
SOLVING POINT AND PLANE VS. ORTHOGONAL POLYHEDRA
USING THE EXTREME VERTICES MODEL (EVM)

Antonio Aguilera. and Dolors Ayala.
Universidad de las Américas-Puebla. Universitat Politècnica de Catalunya.

Puebla, México. Barcelona, España.
antonio@mail.pue.udlap.mx ayala@lsi.upc.es

aguilera@lsi.upc.es

ABSTRACT

In a previous work, Orthogonal Polyhedra (OP) were proposed as geometric bounds in CSG. Primitives in the
CSG model were approximated by their respective bounding boxes. The polyhedrical bound for the CSG object
was obtained by applying the corresponding Boolean Algebra to those boxes. Also in that paper, a specific and
very concise model for representing and handling OP was presented: the Extreme Vertices Model (EVM). The
EVM allows simple and robust algorithms for performing the most usual and demanding tasks. This paper deals
with the classification of point, and plane vs. OP. These operations can be done on the EVM in linear time.
Furthermore, a very important feature of EVM algorithms is that, even though their input data (i.e., vertices'
coordinates) can be floating-point values, no time-consuming floating-point arithmetic is ever performed (except
when explicitly noted), so there are absolutely no propagation errors due to partial results (which do not exist).
All results are obtained by just classifying and selecting vertices' coordinates of the initial data.

1 INTRODUCTION 2 BACKGROUND

The Extreme Vertices Model (EVM), first published in
[Aguil96], was introduced as a restricted model for two-
manifold Orthogonal Polyhedra (OP). Also in that
paper, a Boolean operations algorithm that works for
that model was presented. Moreover, in more recent
works [Aguil97, 98a], a natural domain extension for
the EVM basics that now handles Orthogonal Pseudo-
Polyhedra (see a definition below), is presented. All the
theoretical foundations for the EVM in its full domain
can be found in [Aguil98b].

2 .1 Terminology.

A pseudo-polyhedron is a finite collection of planar faces
such that (a) every edge has at least two adjacent faces,
and (b) if any two faces meet, they meet at a common
edge [Tang91]. A two-manifold edge is adjacent to
exactly two faces, and a two-manifold vertex is the apex
of only one cone of faces. Conversely, a non-manifold
edge is adjacent to more than two faces, and a non-
manifold vertex is the apex of more than one cone of
faces [Rossi91].This paper deals with three processes: (a) determining

the set membership classification (IN, ON, or OUT) of a
point against an OP; (b) testing whether a general plane
intersects an OP; (c) splitting an OP with a plane when
it is perpendicular to a specific coordinate axis. The
cases when the splitting plane is perpendicular to
another coordinate axis, as well as the classification of a
line against an OP are problems that can be easily
handled by the EVM (see [Aguil97, 98b]). However,
they are not considered here because they require a deeper
exposition of the EVM concepts and the space
limitations for this paper do not allow that.

Polyhedra are two-manifold r-sets. Pseudo-polyhedra
(almost polyhedra) are pseudo-manifold r-sets, i.e., r-sets
with non-manifold boundary (edges or vertices).
Polyhedra are a subset of pseudo-polyhedra. Finally, a
non-regular polyhedron is a non homogeneously three-
dimensional object, i.e., it has "dangling" faces or edges.
[Rossi91, Tang91].

2 .2 Orthogonal Polyhedra.

Orthogonal polyhedra (OP) are polyhedra with all their
edges and faces oriented in three orthogonal directions
[Prepa85]. Orthogonal Pseudo-Polyhedra (OPP) is
defined as regular and orthogonal polyhedra that may
have non-manifold boundary. In an OPP, a non-manifold
edge is adjacent to exactly four faces and a non-manifold
vertex is the apex of two cones of faces (see Fig. 1).

Splitting an OP with a general plane is not considered
because we want a closed operation in the EVM,
otherwise the results would not be OP and could not be
represented in our model.

This work is organized as follows: The next section
introduces some necessary concepts on orthogonal and
pseudo-polyhedra, then presents a vertex classification
for OP. Section 3 introduces the most basic EVM
concepts and its interface. Section 4 deals with the Set
Membership Classifications on the EVM, and section 5
analyzes and compares the performance of the proposed
algorithms. Finally section 6 contains our conclusions.

a b c

Figure 1: a) An OP. b) An OPP. c) A non-regular
orthogonal polyhedron.



