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ABSTRACT

Wavelets in 2D or higher dimensions are often generated by a decomposition scheme from 1D wavelets.
There are two decomposition schemes called the standard and the nonstandard decomposition which are
used in most applications of higher dimensional wavelets. This paper introduces a new decomposition
method, the interleaved dimension decomposition and compares its advantages and disadvantages with the
other decompositions. Based on the properties of the interleaved dimension decomposition, applications
to computer graphics are sketched including multiresolution painting, morphing in 2D and 3D, and image
compression.
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1. INTRODUCTION

In the last years, wavelets have become a popular
research topic in various fields of computer graphics.
The different applications of wavelets in computer
graphics include wavelet radiosity [Gortl93],
multiresolution painting [Berma94], curve design
[Finke94], mesh optimization [Eck95], volume
visualization [Lippe95], image searching [Jacob95],
animation control [Liu94], BRDF representation
[Schrö95], and, one of the first applications in
computer graphics, image compression [Shapi93]. As
it is noticed in the preamble of [Glass95], wavelets
and wavelet transforms can become as important and
ubiquitous in computer graphics as spline based
techniques are now.

In this paper a new decomposition for separable
higher dimensional wavelets is introduced and
compared with the standard and nonstandard
decomposition. Chapter 2 describes the wavelets in
1D. In chapter 3 traditional extensions to higher
dimensional wavelets including matrix dilation
methods, standard and nonstandard decomposition
are discussed. Chapter 4 introduces the new
interleaved dimension decomposition and compares it

with traditional approaches. Chapter 5 shows some
computer graphics applications of the interleaved
dimension decomposition.

2. WAVELETS IN 1D

This chapter gives a very short introduction in the
theory of wavelets. A more detailed discussion of this
topic can be found in [Daube92].

2.1 Orthonormal Wavelets

The orthonormal wavelet transform is based on two
functions ψ(x) and φ(x), which have the properties:

( ) ( )φ ψx dx x dx= =∫ ∫1 0; (1)

These  functions with their translations  and  dilations 
ψj,k(x) and φj,k(x) build an orthonormal basis and

therefore any function in L2(R) can be reconstructed
with these basis functions. φ(x) is called scaling- or
smooth-function, and  ψ(x)  wavelet  or  detail
function. ψj,k(x)  and φj,k(x) can be constructed from



their mother functions ψ(x) and φ(x) in the following
manner:
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{φj,k | k ∈Z} form an orthonormal basis of functions

in vector space Vj. These vector spaces are nested,

that is, V0⊂V1⊂V2⊂V3⊂ ... Given a function f(x)

over [0,1], this function can be approximated in Vj

with 2j scaling coefficients sk
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Let f x g x( ), ( )  denote the inner product of  the

function f(x) and g(x) with:

f x g x f x g x dx( ), ( ) ( ) ( )=
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+∞
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The scaling coefficients sk
j  can be computed by the

inner product of the function f(x) and the
corresponding scaling function φj,k(x):

s f x xk
j

j k= ( ), ( ),φ (5)

Also the detail functions {ψj,k | k ∈Z} form an

orthonormal basis of functions in the detail vector

space Wj, which is the orthogonal complement of Vj

in Vj+1. Wj can be thought of as containing the detail

in Vj+1, which can not be represented in Vj. The

vector space Vj+1 can be decomposed in the
following manner:

Vj+1=   Vj ⊕ Wj =   Vj-1 ⊕ Wj-1 ⊕ Wj =   ...

         =   V0 ⊕ W0 ⊕ W1 ⊕ ...⊕ Wj (6)

Let d k
j  be the wavelet or detail coefficients, given

through:
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j
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then f 
j
(x) can be calculated from the wavelet

coefficients { d k
i  | i<j} and the scaling coefficient s0

0

as follows:
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The calculation of the coefficients { s0
0 , dk

i  | 0≤i<j;

0≤k<2i }   from   the   scaling    coefficients   { sk
j  | 0

≤k<2j } is called wavelet transformation. The fast
wavelet transformation uses a pyramid scheme with
two subband filters, the smoothing or scaling filter
(hm), and the detail or wavelet filter (gm). In one

transformation step the 2i scaling coefficients sk
i  are

replaced by 2i-1 scaling coefficients sk
i−1  and 2

i-1

wavelet coefficients dk
i−1  :
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This step is repeated on the remaining scaling

coefficients, until s0
0  is computed. The reconstruction

step can be performed using the adjoint filtering
operation:
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The whole reconstruction of the scaling coefficients

sk
i from s0

0  and the wavelet coefficients of various

resolutions is called inverse wavelet transformation.

