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ABSTRACT

Phongs illumination model requires unit length vectors. The surface normal has to be normalized
due to the linear interpolation, and if we use single point light sources or a fixed view point,
we have to normalize the vectors pointing to the light source and to the viewer. Unfortunately,

normalization is a relatively costly operation.

One of the main reasons for this is the square

root involved. But when we calculate the reflection vector, we actually do not need a normalized
normal. This fact can be used in order to get an approximation for the vector we want when we
interpolate between normals. The result is faster Phong shading and faster lighting calculations
when we are using a single point light source or having a viewer which is not placed at infinity.
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1 INTRODUCTION

Shading makes facetted objects appear smoothly
curved. An illumination model is applied in the
shading process in order to achieve this effect.
When realism is important, we use a global illumi-
nation model like ray tracing or radiosity, which
take interreflections between facets into account.
But when speed is important, a local illumination
model is used. We shall see how the latter could
be optimized for different shading techniques. In
Phongs illumination model [Phong75], the inten-
sity at a point on the surface of an object can
be modeled by summing intensities of the diffuse
and specular components, respectively:

I:Kd(NL)+Ks(RV)n> (1)

where Ky is a material constant for the diffuse
property of the surface, K is a material constant
for the specular property of the surface, N is the
normal vector for the surface, L is a vector point-
ing in the direction to the light source, R is the
vector in the direction of the perfect reflection
from the light source, V is the vector pointing
to the viewer, and finally n is the shininess value
which affects the size of the highlighted area.

Similar models can be used, and some include am-
bient light and the intensity of the light source.
Sometimes a distance term is used, since the in-
tensity of light becomes smaller with increased
distance. We shall look closer at how the dif-
fuse term I; = N - L and the specular term
I, = R -V could be efficiently computed. It
should be pointed out that we then have to raise



the specular term to the power n which is a costly
operation. We also have to multiply the terms
with their material constants, and finally add
them together. In subsequent sections, when we
will count operations in the inner shading loop,
we will not take into account these operations
since they have to be done, regardless of what-
ever technique we choose in order to compute I
and I.

When we use this illumination model to shade
pixels, there are basically two techniques we can
use. They are known as Gouraud- [Goura71] and
Phong shading [Phong75], named after their in-
ventors. In Gouraud shading, the intensities at
the vertices of the polygon are calculated first.
Then bilinear interpolation is used to calculate
the intensity of interior pixels. This method is
fast, but has its limitations. One examples is
when the intensity at the vertices happen to be
the same. Then the intensity will be the same
over the whole polygon. Phong shading over-
comes this problem by interpolating the normals
at the vertices. Hence, we will have a linearly
interpolated normal at each pixel, which we can
use to calculate the intensity by using the illumi-
nation model. The drawback is that this takes
more time, and one reason for this is the nor-
malization process and the square root involved.
Another reason why we prefer Phong shading is
that we get more accurate highlights on a surface.
Gouraud shading tend to smear out the highlight
over a polygon because the intensity is interpo-
lated over the polygon. That is, if the highlight
falls close enough to a vertex. But if it falls on
to the interior of a polygon, it will not be visible
at all, if the vertexes are too far away from that
point. Another disadvantage with Gouraud shad-
ing is that it tend to produce more mach bands
than Phong shading.

1.1 Normalization

Normalization is a ’necessary evil’ in many situ-
ations. One example is Phong shading, where we
have to normalize the linearly interpolated nor-
mal, otherwise it will be too short and that will
affect the lighting calculations. The interpolation
of N = (1 — a)N7 + aNx2 is often done as a re-
currence sequence:

N=N_1

dN=(N_2-N_1)/n

for i=1:n
N=N+dN

end

The drawback is that normalization is a costly
operation, not at least depending on the square
root operation needed, as seen in the following
equation, where N is an unnormalized vector in
3D space.

