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ABSTRACT

Imagefiltering is often appliedasa post-processto Monte Carlo generatedpictures,in order to reduce
noise.In thispaperwepresentanalgorithmbasedon densityestimationtechniquesthatappliesanenergy
preservingadaptive kernelfilter to individual samplesduring imagerendering. The usedkernelwidths
diminishasthenumberof samplesgoesup,ensuringa reasonablenoiseversusbiastrade-off at any time.
This resultsin a progressive algorithm,that still convergesasymptoticallyto a correctsolution. Results
show thatgeneralnoiseaswell asspike noisecaneffectively bereduced.Many interestingextensionsare
possible,makingthisa verypromisingtechniquefor MonteCarloimagesynthesis.
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1 INTRODUCTION

Monte Carlo techniquesare frequently used for
physicallybasedimagesynthesis.Methodslike path
tracing and bidirectional path tracing are relatively
simpleandareable to solve the global illumination
problemfor very generalscenes.Thebasisof Monte
Carlo methodsis stochasticsamplingand therefore
errorsin the resultingimagesshow up asnoise. The
mostcommonandeasiestway to reducethisnoise,is
to takemoresamples,which in thelimit will resultin
a perfectimage. However samplingin Monte Carlo
renderinginvolves tracing pathsthrough the scene,
andthesearevery costly operations.Computingan
image where all the noise is reducedto a visibly
acceptablelevel, cantakeanawful lot of time.

Pure Monte Carlo methodscomputeeachpixel in
an image independently, ignoring any coherence
betweenneighbouringpixelsA substantialamountof
researchhasbeendirectedtowardsdesigningfiltering
proceduresthatexploit this coherence.Most of these
filtersareappliedasapost-processaftertheimagehas
beencomputedwith a certainamountof samplesper
pixel.

Note that filtering an image does not necessarily
producea more accurateimage. There is always
a trade-off betweennoise and bias involved. For
exampleusinga simpleblur filter asa post-process,

may reducesomeof thenoisebut it alsoblursedges
in theimage,which maybeasvisually distractingas
thenoise.

In thispaperwepresentanenergy preservingfiltering
procedure,basedon density estimationtechniques,
with thefollowing characteristics:

� A variablekernel filter is applied, not to the
pixelsbut to theindividualsamplesthemselves.
Thevalueof a pixel is anaverageof a number
of samples,but notall thesesamplesareequally
’bad’. The kernel width is basedon some
’badness’criterion for the sample, allowing
to spreadout bad samplesbut leave the good
sampleswithin thesamepixel localised.� The kernel filters are applied during image
creation and not as a post-process. The
usedkernelwidths diminish as the numberof
samplesgoesup, ensuringa reasonablenoise
versusbias trade-off at any time. This results
in a progressive algorithm,that still converges
asymptoticallyto a correctsolution.

In the next section we will discusssome existing
filtering methodsthat have been used for Monte
Carlo rendering and indicate the differenceswith



our method. Section 3 will explain the density
estimation techniquesupon which this work was
based.In section4 ourfiltering algorithmis presented
followed by some results in section 5. Although
goodresultshave beenobtained,therearestill a lot
of improvementsandsomeopenquestionsthatneed
further research. Thesewill be discussedtogether
with theconclusionin section6.

2 PREVIOUS WORK

Filtering out thenoisein animageis a very tempting
idea, especiallysince the human eye and brain is
very goodat determininghow theimageshouldlook
despiteof thenoise.

Lee and Redner[Lee90] proposedthe use of non-
linear medianandalphatrimmedfilters to eliminate
spike noise in stochasticallyrenderedimages. The
spike noisepixelsarethrown out, makingthis a non
energy preservingfilter. In factany filter appliedafter
tonemappingis not energy preserving.

Rushmeierand Ward [Rushm94] presentan energy
preservingnon-linear filter that also targets spike-
like noise, but spreads it out over a number
of neighbouring pixels dependingon a variance
estimate.

Jensen[Jense95] applies filters only to the light
transportthat was scattereddiffusely at least twice,
under the assumptionthat this forms the sourceof
most of the noiseand in order not to blur features
causedby theotherpartof thelight transport.

