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ABSTRACT

Non-uniform basis functions for construction of interpolating and approximating spline curves and
surfaces are presented. The construction is based on the theory of B-splines and enables a continuous
change from interpolation to approximation of given data. It is also possible to change the tension of the
curves and surfaces.
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1. INTRODUCTION

The fundamental problem of geometric modelling is
the construction of smooth parametric curves and
surfaces to model real objects mainly in industrial
design, for example a shoe or a body of a car. Many
suitable methods were developed, for example
approximating B-splines, see [1].

The problem of approximation of data set
was sufficiently solved in the B-spline theory.      C2-
continuous cubic B-splines are probably the best for
the practical use. The control points affect the shape
of the curve or surface only locally, what is a
common request for the practical use. Known
interpolating curves are either only C1-continuous,
what means not smooth enough, or the control points
affect the curve or surface globally. Other common
request is a possibility of a continuous change of the
approximating character of the curve to
interpolating.  It is not always easy to decide whether
it is better to use the interpolation or the
approximation. The interpolation is more natural, but
highlights a possible noise. The approximation is
more suitable for noisy data, see Fig. 1,2,3. And

finally, it is easier to manipulate data of a curve or
surface than approximated control points.

Fig. 1
Interpolating curve

Fig. 2
Interpolating curve and noisy data

In this paper we will construct an C2-
continuous interpolating curve with local affect of
control points. Then we will generalise it to a set of



approximating curves containing the B-spline curve.
Finally we will generalise this construction for
tensor-product and spline-blended surfaces.

Fig. 3
Approximating curve and noisy data

2. SPLINE CURVE AND SURFACE
CONSTRUCTION METHODS

A spline curve can be defined using control vertices
and basis functions. The curve approximates the
shape of the control polygon. Let us denote W1,...,Wn

the control vertices of the curve and u1,...,un its knot
sequence. A spline curve is defined as follows:
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where )(uLm
i are the basis functions. The curve is

correctly defined if the following equation is
satisfied:
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A tensor-product surface is defined as follows:
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where Wij, i=1,...,m, j=1,...,n are the control vertices,

)(uLm
i are the basis functions and the surface

approximates the shape of the control mesh.
A spline-blended surface is a surface interpolating  a
given network of curves defined as follows:
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where G(u,vj), j=1,...,n are u-curves and G(ui,v),

i=1,...,m are v-curves and )(uLm
i are the basis

functions called also blending functions, see Fig. 4.

Fig. 4
Network of curves

3. CONSTRUCTION OF BASIS FUNCTIONS

We will construct the basis functions as B2-spline
functions, which are similar to the B-spline
functions. Instead of 2n+1 B-spline control vertices
D0,…,D2n, a B2-spline is determined by even control
vertices   D0,D2,…,D2n. Odd control vertices
D1,D3,…,D2n-1 are replaced by points Pi, i=1,…,n
joining the (2i-1)-th and the 2i-th segment. Let us

denote the knot sequence '
22

'
0 ,..., +nuu . The joint Pi is

given by the equation:
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where ''
1

'
jjj uu −=Δ + .

Fig. 5
B2-spline curve



 The equation for curves is the same as the equation
for functions (2). To sum up, B2-spline function or
curve interpolates its joints. Even control vertices
affect the shape of the function or curve, see Fig 5.
The following equation for enumeration of B2-spline
functions (or curves) can be derived:
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where t=u-(2i-1) or t=u-2i.
In [3] a spline curve has been constructed,

and it has been determined by control vertices
W1,...,Wn and B2-spline basis functions, defined by
equation (1). In [2] a relationship between B2-spline
control vertices of basis functions and B2-spline
control vertices of a spline curve has been derived.

Let j
iP  and j

iD2  be joints and even control vertices

of  j-th basis function, respectively. Let C2k and Rk be
even control vertices and joints of B2-spline curve,
respectively. These vertices satisfy the equation:
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In this equation the control vertices of the basis
functions D0,D2,…,D2n and P1,…,Pn  are considered
to be only  real numbers equal to the second
coordinate of the points.

In [3] we have derived B2-spline control
vertices for the uniform interpolating and
approximating curve with control vertices W1,...,Wn:
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where a is a parameter of approximation and p is a
parameter of the tension. For a=0 we get an
interpolating curve and for a=1/6 and p=0 we get
the uniform B-spline curve.

This construction gives good results only
for approximately equidistant data points, see Fig.
6,7,8.

Fig. 6
Parameter of approximation  a=-0.1, 0, 0.1, 0.2

Fig. 7
Parameter of tension p=0, 0.1, 0.2, 0.3

Fig. 8
Problem of the uniform curve

4. NON-UNIFORM INTERPOLATING
CURVE

In this section we will solve a problem shown in
Fig. 8 and then generalise the uniform interpolating
curve constructed in Section 3 to non-uniform.