0 1

2

3

4

5

6

7 8

a b

c d e

f g h

i j k l m n

o p q

r s t

u v

Figure 2: Possible configurations with 0 to 8 surrounding boxes.

2 .3 Vertex Classification for OPP. Configurations o to v correspond to the complements of
those from a to n. Finally, configurations i to n are self-
complementaries. It is also shown that each
configuration represents a vertex for the final OPP,
except a, c, i, m , r, and v. These configurations are
special cases which represent a point outside the OPP
(a), on a two-manifold edge (c), on a face (i), on a non-
manifold edge(m), on a two-manifold edge (r), and a
point interior to the solid (v).

In an OP the number of incident edges for any vertex can
be only three, four or six [Juan89]. In this subsection
we characterize vertices of OPP. In [Aguil97, 98b], it is
shown that, as an OPP can be understood as the
resulting B-Rep of an orthogonal spatial enumeration
model as a voxelization, then vertices of an OPP can be
characterized by studying vertices in a voxelization.
Moreover, the classification of these vertices follows the
same pattern as the classification of nodes in the
marching cubes algorithm [Loren87]. Considering the
common vertex of eight octants, which can be either full
or empty, there are 28 = 256 possible combinations
which, by applying rotational symmetries, may be
grouped into 22 equivalence classes (configurations)
[Sriha81], shown on Fig. 2. Grouping complementaries
leads to the 14 basic patterns [Loren87], configurations a
to n, also called major cases [vGeld94].

From the analysis of Fig. 2, vertices can be classified
into eight types depending on the number of two-
manifold and non-manifold edges incident to them. Fig.
3 shows these types which will be referred as V3, V4,
V4N1, V4N2, V5N, V6, V6N1 and V6N2 (the first
digit shows the number of incident edges, the "N" is
present if at least one Non-manifold edge is incident to
it, and the second digit is included to distinguish
between two different types that otherwise would receive
the same name).

V3 V4 V4N1 V4N2 V5N V6 V6N1 V6N2

                                                             V3      V4     V4N1   V4N2    V5N      V6     V6N1   V6N2            
Number of incident edges 3 4 4 4 5 6 6 6
Number of two-manifold edges 3 4 3 2 4 6 3 -
Number of non-manifold edges - - 1 2 1 - 3 6
Number of incident faces 3 4 5 6 6 6 9 12
Number of surrounding boxes 1,3,5,7 4 3, 5 4 2, 6 2, 4, 6 3, 5 4

     Corresponding configurations              b,f,o,u      j        g, p        k        d, s     e, l, t    h, q        n               
Extreme Vertex Yes no Yes no no no Yes no

Figure 3: Vertex classification according to its number of incident edges
(dashed lines represent non-manifold edges).



3 THE EXTREME VERTICES MODEL
(EVM) FOR OPP

In a brink each ending vertex is V3, V4N1, or V6N1 and
the remaining (interior) are V4, V4N2, V5N or V6.
Vertices V6N2 do not belong to any brink. According to
the above analysis, Vertices V3, V4N1, and V6N1 have
in common that they are the only ones that have exactly
three incident two-manifold and linearly independent
edges, regardless of the number of incident non-manifold
edges (if any), therefore those vertices mark the end of
brinks in all three orthogonal directions. Any V4,
V4N2, V5N or V6 is the sole common point of two
collinear edges of a same brink, so they can not be
ending vertices of a brink. Finally all six incident edges
of a V6N2 are non-manifold edges, so none of them
belongs to a brink, and therefore this vertex does not
belong to any brink, either (see Fig. 3 and Fig. 4).

3 .1 Brinks, Extreme Vertices, and Planes
(Lines) of Vertices.

A brink is the longest uninterrupted segment, built out
of a sequence of collinear and contiguous two-manifold
edges of an OPP, P.

Non-manifold edges do not belong to brinks. Every two-
manifold edge belongs to a brink, whereas every brink
consists of one or more edges and contains as many
vertices as the number of edges plus one (see Fig. 4.a,
and Fig. 4.b).

A B C D E F

G

a b

A B C D E F

c
G

X

Figure 4: a) An OPP with a brink having five edges and six vertices. Vertices A  and F are V3, B and D are
V6 (configurations l & e), C is V4, and E & G are V5N. b) There are also seven other brinks of two edges
each. The non-manifold elements are vertex D and  edge EG  (dashed). c) Its EV set viewed as six planes of
vertices perpendicular to X (the shaded polygons).