McCool [McCoo99] recentlyinvestigatedthe useof
anisotropicdiffusionfor noisereduction.Thenoiseis
averagedout usingdiffusionequationsbut edgesand
texturescanbepreserved. It is anenergy preserving
technique.

All previousmethodswork asa preprocess.Dutré et
al. [Dutre93] useda gaussiankernel aroundvisible
path vertices in object spacefor particle tracing.
Howeverafixedkernelwidth wasusedandexpensive
eye rays were neededto evaluate the kernel for
affectedpixels.

Our methodincludesaspectsfrom several of these
previous methodsbut still is significantly different
from themin that it usesan energy preservingfilter
with variablekernelwidth for individual samples(in
imagespace)and is appliedduring rendering. The
progressivenessof our solution is one of the main
differenceswith thepreviouswork.

3 DENSITY ESTIMATION

3.1 Standard density estimation

Our work is partly based on density estimation
which is a techniquefor recovering a probability
density function (pdf) from a numberof observed
samplesof this function. There are three main
approachesin density estimation: the histogram
method, nearest neighbour methods and kernel
densityestimation[Silve86]. Ourmethodusesaform
of kerneldensityestimation.

Given an unknown pdf ������� and � observationsor
samples��	 generatedby this pdf, a standardkernel
densityestimatorfor �
���
� is givenby [Silve86] :������
��� ������ �� 	������ � ����� 	� � (1)

with � a certainkernel function, � the kernelwidth
or bandwidthand � the dimensionof the domainof� . Theestimatorcanbeseenasif every sample� 	 is
spreadout by thekernelfunction � .

The estimatedvalueof this estimatoris the original
pdf �����
� convoluted by the kernel function � � ���!���� "#�$� . So the result will always have a bias
dependingon thekernel � andthewidth � .

Expressionsfor varianceandbiasof theestimator(1)
canbederived[Silve86] andlearnusthat in orderto
reducevariancea large � shouldbe chosen,but for
biasreductiona small � shouldbe taken. Thewidth
of the kernel thusallows to tradebias for noiseand
viceversa,andit shouldbechosenverycarefully. The
choiceof kernelwidth is in factmuchmoreimportant
thanthechoiceof thekernelshape.

Variable kernel density estimationusesa different
kernel width �$	 for every observed sample �$	 .
Intuitively a smaller kernel width could be chosen
wherethedensityof observationis largeanda wider
kernelwhereonly few observationsarefound.

3.2 Densityestimation in rendering

Densityestimationhasbeenusedin renderingmainly
to reconstruct diffusely reflected illumination on
surfacesin ascene.

Heckbert [Heckb90] first noted that reconstructing
this illumination is in fact a density estimation
problem.He usesthehistogrammethodto construct
adaptive radiosity textures. Shirley et al. [Shirl95],
Myszkowski [Myszk97], andWalter et al. [Walte97]
use kernel densityestimationto reconstructdiffuse
illumination on surface after storing surface hits
generated by path tracing. Myszkowski and
Walter [Walte98] useanadaptive kernelwidth based
on the density of the samples. Jensen[Jense96]



usesanearestneighbourmethodwhenreconstructing
illumination from a photon map. Most of this
illumination however is only used indirectly in a
gather pass, allowing a less accuratestorageand
reconstruction.

3.3 Density estimation for multiple importance
sampling

In our exampleswe will use a density estimation
approachon the image plane (dimension �%�'& ),
wheresamplesaregeneratedusingbidirectionalpath
tracing [Lafor93, Veach94]. Note that we needto
reconstructanarbitraryillumination functionandnot
a pure pdf. Also note that that the sampleson
screenoriginate from a number of different pdf’s
usingmultiple importancesampling1 [Veach95].