N N

N' = = .
INI VN-N

(2)

1.2 Fast Phong Shading

Duff [Duft79] showed that ﬁ, where L is nor-
malized and N is not, could be evaluated for suc-
cessive values of x with 3 additions, 1 division and
one square root per pixel. We will show why this
is so and later compare it to our new algorithm,
which we will implement using this scheme. It
should be pointed out that there exists a num-
ber of other techniques to do fast Phong shading,
like the ones introduced by Bishop and Weimer
[Bisho86] and Ouyang and Maynard [Ouyan96],
but in this paper we shall limit our selves to com-
pare it to Duff’s method only.

As we saw earlier we can interpolate from normal
N; to N2 by using a recurrence. Let N = kz+m
along the scan line from z; to zy, where n =
z2 —x1, k = (N2 — Njp)/n and m = Ny. If we
evaluate N - L instead, as Duff did, then we have:
N-L=Az+ B =p, (3)
where A = kL and B = m-L. We must not
forget the normalization. Let
N-N=Cz*+Dzx+E =g, (4)

where C' = k?, D = 2(k - m) and E = m?. Note
that £ = 1, since m = N has unit length. Then
we have:
N-L Ar+ B P
INI VC22+Dxz+E 1

Now we can set up the following recurrence:

(5)

Diy1 = p;i +dp; (6)
giv1 = ¢; + dg; (7)
dgi+1 = dg; + d’q (8)

where po = B,dp=A, qo=E=1,dgy=C+ D
and d?q = 2C.

This recurrence is evaluated in the inner loop for
the scan line, along with I; = p/,/q, which is the
diffuse intensity for the pixel. For each new scan
line we must recalculate A, B, C', D, po, qo, dqo
and d?q.

As we can see, this recurrence could be evaluated
for successive values of x along a scan line with
3 additions, 1 division and one square root per
pixel.



2 THE REFLECTION VECTOR

In many papers and computer graphics text
books the following equation is used for calcu-
lating the reflection vector R:

R =2N'(L-N') — L. (9)

Note that N’ must have unit length. This equa-
tion is often derived by using the equation for pro-
jecting a vector onto another, as in [Foley97] and
[Hearn97]. But they use the form where the vec-
tor which is project onto is normalized. We shall
remake their derivation by using the form where
it is not normalized. Hence, we do not need to use
a normalized N. This fact is rarely mentioned in
computer graphics text books, but it is nothing
new. As an example it could be mentioned that
this fact is used by Voorhies and Foran [Voorh94]
in their environment mapping technique.

Proposition 2.1. If we have a normal N of ar-
bitrary length, and a light source in the direction
of unit vector L, then the unit vector R in the
direction of a perfect reflection is

N-L

Proof. Let P be the projection of L onto N. Then
N L

P=——N. (11)
I N2

Let K be the vector from P to L, then

K=L-P. (12)
We know that
R=P-K, (13)
thus
R=P-(L-P)= (14)
R=2P-L= (15)
R = Q%N - L. (16)

Finally Eq.(2) gives:

N-L
R=2N_———-L.
N -N

3 HYBRID SHADING

Proposition (2.1) says that we can get R with-
out normalizing the normal. This means that

we can get a faster method for calculating high-
lights, that is, if we do not calculate the dif-
fuse light by using these normals, since it would
mean that we had to normalize them anyway.
Instead we use Gouraud shading for the diffuse
light only. Our new hybrid algorithm would thus
use the K4(N - L) for the diffuse light at the ver-
texes which we then bilinearly interpolate over
the polygon. Then we use Ks(R - V)™ to get the
specular light, where R is obtained by linearly
interpolating the normals, and using proposition
(2.1). This implies that we have to compute all
normals at the edges by interpolation, but we do
not have to normalize them.

If we assume that V = [0,0,—1] and remember-
ing that N is interpolated and thus not normal-
ized, then

N-L

N-N’
We can rewrite this equation by using Duff’s
scheme. Let A1 =k- L, B1 =m:- L, A2 = 2](?;,
and Bs = 2m,, then

N L= A+ B, (18)
and
ON, = Aoz + Bo, (19)
thus
2N.(N-L) =
(Aiz + B1)(Asz + Bs) = (20)

Ay Asx® + (A1 By + AyBy)x + By Bs.
We can multiply L, with the denominator to get
rid of the subtraction. Let the denominator be:
N-N=Dz>+Ez+F=q. (21)
Then, the numerator can be rewritten as:
Az® + Bx + C, (22)
where A=L,D—A1A», B=L,E—A1B>—AyDB,

and C = L,F — B1B>. Now we can set up the
following recurrence:

Pi+1 = pi +dp; (23)
dpip1 = dp; + d°p (24)
gi+1 = ¢i +dg; (25)
dgiy1 = dg; + d*q (26)

where pg = C, dpy = A+ B, d’°p = 24, qu =
F=m-m, dg =D + E and d*q = 2D. If we



Figure 1: The Venus de Milo statue, hybrid
shaded

have normalized normals on the edges we could
set F'=1.