We will call Extreme Vertices (EV) of an OPP to the
ending (or extreme) vertices of all the OPP brinks, i.e.,
vertices V3, V4N1, and V6N1 of the OPP. We define
the Extreme Vertices Model (EVM) for OPP as a model
that only stores all their EV. Finally, an ABC-sorted
EVM is an EVM where its EV are sorted first by
coordinate A , then by B, and then by C. An EVM can
be sorted on six different ways: XYZ , XZY , YXZ ,
YZX , ZXY , and ZYX . From now on, EVM(P) will
denote the ABC-sorted EVM of an OPP P, since most
of the definitions and results (although not all of them)
require of this ABC-ordering. Although the EVM has
been defined for 3D-OPP, it is also defined for 2D-OPP
and 1D-OPP [Aguil98b].

A plane of vertices of an OPP is the set of EV lying on
a plane perpendicular to a coordinate axis (i.e., the 2D-
EVM of the faces on that plane, see Fig. 4.c). We will
also refer as line of vertices (within a plane of vertices)
to the set of EV lying on a line parallel to a coordinate
axis (i.e., the 1D-EVM of collinear brinks). From now
on, plv will refer to both planes and lines of vertices for
orthogonal polyhedra and polygons), respectively.

3 .2 The ABC-sorted Type, and Interface
for the EVM.

According to the above, the ABCsorted type can be
defined, along with the following primitive operations:

Theorem 1. The Extreme Vertices Model is a
complete B-Rep model for OPP. FUNCTION InitEVM() RETURN ABCsorted

{ Returns an empty ABC-sorted EVM }

PROCEDURE PutBrink(INPUT
Vb,Ve:Vertex; I/O P: ABCsorted)

Coordinate values for non-extreme vertices can be
directly obtained from coordinates of EV by intersecting
brinks. Moreover, all remaining geometric and
topological information about an OPP can also be
obtained from its EVM. For a formal proof of this
theorem see [Aguil98b].

{ Appends to an EVM a brink defined
by its Extreme Vertices Vb & Ve
(i.e., appends two consecutive
Extreme Vertices to the EVM P) }

PROCEDURE ReadBrink(INPUT
P:ABCsorted; OUTPUT Vb, Ve: Vertex)

Let Vb = V2k −1 and Ve = V2k , for k = 1, 2,… be two
consecutive vertices within an ABC-sorted EVM(P),
then Vb  and Ve  are the beginning and ending vertices of

the k th  C-brink defined in an ABC-sorted EVM. (C-
brinks refers to those brinks parallels to the C axis.)

{ Reads next brink (or pair of
Extreme Vertices) from an EVM P.}



FUNCTION ReadPlv(P: ABCsorted, 4 SET MEMBERSHIP CLASSIFICATIONS
ON THE EVMdim: INTEGER) RETURN ABCsorted

{ Extracts next plane (dim=2) or line
(dim=1) of vertices from an EVM P.
That is, the set of Extreme
Vertices with the same A (or A & B)
coordinate values. }

4 .1 Point in Polyhedra.

The chosen method is an adaptation from the well-
known crossings test [Shimr62], also known as the
parity, or even-odd test [Prepa85, Mänty88]. This test
leads to the fastest algorithm without any preprocessing
[Haine94].

FUNCTION EndEVM(P: ABCsorted)
RETURN Boolean
{ Returns TRUE if the end of P has

been reached. } The adaptation consists in considering a semi-line
parallel to the A-axis (B-axis for the 2D case), starting
from -∞ and ending at the test point. Then a sweep-
plane(line)-like process is performed, which starts with
an OUT condition and updates it whenever the OPP
boundary is crossed (or just touched). All three (IN, ON,
and OUT) conditions are handled. When the semi-line
goes through a plane of vertices the process is similarly
repeated for this plv, i.e., it is a recursive process in the
dimension. The trivial (or base) case is for dim = 1,
where the test is performed for a line of vertices.