2.2 Biorthogonal Wavelets

Biorthogonal  wavelets  use  scaling  basis  functions 
φj,k(x) which are not orthogonal. Therefore the

scaling coefficients can not be computed by Eq. 5.
But it can be shown, that for every basis {φj,k(x)},

which is called primal basis, there is a dual basis

{
~

( ),φ j k x } and the scaling coefficient can be

computed by:
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j
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In analogy, the detail coefficient dk
j  can be

computed by the inner product of the function f(x)
and the corresponding dual wavelet function
~ ( ),ψ j k x :

d f x xk
j

j k= ( ), ~ ( ),ψ , (12)

The following conditions must be satisfied between
the primal scaling and wavelet functions and their
dual counterparts:
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The fast wavelet transformation with biorthogonal

wavelets uses the dual filter pair (
~

)hm  and ( ~ )gm

corresponding to the dual basis functions. Therefore a
wavelet transformation step uses the following
formula instead of Eq. 9:
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The fast inverse wavelet transformation with
biorthogonal wavelets uses the primal filter pair (hm)

and (gm), hence the procedure is the same as for
orthogonal wavelets (Eq. 10). If the primal and dual
basis functions and filters are exchanged with each
other, the result is also a valid biorthogonal wavelet.

3. WAVELETS IN HIGHER DIMENSIONS

The definitions in Chapter 2 deal with wavelets in 1D
space, but for many applications of wavelets in
computer graphics transformations in 2D  or higher
dimensions are needed. There are two approaches to
extend the wavelet definitions to higher dimensions:
One is to apply tensor products of 1D wavelets and
scaling functions. The two methods mentioned in
literature are the standard and the nonstandard
decomposition. The other method, called dilation
matrix method, extends the definition of the wavelet
and scaling functions by using a dilation matrix
instead of a simple factor.

3.1 Standard Decomposition

The standard wavelet basis functions, in 2D also
called rectangular wavelet basis functions, are
generated through the carthesian product of the 1D
wavelet basis functions or the mother scaling function
φ0 0,  in every dimension. In the 2D case, the standard

basis functions are:
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φ( , )x y denotes the 2D scaling function and the

different types of wavelet functions are defined as
R

j k x y1ψ , ( , ) , R
j k x y2ψ , ( , )  and R

j m k n x y3ψ , , , ( , ) .

Figure 1: 2D standard Haar wavelet basis

Fig. 1 shows the 2D standard Haar basis functions for
a 4x4 image: It contains one scaling function in the

upper left corner, three R
j k x y1ψ , ( , )  wavelets on the

upper border, three R
j k x y2ψ , ( , ) wavelets on the left

border and the remaining nine
R

j m k n x y3ψ , , , ( , ) wavelets.

Figure 2: 2D standard decomposition

The fast wavelet transformation with the standard
basis wavelets, also known as standard
decomposition, is computed by successively applying
the 1D wavelet transformation to the data in every
dimension. In the 2D case, all the rows are



transformed first, then a 1D wavelet transformation is
applied on all columns of the intermediate result. Fig.
2 illustrates the rectangular decomposition. The
wavelet coefficients of the 1D transformation steps
are stored in the right (row transform) or lower
(column transform) part, the scaling coefficients in
the left or upper part, respectively. Note that the
wavelet coefficients can also have negative values -
therefore the value zero of a wavelet coefficient is
displayed as 50% gray.