This recurrence is evaluated in the inner loop for
the scan line, along with I; = p/q, which is the
specular intensity for the pixel. As we can see
this recurrence could be evaluated for successive
values of x along a scan line with 4 additions and
1 division per pixel for the specular light and 1
addition for linearly interpolating the intensity of
the diffuse light.

Fig.1 shows the famous Venus de Milo statue
which has been modeled with 1416 triangles.
Here it is shaded using the hybrid shading tech-
nique.

4 REFLECTION SHADING

Here we will introduce another way to calculate
N -L without having to Normalize N. The idea is
that if we could find a vector H which is exactly
halfway between our interpolated, and unnormal-
ized normal N and a vector n which is normal-
ized, then we could use proposition (2.1) to wrap
n around H to get N’ which will be in the same
directions as N but will be normalized. The nice
thing is that we do not have to use the square
root in this method. Even though the equation
will be longer, we can reduce it, as we shall see
later. The problem is that we will not find H
without using a square root. But we could ob-
tain approximations of H in several ways. One

very easy and many times sufficiently good way
is to let n be the normal of the polygon, and to
let H=n + N. Remember that we do not have
to normalize H:

H:n
H-H
One nice thing about computing H this way is

that we can interpolate H instead of N. We can
easily prove that

N' =2H n. (27)

(1—0&)N1+0¢N2+1’12

(1 -—a)(Ny +n)+ a(N2 +n). (28)

Now, let us see what happens with Eq.(27) when
we use the same scheme to evaluate:

2(H - L)(H - n)

N L=
H-H

—n-L. (29)
We could evaluate each of the two factors in the
numerator for them selves, which will require 2
additions and 1 multiplication. But we could also
evaluate the product itself:

2(H-L)(H-n) =
2(A1z + B1)(Asz + By) = (30)
A,’I,'2 + Bx+C = b,

where A = 2A1A2, B = 2(A1.B2+A2B1) and C =
2B1B>;. Then we can set up similar expressions
for Ay, As, By and By as we did earlier in the
previous section.

The point is that the numerator could be evalu-
ated in 2 additions. The denominator is basically
the same as the last time so it will again be eval-
uated in 2 additions. But we must also evaluate
n-L. This could be done in 1 addition as we saw
earlier. And we shall not forget that we have to
subtract this value from the result of the division.
We could even get rid of this subtraction by mul-
tiplying n - L by the denominator and subtract
the result from the numerator. We will show the
principle. Let the denominator be:

H - H=Dz>+Ex+F =g, (31)
and
n-L=3G. (32)

Then, the numerator can be rewritten as: (4 —
GD)x? + (B — GE)z + (C — GF). If we use this
scheme, we could evaluate this expression in 4
additions and 1 division. Compare this to the 3
additions, 1 division and 1 square root of Duff’s
fast Phong shading. Hence, we substituted the
square root by 1 addition in the inner loop. This
method is faster in the inner loop, but requires a
bit more computation in the setup for each scan
line.



4.1 Quality of the new Method

What about the error introduced by choosing a
vector which is not halfway between the two vec-
tors? Fig.2 and 3 shows that it is very hard for
the human eye to distinguish any differences be-
tween reflection shading and Phong shading. The
interpolation of the normal between N; and Ng
gives us an error itself, since the angle between
the normals will not be the same on a scan line.
The point is, linear interpolation does not give us
the correct normal, neither does reflection shad-
ing.