FUNCTION GetCoord(P: ABCsorted,
dim: INTEGER) RETURN CoordType
{ Gets the common A (dim=2) or B

(dim=1) coordinate of a plane
(line) of vertices P. }

Where CoordType is the chosen type for the vertex
coordinates (INTEGER, REAL, DOUBLE, etc.).

a c

f

a

a b c

d e

f

p

q

b

a b c

d e f

Pl1 Pl2 Pl3 Pl4

c

Figure 5: Two points p and q are to be tested against an OPP. A semi-line from -∞ and ending at p goes
through Pl1 , Pl2  and Pl3  (the supporting planes of the OPP's faces) at points a, b, and c, respectively; while a
semi-line from -∞ and ending at q goes through those planes at d, e, and f. Points a to f are recursively tested
against the corresponding faces. In this example, points d and e are outside the corresponding faces (OUT) so the
OPP's boundary is not crossed at these two points. Any plv that is beyond the test point (like Pl4 ) or is not
perpendicular to the semi-line will not need to be processed at all.

The problem in the ON cases, when the semi-line passes
through one or more vertices and edges can be ignored
by considering the semi-line to be a half-plane divider,
with one of the half-planes including the semi-line's
points. In other words, whenever the semi-line passes
through a vertex, the vertex, and the corresponding edge
on the semi-line, are always classified as being
infinitesimally above it. In this way, no vertices or
edges are considered lying on the semi-line, and the
resulting code is both simpler and faster.

Moreover, in order to handle the ON cases correctly, the
ON condition is further subdivided as ONIN and
ONOUT subconditions, which correspond to the ON
condition being infinitesimally IN or OUT, respectively.
Fig. 6 shows a 1D example (left) and some 2D
examples (right) which include all possible transition
cases. Finally, transition cases are sumarized in Table 1.

Ve = V2k

Vb = V2k −1

OUT

ONOUT

IN

ONIN

OUT OUT & ONOUT IN & ONIN

Figure 6: Edges and vertices lying on the semi-line (ON cases) are further classified as ONIN or ONOUT
according to the classification (IN or OUT) of the corresponding point being infinitesimally above it. Left) 1D
example. Right)  2D examples.



          OUT   ONOUT     IN    ONIN      INresult  ONresult Meaning

  OUT     OUT   ONOUT     IN    ONIN        FALSE     FALSE     OUT 
ONOUT   ONOUT     OUT   ONIN      IN        FALSE     TRUE    ONOUT
  IN      IN    ONIN      OUT   ONOUT       TRUE      FALSE     IN
ONIN    ONIN      IN    ONOUT     OUT       TRUE      TRUE    ONIN

Table 1: The IN, OUT, ONIN and ONOUT transition rules. Table 2: Boolean values code.

Algorithm 1: Point in EVM.
It recursively testes whether the ray crosses any plv
previous to the test point. Since each EV is processed at
most three times (once at each recursive level), then this
algorithm runs in linear time. The corresponding Point
in EVM Algorithm can be stated as:

This algorithm receives an ABC-point pt and an ABC-
sorted EVM P, and produces two Boolean results:
INresult and ONresult, whose combined values
produce all four possible results as shown in Table 2.

PROCEDURE PointInEVM( INPUT pt: ABCpoint; P: ABCsorted; dim: INTEGER;
OUTPUT INresult, ONresult:BOOLEAN);

VAR
plv: ABCsorted; { current plane (line) of vertices }
INflag, ONflag, { IN & ON flags returned by recursive call}
PtInPl: BOOLEAN; { TRUE if pt lies on the plv just read }
plvCoord: CoordType; { for saving the plv common coordinate }

ENDVAR

IF dim = 1 THEN PtInLine(pt, P, INresult, ONresult) {trivial case}
ELSE

dim := dim-1;
PtInPl := FALSE; { assume pt not lying on Pl }
INresult := FALSE; { initialize result as OUT  }
ONresult := FALSE; { initialize result as OUT  }
plv := ReadPlv(P, dim);
plvCoord := GetCoord(plv, dim);
WHILE NOT EndEVM(P) AND plvCoord ≤ PtCoord(pt, dim) DO

IF plvCoord = PtCoord(pt, dim) THEN PtInPl := TRUE ENDIF
PointInEVM(pt, plv, dim, INflag, ONflag); { recursive call }
IF INflag THEN INresult := NOT INresult ENDIF
IF ONflag THEN ONresult := NOT ONresult ENDIF
plv := ReadPlv(P, dim);

ENDWHILE

IF PtInPl AND INflag THEN ONresult := TRUE ENDIF

ENDIF
ENDPROCEDURE

Where procedure PtInLine returns:

• ONIN, if pt =Vb = V2k −1, (pt is the beginning vertex of the k th  C-brink, for some k.)