3.2 Non-Standard Decomposition

The nonstandard wavelet basis functions, in 2D also
called square wavelet basis functions, are generated
through the carthesian product of 1D wavelets and
1D scaling functions. In contrast to the standard basis
functions, the non-standard basis functions always
use tensor products of wavelet and/or scaling
functions of the same resolution level. In the 2D case,
the nonstandard basis functions are:
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Like in the standard decomposition, it contains one
2D scaling function and three different types of 2D
wavelet functions. Note that the wavelet functions
d

k m
j x yψ , ( , )  are a subset of the wavelet functions

R
j m k n x y3ψ , , , ( , )  in the rectangular decomposition.

Figure 3: 2D non-standard Haar wavelet basis

Fig. 3 shows the 2D non-standard Haar basis
functions for a 4x4 image with one scaling function,

five h
k m
j x yψ , ( , ) wavelets in the upper part, five

v
k m
j x yψ , ( , )  wavelets in the left part and five

d
k m
j x yψ , ( , )  wavelets in the remaining positions.

The non-standard wavelet decomposition can be
computed with a similar technique as the standard
decomposition: A 1D wavelet transformation step -
not the whole wavelet transformation as in the
rectangular decomposition - is applied in every

dimension. This generates (2dim -1) subbands with
wavelet coefficients and one subband with scaling
coefficients. This transformation scheme is applied
recursively on the scaling coefficients until the lowest
level is reached (Fig. 4).

The non-standard decomposition is slightly more
efficient to compute than the standard decomposition:
For an m × m image only (8/3)(m2-1) assignments are

needed, compared to 4(m2-m) in the standard
decomposition. Also the compression ratios are
usually better for the square decomposition, because
the support of the wavelet functions are square and
support widths of the wavelet basis functions are
lower or equal than their counterparts in the
rectangular decomposition and therefore they exploit
more locality.

Figure 4: 2D non-standard decomposition

3.3 Quincunx and other Dilation Matrix Methods

One alternative way to extend the formulas to 2D is
to directly use 2D wavelets and 2D scaling functions



with a dilation matrix D in Eq. 2 as described in
[Kovac92], instead of the simple dilation factor 2.
The wavelets and scaling functions can be computed
from their mother 2D wavelet an mother 2D scaling
function by:
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The quincunx scheme is one of these dilation matrix
methods in 2D with the property DZ2 = {(x,y);
x+y∈2Z}. The most promising dilation matrix for the

quincunx scheme is D = −( )1
1

1
1

.

One drawback of this method is the higher
computational cost of the wavelet transformation:
n-dimensional filters have to be applied instead of
1D filters in the separable methods. Because of this
drawback, it is rarely used in the application of
wavelets to computer graphics.

4. INTERLEAVED DIMENSION
DECOMPOSITION

In this chapter a new type of separable wavelets for
higher dimensions based on tensor products of 1D
wavelets called interleaved dimension decomposition
is introduced. The wavelet functions of the
interleaved dimension decomposition in N
dimensions are generated by the tensor products of a
1D wavelet function of level j in the dth dimension
with 1D scaling functions of level j in the dimensions
up to d-1 and 1D scaling functions of level j+1 in the
dimensions higher than d. The higher dimensional
scaling function for the interleaved dimension basis is
the same as in the standard and non-standard basis.
The interleaved dimension basis functions in 2D are
defined by:

φ φ φ

ψ ψ φ
ψ φ ψ

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )
,

, ,

, , ,

, , ,

x y x y

x y x y

x y x y

j L
k m

n

xy
k n
j

j k j n
y

k m
j

j k j m

j

j

=

=
=







≤ <
≤ <

≤ <

+

+

0 0 0 0

1

1

0
0 2

0 2

(18)

The different wavelet functions are indexed in the left
superscript by the dimension of the 1D wavelet
function followed by the dimensions with the 1D
scaling functions of the higher level. Therefore the
superscript xy of the wavelet in Eq. 18 denotes a
tensor product of a 1D wavelet in x-direction and a
1D scaling function in y-direction of a level one
higher than the 1D wavelet.

