and the local albedo, image contribu-
tion, number of children, importance and the
index of its parent. The hit structure is sim-
ilar to the photon-map [5, 6]. The algorithm
is broken into phases of 400 steps and at the
end of each phase the image computation and
the hit selection probability calculation hap-
pen simultaneously. Then the population is
decimated keeping just a few hits and the it-
eration is continued.

Figure 3 shows the used test scene where
the lighting is made difficult by placing the
camera and the light source into two sepa-
rate rooms connected by a small gap. The
image on the right side has been computed
by the proposed method. The walls are dif-
fuse, but the objects have both specular and
diffuse reflections. Figure 4 compares the
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Figure 3: Geometry of the test scene (top view) and the image obtained with self-correcting

iteration

new self-correcting iteration with the clas-
sical light tracing, where both images have
been computed with the same computational
effort (30 million rays). The variance of the
image obtained with the new method is 14
times smaller than that of the light tracing.
However, this does not mean that the algo-
rithm is 14 times faster since the manipula-
tion of the hit population has some overhead.
For the current scene this overhead finally re-
sults in 7 times improvement. For more dif-
ficult scene, the overhead amortizes, making
the relative speed even higher.

6 Conclusions and future develop-
ments

This paper presented a global illumination al-
gorithm that works with a population of pho-
ton hits. At each iteration a randomly se-
lected hit gives birth to a new hit point, and
at the end of each phase an image estimate of
the hit population is obtained and the hits are
decimated randomly to start the next phase
with a low number of hits. The hit selection
can prefer those hits that have possibly large
contribution on the image. This is similar to
importance sampling, but when comparing to
classical random walks we have to note two
important differences. On the one hand, not
only the outgoing luminance of the hit can
be taken into account but also how far and
how hidden its neighborhood is from the cam-
era. On the other hand, a hit is not forgotten

right after its selection, but may be selected
again if it is important enough which allows
to reuse previous information. This reuse is
particularly important if the lighting situa-
tion is difficult and only a few paths can reach
the light source.
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