But why is it a good idea to choose n as the nor-
mal of the polygon? The reason for this is that
n + N should not be 0 (the zero vector) or too
close. There is of course no guarantee that n+ N
will not be 0, but if the surface is not too curved
we can use this scheme. Choosing, for example,
L or V as n will produce bad results when n+ N
comes close to 0. Of course this means that we
must have the normal of the polygon available.
If we are rotating our object, this means that we
have to rotate this ’extra’ normal, which obvi-
ously is a disadvantage. We can get around this
problem by choosing the previous N’ as our new
n so that H=N,_; + N,.

4.2 Highlights

If we want to add highlights to Duff’s method
we could use the expression introduced by Blinn
[Blinn78] H = ﬁ and then evaluate the spec-
ular intensity Iy = N - H for each pixel. Since I
is a dot product just as I is, we realize that we
could compute the specular component with the
same amount of work as for the diffuse compo-
nent. But we could exploit the fact that we have
already computed /g which we will use to nor-
malize both N - L and N - H. Since a division
takes much longer time than a multiplication we
can calculate 1/ \/(q) first and then multiply this
quote with p and r, where r is the recurrence vari-
able for the specular reflection, and p is the re-
currence variable for the diffuse reflection. Hence,
our total computation for both diffuse and spec-
ular light will be 4 additions, 2 multiplications 1
division and 1 square root.

What if we will use Eq.(17) instead? If we would
use the fast form for calculating I, that we de-
veloped in the ’Hybrid Shading’ section, then we
have to calculate the numerator for I; separately,
yielding a total of 5 additions, 2 divisions and 1
square root.

We could also exploit the fact that the numera-
tor and the denominator is the same as in Duff’s
method, except that we have no square root:

R.V=L —on L _
N N
» (33)
L, — 2N,
q

We can make the expression shorter if we use the
fact that 2N, = 2(kz + m). Then we could use
the recurrence r;11 = r; + dr;, where rop = 2m’,
dr; = 2k. The quote p/q could, as we saw earlier,
be evaluated in 3 additions and 1 division. Our
new recurrence can be evaluated in 1 addition and
we also have 1 multiplication and 1 subtraction
in the original expression. So the total cost of
the calculations of I; and I, will be 4 additions,
1 subtraction, 1 multiplication, 2 divisions and 1
square root.

What is the difference between using Eq.(17) and
Eq.(9)? Actually, as we will see, we will end up
with the same equation. Let us use Eq.(9), then
we can use the same initial values for r as above.
Precalculate s = 1/4/(g) in order to get rid of
one division, but we get two extra multiplications
instead

I, =L, —rsps. (34)

But ss = (1/,/q)> = 1/q, so we have the same
expression as in Eq.(17), as we said earlier. The
total cost of calculating I; and I, will be 4 ad-
ditions, 1 subtraction, 3 multiplications, 1 divi-
sion and 1 square root. This version is probably
faster than the previous one since a multiplica-
tion is many times faster than a division on most
computers. By using this method, we only need
1 subtraction and 1 multiplication more, in or-
der to calculate R -V, than we would use if we
were about to calculate N - H. So the advantage
of using the latter is not that great. Especially
since the latter will produce a value that is greater
than the first one, and thus, have to be raised to
a higher power to produce the same result. This
is the case, since the angle between N and H is
always smaller than the angle between R and V.

Fig.2 shows the Venus de Milo statue again. This
time it is Phong shaded and Eq.(34) has been
used to get the highlights.

4.3 Adding Highlights to the Reflection
Shading

If we would like to use Blinn’s method in order to
add highlights to our reflection shading technique,
then we could easily use equation (29) to evaluate



Figure 2: The Venus de Milo statue, Phong
shaded with highlights

N-H instead of N-L, where H is the halfway vec-
tor. The denominator will be the same as when
we compute the diffuse intensity so the total cost
will thus be 6 additions 2 multiplications and 1
division. If we on the other hand want to compute
R - V instead, we could once again use the fast
version from the 'Hybrid Shading’ section with
the reflection shading method for the diffuse in-
tensity. Hence, we will have a total of 8 additions
and 2 divisions. This time we can not use any
of the values from the other calculations to make
the computation faster. But if we choose to use
Eq.(34) we can evaluate it in 6 additions 1 sub-
traction, 3 multiplications and 1 division. Note
that r must be computed with Eq.(27), hence the
extra additions. Fig.3 shows the Venus de Milo
statue reflection shaded, using this technique for
the highlights. The normals along the edges and
along the scan lines are interpolated using the 're-
flection’ technique.