Note that the decomposition is dependent on the
ordering of the dimensions. In 2D there are two
possible permutations. Therefore the second possible
choice of the basis functions in 2D is:
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Without loss of generality, we will refer to the first
permutation in the 2D case defined in Eq. 18 - analog
assumptions can be made with the 2D wavelet basis
in Eq. 19. Fig. 5 shows the 2D interleaved dimension
Haar basis functions for a 4x4 image from Eq. 18:

Figure 5: 2D interleaved dimension Haar basis

The wavelets x
k m
j x yψ , ( , )  are the same as the

wavelets v
k m
j x yψ , ( , )  in the non-standard

decomposition. Therefore one third of the wavelet
functions and also wavelet coefficients of the
non-standard decomposition in 2D are identical to the
functions and coefficients of the interleaved
dimension decomposition. This can be seen by the
comparison of Fig. 4 and Fig. 5, where five functions
on the lower left corner are matching. But except one
wavelet function on the lowest multiresolution level,
there is no match of wavelets of the interleaved
dimension decomposition with the standard
decomposition. While most of the standard wavelet
functions are tensor products of 1D wavelets, the
interleaved dimension wavelet functions are tensor
products of exactly one 1D wavelet function in one
dimension and 1D scaling functions in all other
dimensions.



The number of different types of wavelet functions of
the interleaved dimension decomposition is equal the
number of dimensions dim, while the standard and
the non-standard decomposition use 2dim-1 different
types of wavelet functions. So in 3D we get a basis
with one smooth function and three wavelets -
compared to seven types of wavelets for the standard
and non-standard decomposition. If we use sequential
ordering of the dimensions we get in 3D the basis
functions:
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The interleaved dimension decomposition is very
similar to the non-standard decomposition: One 1D
wavelet transformation step is applied to the first
dimension. But contrary to the nonstandard
decomposition only the resulting scaling coefficients
are transformed with the following 1D transformation
steps, not the wavelet coefficients as in the
non-standard decomposition. The transformation
steps are cycled in the different dimensions until only
one scaling coefficient remains. It is easy to see, that
all the intermediate scaling coefficients are the same
as in the non-standard decomposition. Fig. 6
illustrates the interleaved dimension decomposition in
2D.

The interleaved dimension decomposition can be
seen as an incomplete non-standard decomposition,
like it is shown in [Kopp96] that the non-standard
decomposition can be viewed as an incomplete
standard decomposition. Therefore also the number
of operations needed for the decomposition is lower
than in the other decompositions: The interleaved
dimension needs only 2(m2-1) assignments compared

to 4(m2-m) and (8/3)(m2-1) assignments for the
standard and the nonstandard decomposition. This
efficiency of the calculation is made at the cost that
the multidimensional wavelets contain only in one
dimension a 1D wavelet component. Therefore for
compression issues, coherence is only exploited in
one dimension leading to a worse compression rate in
most of the cases.

Figure 6: 2D interleaved dimension decomposition

It is mentioned in [Daube92] that the non-standard
decomposition can be generated from a extension of
the multiresolution concept to higher dimensions. The
interleaved dimension decomposition is an alternative
for multiresolution approaches in higher dimensions:
The higherdimensional multiresolution spaces Vj and
Wj and the multidimensional scaling functions are the
same. One of the (2dim-1) different wavelet functions
of the nonstandard decomposition remains the same
while the others are replaced with dim-1 sets of
translated, more local wavelets. An interesting feature
of the interleaved dimension decomposition is the
ability to generate dim-1 intermediate
multiresolutions - let us demonstrate this property
with wavelets in 3D in the ordering of Eq. 20:

V0⊂ V0,z⊂ V0,yz⊂ V1⊂ V1,z⊂ V1,yz⊂ V2⊂ ...
Vj = Vj ⊗ Vj ⊗ Vj

Vj,z = Vj ⊗ Vj ⊗ Vj+1 = Vj ⊕{ z
k o p
j x y zψ , , ( , , ) } (21)

Vj,yz = Vj ⊗ Vj+1 ⊗ Vj+1 = Vj,z ⊕{ yz
k o n
j x y zψ , , ( , , ) }

Vj+1 = Vj,yz ⊕{ xyz
k n m
j x y zψ , , ( , , ) }

The corresponding wavelet spaces Wj, Wj,z and Wj,yz

can be built by orthogonal complement. The
area/volume/hypervolume dilation from one
intermediate level to the next is only 2 compared to
2dim for the non-standard decomposition.