• ONOUT, if pt = Ve = V2k , (pt is the ending vertex of the k th  C-brink, for some k.)

• IN, if Vb < pt < Ve , (pt is in the interior of the k th  C-brink, for some k.)
• OUT, otherwise,

as described in first column of Table 1, and the returned result is coded according to Table 2.

4 .2 Testing a Plane against an OPP. OPP brinks, i.e., if the Extreme Vertices of a brink are
at either side of the plane. Moreover, C-brinks can be
trivially tested for this intersection in linear time, since
they are defined by two consecutive vertices Vb = V2k −1

and Ve = V2k .

A test for determining whether a general plane intersects
an OPP P , can be developed for the EVM, using the
fact that a plane intersects P  iff it intersects any of the



Different ABC-sortings of the EVM can be used for
testing other brinks. Thus, an O(n Log n) preprocess
(the sort) is needed to test any number of different planes
against P , each in linear time.

If SP  is perpendicular to other axis then a suitable
ABC-sorting must be applied to the model prior to this
process. See [Aguil97] for other splitting algorithms
that can be directly applied when SP  is perpendicular to
other axis.

Furthermore, the intersection of the plane with P  (i.e.,
the section) can be computed in the following way. As
each brink is tested, its intersection point with the plane
can be computed (this process requires floating-point
arithmetic), then the intersecting points of any two
brinks with a common EV can be joined in a domino-
like procedure, effectively obtaining the contour of the
section.

Let Vb = V2k −1 and Ve = V2k  be the beginning and

ending vertices of the k th  C-brink defined in an ABC-
sorted EVM. Since both Vb  and Ve  have the same A
and B coordinates, while the C coordinate is less in Vb

than in Ve , then, it can easily be known, for each of the
vertices Vb  and Ve , if it is IN, OUT or ON with respect
to the splitting plane SP  (i.e., in the negative or
positive halfspaces of SP , or on SP  itself) by just
comparing its C-coordinates with the plane equation.

4 .3 Splitting an OPP with a plane
perpendicular to the C  axis .

This section presents an algorithm for the classification
of an OPP P  against splitting plane SP  perpendicular
to the C axis. It computes two resulting OPP: one of
them Q , corresponding to the IN half-space, and the
other one R , corresponding to the OUT half-space.

Then only two cases may occur:

a) Both vertices lie in the same halfspace of SP , or
one of them is ON the SP . Then both of them will
be assigned to the same Q  or R  resulting object.

This algorithm is based on the fact that the Extreme
Vertices of each of the resulting objects Q  and R  will
be a subset of EVM(P), except for some new Extreme
Vertices that could be created, and they will lie on SP .
Also, since SP  is perpendicular to the C axis, then
neither A-brinks nor B-brinks of P  can ever be split by
SP , only some C-brinks (those whose Extreme Vertices
are at either side of SP ). Therefore, this splitting
algorithm only considers those brinks parallel to the C
axis, and they appear as consecutive couples of vertices
in the ABC-sorted model, so it runs in linear time.

b) Each vertex belongs to a different halfspace. In this
case a new vertex Vi  at the intersection between the
brink and the splitting plane is obtained. Then, Vb

and Vi  will be assigned to Q , while Vi  and Ve

will be assigned to R .

According to these two cases, the corresponding
Splitting Algorithm can be stated as:

Algorithm 2: Splitting an ABC-sorted OPP P  with a C-Splitting Plane SP .

PROCEDURE SplitC(INPUT P: ABCsorted, SP: plane; OUTPUT Q, R: ABCsorted)
{Splits object P by plane SP (perpendicular to the C axis) into objects Q and

R}

  VAR Vb, Ve, Vi: ABCpoint ENDVAR

  Q := InitEVM();
  R := InitEVM();

  ReadBrink(P, Vb, Ve);
  WHILE NOT EndEVM(P) DO
    IF  IN(Vb) AND ( IN(Ve)   OR  ON(Ve)) THEN PutBrink(Vb, Ve, Q) ENDIF
    IF (ON(Vb)  OR  OUT(Vb)) AND OUT(Ve)  THEN PutBrink(Vb, Ve, R) ENDIF
    IF  IN(Vb) AND  OUT(Ve) THEN
      Intersect(Vb, Ve, SP, Vi);
      PutBrink(Vb, Vi, Q);
      PutBrink(Vi, Ve, R);
   ENDIF
   ReadBrink(P, Vb, Ve);
  ENDWHILE
ENDPROCEDURE

Note that the procedure Intersect obtains Vi

without any computation. Let for example, x = xp  be

the plane equation, and also let Vb = (x1, y, z ) and
Ve = ( x2 , y, z)  be the beginning and ending vertices of a
brink in a ZYX or YZX-sorted model, then
Vi = (x p, y, z ) .