Using a non-uniform knot sequence in the
theory of B-spline curves can solve the problem

shown in Fig. 8. Let '
2

'
1 ,..., +− LCC  be control points

and u0,...,uL+4 a knot sequence of cubic B-spline
curve consisting of L segments. If the knot sequence
is determined by the equation

( ) 3,...,2    ,dist ''
11 +=+= −+ LiCCuu iiii

the shape of curve is satisfactory. This method is
called chord-length parameterisation. We will try to
solve the problem of the interpolating curve using
chord-length parameterisation, too.

Let us have a B2-spline curve interpolating
its joints W1,…,Wn, with even control vertices
C0,C2,…,C2n and a knot sequence u’0,…,u’2n+2

determined as follows:
u’0 =u’1 =u’2=0, u’2n+2 =u’2n+1 =u’2n

u’2i+2= u’2i +dist(Wi-1 Wi), i=2,…,n-1
u’2i+1= (u’2i + u’2i+2)/2, i=2,…,n

We can also get the odd B-spline vertices using this
knot sequence and the equation (5). Then the known
DeBoore algorithm can be used to enumerate the
points of the curve.

Now it is necessary to find appropriate even
control vertices C0,C2,…,C2n. We will find even
control vertices of a symmetrical B-spline curve
consisting of 3 segments and use this result to find
suitable even control vertices of the B2-spline curve.



Let us consider a B-spline curve (see Fig. 9)
consisting of 3 segments, interpolating joints
W1 = (0,0), W2=(0,C), W3=(B,C), W4= (B,0) with
knot sequence  u0,…,u7, where u0=0, Δ1=A, Δ2=C,
Δ3=B, Δ4=C, Δ5=A, (Δi=ui+1-ui), u1 and u7 will be
chosen later. Now it is possible to find the B-spline
control points C’0,…,C’5 of the curve, where C’0,C’5,
u1 and u7  are chosen so that W1=C’1 and W4=C’4.

Fig. 9

Now we will split each segment defined on [ui ,ui+1)
in the knot (ui+ui+1)/2, find its new B-spline control
vertices C0,…,C8 and find a relationship between its
joints W1,W2,W3,W4  and even control vertices
C0, C2,…,C8 (and the parameter of tension p).

It is possible to prove, that if C’0,…,C’n+1

are B-spline control points of the original curve and
C0,…,C2n are B-spline control points of the curve
with split segments, the control vertices satisfy these
equations:
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We will investigate the y-coordinate of the point
C4=(B/2,y). This point satisfies the equation
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If we consider only the y-coordinate of this equation
we get y=(1+2p)C, and we get the equation
p=(y/C-1)/2. Using the equations (7) a (5) we get
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Now we can choose a value of A. Let us suppose
B=C. Let us choose B4

5  to be a value of the

y-coordinate of the control vertex C’4. This condition
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This is a symmetrical curve. Now we can generalise
the result for a non-symmetrical curve:
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We have constructed an interpolating curve not
causing problems shown in Fig. 8 as it can be seen in
Fig. 10.

Fig. 10
Problem of Fig. 8 is solved

The curve is suitable to model objects determined by
few points. But if we are given a lot of data for a
simple object, the curve does not seem to be very
suitable, see Fig. 11.

Fig. 11

 So we will consider the parameter of tension p
again:
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If we use a tension p=0.13 for the object in Fig. 11,
we get a good result (Fig. 12).

Fig. 12

But sometimes we need different values of the
tension in different parts of the object, so we define
the parameter of tension pi for each segment
separately:
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Let us summarise the definition of the interpolating
curve. Given:
- control points W-1,…,Wn+2

- a knot sequence u-1,…,un+2

- a parameter of tension sequence p1,…,pn-1

Interpolating non-uniform curve defined on [u1,un],
consisting of n-1 segments, interpolates control
points W1,…,Wn, the i-th segment is defined on
[ui,ui+1) and parameter of tension pi belongs to this
segment. The curve is the same as B-spline curve
consisting of 2n-2 segments determined by control
vertices C0,…,C2n satisfying the equations (5),(8),(9)
and the knot sequence u’0,…,u’2n+2 is defined as
follows:
u’2i= ui, i=0,…,n+1;  u’2i+1=( ui +ui+1)/2,   i=0,…,n;

We can find one more problem in this construction
for a special kind of the control polygon, see Fig. 13.
The curve does not approximate this control polygon
very accurately.

Fig. 13

The solution is in a little modification of the knot
sequence:
u’2i=( ui-1+K ui+ ui+1)/(K+2),   i=0,…,n+1;
u’2i+1=( ui +ui+1)/2,   i=0,…,n;
where K is big enough (for example K=20).

Fig. 14
Problem of Fig. 13 is solved

To finish this section, we suggest a way how to
determine suitable values of parameters of tension
p1,…,pn-1. Our equation has been constructed to
satisfy these conditions:
- If the direction of the control polygon edges is

changed only a little, the tension is close to zero,
see Fig. 15.