5 POINT LIGHT SOURCES

A simplification often used in applications where
speed is crucial, like in games, is to use a paral-
lel light vector L, which means that we can use
the same vector over the polygon since it does
not change. But if we want to use a single point
light source like a spotlight, then we must obtain
the vector between the point light source and the
pixel that we are currently shading. Once again
we need to normalize it, using Eq.(2). If our light
source is placed at point F', and our pixel is at

Figure 3: The Venus de Milo statue, reflec-
tion shaded with highlights

point P, then

F-P

L=7"7—7—.
| F— P

(35)

If our light source is a spotlight, then it has a main
direction S, then the intensity, I; + I , at pixel
P can be multiplied with (S - L)", where n will
affect the width of the spot which the spot light
generates when it shines on an object. This is ba-
sically the model introduced by Warn [Warn83].
If our single point light source is not a spotlight,
then it shines equally bright in all directions.

As shown in Eq.(28) we could interpolate F —
P directly, which is faster, then interpolating P
and then subtracting F' afterwards. This vector
must then be normalized. Of course, we will use
a recurrence to do the computations.

5.1 Faster Computation

The trick introduced earlier in the ’Reflection
Shading’ section could also be used for single
point light sources. Once again we must choose a
vector that we will wrap around our vector which
will lie almost halfway between this vector and
the unnormalized vector L = F' — P. The obvi-
ous choice is S. Therefore, we set H = S+ L, and
equation (27) gives
H-S

L'=2H—— —8S.
=S (36)



Once again we will be in trouble whenever S + L
is close to 0. One way to get around this problem
is to choose the previous L instead, as we have
discussed before. Thus H =L} _; + Ly,.

Eq.(36) should be used when we calculate I; and
I, but then we will get quite complicated ex-
pressions. If we choose to model I; and I, with
a constant L, then we could still produce a spot
by multiplying the intensity with (S -L’)™. Then
we can use Eq.(36) to get:

(H-S)?

S-L'=2
H-H

-1 (37)

Similar recurrences could be set up for evaluat-
ing this equation as we have done before. One of
the consequences of using this method is that the
width of the spot generated by a spotlight will be
smaller than we would get by using ordinary nor-
malization. This is due to the fact that H is not
halfway between L and S. This is an advantage
since we thus could use a smaller n.

6 FIXED VIEW POINT

Another simplification that is often used is having
the view vector V at infinity. If we want the view
vector to be at a fixed point, we must calculate
the vector from this point to each pixel we are
shading. Hence, we must normalize this vector
too. If we have a fixed view point at F' with the
view vector V pointing at the viewer, we could
use the same scheme introduced in the previous
section. We set the vector to the viewer from
the pixel P on the polygon vie are shading as
V = F — P. Once again we can use our method
to normalize V. Which vector should we choose
to wrap around? The best choice is probably v =
[0,0,—1] since it is in the middle of our view field,
pointing straight into the scene. We set H =
v+V:

H-v

V' =2H
H-H

- V. (38)

7 CONCLUSIONS

We have shown that the equation for prefect re-
flection could be rewritten in a form that does
not need an unit length normal. When we imple-
ment both forms of the reflection equations, by
using Duff’s method, we actually get the same
expression. A very fast shading method is to
use Gouraud shading for the diffuse intensity and

compute the specular intensity by using the equa-
tion that does not need a unit length normal.
Thus, it is a hybrid between Gouraud and Phong
shading.

Reflection shading was introduced that utilizes
the fact that we do not need a unit length normal
in the reflection equation. When we fold a unit
length vector around a vector halfway between
this vector and the unnormalized vector we get
the same vector but with unit length. The prob-
lem is to find that vector halfway in between. But
we showed that we could easily get an approxima-
tion that will produce satisfactory results.

This trick could also be used to obtain unit
length vectors when we are using single point light
sources or a fixed point view vector.
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