5. APPLICATIONS TO COMPUTER
GRAPHICS



A detailed discussion of the different applications,
where the interleaved dimension decomposition
performs better than the standard or non-standard
decomposition is out of scope of this paper. But the
following examples sketch applications, where the
new decomposition have better performance or
generate better quality than the other decompositions.

5.1 Lossless Compression

The interleaved dimension decomposition exploits
coherence only in one direction, thus the application
to lossy image and volume compression and related
applications like image searching [Jacob95] are
expected to perform worse than with other
decompositions. But the interleaved dimension
decomposition can be used to improve lossless
compression. The Reversible-Two-Six (RTS) wavelet
introduced by [Zandi95] is the most promising one
for the application of lossless compression. In one
transformation step of the RTS wavelet in 1D, the
resulting scaling coefficients of the lower level have
the same precision as the scaling coefficients of the
higher level, while the range of possible 1D wavelet
coefficients is about three times as big as the range of
the scaling coefficients. Applying the non-standard
decomposition in 2D results in 2/3 of the wavelet
coefficients in the value range three times of the
original data and 1/3 of the wavelet coefficients in a
ninefold value range, while the interleaved dimension
decomposition needs only a threefold value range for
all wavelet coefficients. Since all possible coefficient
values must be handled by the entropy coder, the
interleaved dimension decomposition performs
sometimes better than the non-standard
decomposition. It is shown in chapter 4, that the
interleaved dimension decomposition can be seen as
an incomplete non-standard decomposition.
Therefore the adaptive basis selection in [Kopp96]
can be extended with the interleaved dimension
decomposition.

5.2 Multiresolution Imaging

Multiresolution images do not have a fixed pixel size,
but the resolution varies over the image. An efficient
way to implement multiresolution images in a paint
system uses wavelets as a representation of the
images. [Berma94] utilize a quadtree structure with
three Haar wavelet coefficients of the nonstandard
decomposition in each node. The display of the
multiresolution image is achieved by traversing the
quadtree in the specified display region by applying
an inverse 2D decomposition step. It is easy to see
that the interleaved dimension decomposition can
speed up this procedure because less assignments are
needed to compute. Also the update from the current
level, where the user is painting, to the coarser ones

can be done faster with the interleaved dimension
decomposition.

5.3 2D and 3D Morphing

The calculation of an intermediate images in image
morphing algorithms is done in three steps: firstly the
determination of feature correspondence and of an
intermediate feature geometry, secondly the warping
of the source and the destination images to
intermediate images that match the feature geometry,
and finally the blending of the two warped images.
[Kopp97] uses wavelets for the blending with
different blending factors for different multiresolution
levels. This gives the animator the possibility to
introduce a disparity between the morphing of global
and detail features that can lead to interesting new
effects. The additional intermediate multiresolution
levels of the interleaved dimension decomposition
provide a better image quality of the resulting
morphing sequence, since the transition of one level
to the next has only an area dilation factor of 2
compared to 4 in the non-standard decomposition.

An other problem occurs with volume morphing: If
the morphing is done in spatial domain, distracting
high frequency distortions occur in the intermediate
volumes. In [He94] this problem is avoided by
applying the morphing in the wavelet domain with the
non-standard decomposition. In the intermediate
volumes the wavelets of the higher levels, which
correspond to the high frequencies, are faded off. A
problem with this approach is the blocking artifact,
which reveals the allignment of the coordinate axes
on the intermediate volume. The intermediate
multiresolution levels of the interleaved dimension
decomposition makes the fading off of the higher
levels more smoothly, therefore the blocking artifact
is less visible.

6. CONCLUSION

A new wavelet decomposition called interleaved
dimension decomposition was introduced. The
comparison with the standard and non-standard
decomposition showed some interesting aspects: The
interleaved dimension decomposition is faster to
generate, exploits more locality and builds - like the
non-standard decomposition - higherdimensional
multiresolution spaces. But unlike the non-standard
decomposition, intermediate multiresolution spaces
can be built. The interleaved dimension
decomposition can be used to improve some wavelet
based computer applications. Some examples were
sketched in this paper including lossless compression,
multiresolution imaging, and morphing in 2D and 3D.
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