Fig. 7.a shows an OP P  that is to be split . Note that
only horizontal brinks (shown as solid lines) need to be
considered. Circles show the intersection points between
C-brinks and SP , each of them will generate two
Extreme Vertices, one for Q  and one for R .
Also note that one of those circles corresponds to an
existing V4, and another one to a V6 (SP  coincides



with a plane of vertices of P). The result is shown in
Fig. 7.b, where the dots correspond to the newly

generated Extreme Vertices.

C

A

B

Q R

SP

1
2

3 4
5 6

7 8 9

P

a b

Figure 7: (a) An OPP that is going to be split by plane SP  perpendicular to the C-axis. .
(b) The resulting OPPs Q and R . (see text for more details).

5 PERFORMANCE COMPARISON the bounding box OH Wk( ) such that no edge of

OH Wk( ) has Extreme Vertices at both ends. So Wk  has

12(k −1) , or, 12(k −1) + 4  Extreme Vertices of type

V3 (if k is odd or even, respectively); 6(k − 1)2  vertices

of type V5N on the faces of OH Wk( ); and (k − 1)3

vertices of type V6N2 in the interior of OH Wk( ).

Therefore, nEV = O(k)  while nV = O(k3 ) , in fact it is

shown in [Aguil98b], that nEV =O nV3( ) , therefore

nEV << nV .

This section provides theoretical and some experimental
comparisons of known methods (of linear complexity)
vs. the proposed one. The performance of the respective
algorithms is better in the EVM than in other methods
mainly because of the following facts:
• The complexities of known methods are linear with

respect to the total number of vertices O(nV)  in the
polyhedron, as opposed to the proposed algorithms
which are linear with respect to the number of
Extreme Vertices O(nEV ). Obviously nEV ≤ nV ,
but very often nEV << nV .

• No time-consuming floating-point arithmetic is ever
performed in the EVM algorithms.

In Fig. 9, a graph shows the behavior of the Point-In-
Polyhedron algorithms testing 500 random points
generated inside the bounding box of each OPP. For this
test, random OPPs, with the desired number of vertices
were generated as the union of random boxes.

Note that EVM algorithms are tailored (limited) to
handle OPPs only.

The worst case, when nEV = nV , the EVM algorithms
equal the performance of known methods. On the other
hand, the best cases correspond to a case study, found in
[Aguil98b], where a succession of OPPs Wk , k≥2, is
defined. Each OPP, Wk , is built inside a cubic bounding

box or orthogonal hull OH Wk( ), with side of k units of

length, and composed of the maximum number of unit-
cubes joined by edges, but with the minimum number
of Extreme Vertices. See Fig. 8.

"Known methods" in Fig. 9 stands for the crossings
test, where a semi-line parallel to the x axis is supposed
to be tested against all the polyhedron faces. This test,
however, has been adapted to OPPs and only those faces
perpendicular to the semi-line were tested, therefore,
every vertex in the OPP is processed exactly once. Also,
the set of vertices is assumed to be sorted in a sequence
describing the polygonal faces being perpendicular to the
semi-line, thus the algorithm runs in a time
proportional to the total number of vertices. Both "EVM
(Average)" and "EVM (Minimum)" in Fig. 9 stand for
the behavior of algorithm 1, where the set of vertices is
assumed to be XYZ-sorted. The first one represents the
average behavior of 50 random polyhedra for each
number of vertices, while the second is the result of
applying it to the succession of OPPs Wk  described
above.

        

Figure 8:  Example of W5  and its EVM. 6 CONCLUSIONS

The set of Extreme Vertices for each Wk  is constructed

by dividing  each edge of OH Wk( ) into k segments,

then these splitting points are all the Extreme Vertex of
Wk , when k is odd. When k is even, four additional
points are required and they must be placed at corners of

The EVM is a highly concise model for OPP that
allows simpler and faster algorithms for Set
Membership Classification in linear time (some of them
may require an O(n log n) preprocess).