Fig. 15
- If the direction is changed quickly, the tension

rises, see Fig. 16.

Fig. 16
- If the direction is changed almost opposite way,

the tension is close to zero again.

Fig. 17
- If the direction of an edge is changed and the

next edge is returned to the original direction,
the tension is again close to zero.

Fig. 18

We have suggested the following equation:

2

coscos 1++
⋅= ii

i pp
αα

           11 +−∠= iiii WWWα

where p is the parameter of tension. Suitable default
value is p=0.2. Fig. 19 shows that this method is
much better in detail (compare Fig. 1).

Fig. 19
Interpolating curve, p=0.2

Fig. 20
Detail of Fig. 1

Fig. 21
Detail of Fig. 19



Fig. 22
Detail of Fig. 1

Fig. 23
Detail of Fig. 19

5. APPROXIMATING CURVE

In this section we will generalise the interpolating
curve to a system of approximating curves with the
parameter of approximation a.

For a=0 we get the interpolating curve and
for a=1/6 and pi=0, i=1,…,n–1 it is supposed to be
the B-spline curve. The approximating curves for
other values of parameter a will be constructed as
linear interpolation of the interpolating and the
B-spline curve. Advantage of this construction is that
we can interpolate the control points of the
interpolating and the B-spline curve and get the same
result.

Let us have a B-spline curve ( )uLB  with B-

spline control vertices W0,…,Wn+1 and a knot
sequence u-1,…,un+2 (the B-spline curve does not
depend on vertices W-1 and Wn+2). Let us denote its

B2-spline control vertices: the joints are B
n

B WW ,...,1

and the even control vertices are B
n

BB CCC 220 ,...,, . Its

parameter of tension sequence is

1,...,1   ,0 −== nipB
i . We can get these vertices

from given points W-1,…,Wn+2 using the equations (7)
and (5). The control points of the interpolating curve
L(u) are denoted in the same way as in previous
Section: W-1,…,Wn+2 are the joints, C0,…,C2n are the
even control vertices and p1,…,pn-1 is the parameter
of tension sequence.

Let us denote ( )uLa  an approximating

curve with parameter of approximation a. Let us

have ( ) ( )uLuL =0  and ( ) ( )uLuL B=6/1 . ( )uLa is

defined as follows:

( ) ( ) ( ) ( )uLauLauL Ba ⋅⋅−+⋅⋅= 616

The B2-spline control vertices of the approximating

curve ( )uLa  satisfy:
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6. TENSOR-PRODUCT SURFACES

It is quite easy to generalise the definition of the
approximating curve for tensor-product surfaces:
Given:
- control points Wij, i= -1,…, m+2,  j= -1,…,n+2
- knot sequences  u-1,…,um+2 , v-1,…,vn+2

- parameter of tension sequences p1,…,pm-1,

q1,…,qn-1

The curve defined in previous Section is denoted as
C(v) and the tensor-product surface is  denoted as
S(u,v).
According to the equations (1) and (3) we can write
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where Ci(v) is the approximating curve defined in the
previous Section by the control vertices Wi,-

1,…,Wi,n+2 and the knot sequence v-1,…,vn+2. We can
also write S(u,v)=Cv(u), where Cv(u) is the
approximating curve defined in the previous Section
by the control vertices C-1(v),…, Cm+2(v) and the
knot sequence u-1,…,um+2.

It is not possible to generalise suggestion
of the knot sequences and the parameter of tension
sequences because we have to suggest only one knot
sequence and parameter of tension sequence for all
u-curves and a second for v-curves. This is the
reason why we do not give any suggestions for
tensor product surfaces. Both knot sequences and
parameter of tension sequences must be suggested
separately for specific needs of each application.

Fig. 20
Interpolating tensor-product surface



7. SPLINE-BLENDED SURFACE

Given:
- knot sequences  u-1,…,um+2 , v-1,…,vn+2

- a network of curves G(ui,v), i= -1,…, m+2,
G(u,vj), j= -1,…,n+2

- parameter of tension sequences p1,…,pm-1,

q1,…,qn-1

The points of the spline-blended surface defined in
(4) can be enumerated in the similar way as in
previous Section. The surface G12 from definition (4)
is a tensor-product surface. If we fix the parameter v
in the surface G1 and the parameter u in the surface
G2, we get the definition of a curve according to (1).
So we can use algorithm for curves.

8. CONCLUSION

We have constructed an appropriate non-uniform
system of spline curves containing an interpolating
curves and the B-spline curve. The interpolating
curve is special case of the B2-spline curve, but we
have found appropriate even control points. User
does not have to take care of them, but they can also
be changed using the parameter of tension sequence.
The results of this paper have been implemented and
we represent them in several pictures shown in this
paper. We think it would be useful to generalise
these results to a system of non-uniform rational
curves, containing the most used NURBS and try
other parameterisation methods as well.
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