0
100
200
300
400
500
600
700
800
900

1000

0 100 200 300 400 500 600 700 800 900 1000

Known methods

EVM (Average)

EVM (Minimum)

Number of vertices in OPP ->

N
u

m
b

er
 o

f 
p

ro
ce

ss
ed

 v
er

ti
ce

s 
->

Figure 9:  Experimental comparison of known methods with the proposed one.

The experimental results show that the average EVM
performance is quite better than other methods, and not
too far from the optimum (the Wk  case study).

[Aguil98b] Aguilera,A: Orthogonal Polyhedra: Study
and Application . Ph.D. Thesis. LSI-Universitat
Politècnica de Catalunya, 1998.

[Haine94] Haines,E: Point in Polygon Strategies. In
Heckbert,P, editor, Graphics Gems IV. pp.24-46.
Academic Press, Boston, 1994.

The above methods use the vertex list as their only data
structure. Faster O(log n)  methods have been developed
elsewhere [Haine94], but they need to do a preprocess to
generate an alternate polyhedron representation and/or
additional efficiency structures. Similarly in [Aguil98a],
other OPP representation and data structure are proposed,
that allows us to do most of the set membership
classifications in time O(log n).

[Juan89] Juan-Arinyo,R: On Boundary to CSG and
Extended Octree to CSG Conversions. In
Strasser,W, editor, Theory and Practice of
Geometric Modeling, pp. 349-367. Springer-
Velarg, 1989.

[Loren87] Lorensen,W, Cline,H: Marching Cubes: A
High Resolution 3D Surface Construction
Algorithm. Computer Graphics, Vol.21, No.4,
pp.44-50, 1987

7 ACKNOWLEDGMENTS

The present work has been partially supported by
CICYT grants TIC-95-630-C03.

[Mänty88] Mäntylä,M: An Introduction to Solid
Modeling. Computer Scientific Press, 1988.8 REFERENCES

[Prepa85] Preparata,F, Shamos,M: Computational
Geometry: an Introduction. Springer-Velarg,
1985.

[Aguil96] Aguilera,A, Ayala,D: Orthogonal Polyhedra
as Geometric Bounds in Constructive Solid
Geometry. In Hoffman,C, Bronsvort,W, editors,
Fourth ACM Siggraph Symposium on Solid
Modeling and Applications, Vol.4, pp.56-67,
1997. Also as Technical Report LSI-96-64-R.
Universitat Politècnica de Catalunya, 1996.

[Rossi91] Rossignac,J, Requicha,A: Constructive Non-
Regularized Geometry. Computer - Aided Deign,
Vol.23, No.1, pp. 21-32, 1991.

[Shimr62] Shimrat,M: Algorithm 112: Position of
point relative to polygon. Communications of
the ACM, Vol.5, p.434, 1962.

[Aguil97] Aguilera,A, Ayala,D: El Modelo de Vértices
Extremos (EVM) para Poliedros Ortogonales. VII
Congreso Español de Infor-mática Gráfica (CEIG
'97), Memorias del Congreso (written in
Spanish), Vol.7, pp.111-125, Barcelona, España,
1997. Also as The Extreme Vertices Model for
Orthogonal Polyhedra. (written in English)
Technical Report LSI-97-6-R. LSI-Universitat
Politècnica de Catalunya, 1997.

[Sriha81] Srihari,S: Representation of Three-Dimen-
sional Digital Images. ACM Computing
Surveys , Vol.13, No.1, pp.399-424, 1981

[Tang91] Tang,K, Woo,T: Algorithmic Aspects of
Alternating Sum of Volumes. Part 1: Data
Structure and Difference Operation. Computer-
Aided Deign, Vol.23, No.5, pp.357-366, 1991.

[Aguil98a] Aguilera,A, Ayala,D: Domain Extension for
the Extreme Vertices Model (EVM) and Set
Membership Classification. To appear in the
proceedings of the CSG '98, Information
Geometers Ltd., 1998.

[vGeld94] van Gelder,A, Wilhelms,J: Topological
Considerations in Isosurface Generation. ACM
Transactions on Graphics, 13 (4): 337-375, 1994.