Moreoverdo thesamplesobtainedin theimageplane
originatefrom a muchhigherdimensionalsampling
procedure(tracingpaths),so that even sampleswith
the same image plane position can have a vastly
different value. The imageplanefunction radiance( ����� that we want to reconstructis in fact the result
of anintegrationoverall possibletransportpathsthat
go throughthis particularimageposition � . We will
denotefull transportpathsgoingthrough� asacapital)

andsimilarly wewill denotefunctionsdefinedona
full transportpathby a capitalletter. For examplethe
contribution of a path

)
to thecorrespondingimage

position � is denotedby *+� ) � .
With respectto this renderingcontext we need to
slightly modify thekerneldensityestimator:

Supposewe want to reconstructa 2D imageplane
function

(
and do this by taking �-, samplesor

paths
) ,/. 	 from a set of pdf’s 0 , . Due to the

multiple importancesampling,eachsample
) ,/. 	 has

to beassigneda weight 1�,2� ) ,/. 	3� to getanunbiased
solution.Theconstraint4 , 1 , � ) ��� �

ensuresthis
unbiasedness(see[Veach95] for more information).
Now the modified variablekernel densityestimator
becomes:�( ���
�5� � , ��6, � 	 1 , � ) ,/. 	 �7*+� ) ,/. 	 �0�,2� ) ,/. 	8� 9�;:�<#� ) ,/. 	 � � � �=����,/. 	��� ) ,/. 	 � � (2)

Using �>� 4 , � , and ? ,/. 	 � �A@ABDCFE=BHG I�J�K=CFE=BHG I�J�
BHLMBNCFE=BOG IPJ
thiscanbewrittenmorecompactlyas:�( ���
��� �� � ,/. 	 ? ,/. 	 � :�< � ) ,/. 	 � � � �=�Q� ,/. 	��� ) ,N. 	8� � (3)

1Pathsaretracedfrom eye andlight simultaneously, andevery
vertex from the eye pathis connectedto every vertex of the light
path.Eachconnectionresultsin adifferentpdf.

So the only difference with estimator (1) is the
introductionof aweight ?R,N. 	 for everysampleaswell
as dependency of � on the sample(or path)

)
. It

can be shown easily that the expectedvalue of this
estimatoris alsoa convolution of the target function
with thekernel.

3.4 Kernel shapeselection

The shapeof the kernel � determineshow samples
arespreadout into their neighbourhood.We usethe
fairly standardEpanechnikov kernel which is given
by:

� ���S�T�VU <W � � �YX ��X < � if X �
X[Z �\
otherwise

(4)

This kernelhassomedesirablepropertiesconcerning
the mean integrated squareerror of the estimator
(see[Silve86, p40]). Other kernelslike a gaussian
can be used if the estimatedfunction has certain
smoothnessrequirements,but sincethe radianceon
thescreencanbeanarbitrarydiscontinuousfunction,
we seeno benefitsin using anotherkernel than the
Epanechnikov.

3.5 Kernel width selection

Evenmoreimportantthanthekernelshapeis a good
selectionof thekernelwidth or bandwidth.For every
sample

) ,N. 	 a choicehas to be madefor ��� ) ,/. 	8� .
Two important factors that determineour heuristic
for the kernel width are the density and weight of
the samples,andthe numberof samplesusedin the
estimation. We will discussthesein the next two
subsections.

3.5.1 Density and weight of samples

In standarddensityestimation(seeequation1),where
eachsamplehasan equalweight, the densityof the
samplesis directly relatedto the width of the kernel
thatshouldbeused.A lowerdensityrequiresa wider
kernelin orderto reducevarianceto anevenlevelover
thedomain.This is shown schematicallyin figure1.

Looking at this figure another relation becomes
obvious: where the estimatedpdf ������� is large a
narrow kernelis usedandwhere�
���S� is smalla wide
kernelis used.This is equivalentto relationbetween
thedensityof thesamplesandkernelwidths,sincethe
samplesaredistributedaccordingto �
���S� .
In [Abram82] Abramsonsuggeststaking the kernel
width �����$	3� proportionalto the inversesquarerootof
theestimatedfunctionvalueat thesampleposition:�����$	3�T]^�_�����$	`�
�O:bac (5)
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Figure 1: Variablekernel densityestimation:
the chosen kernel width is related to the
densityof thesamples,whichcorrespondsto a
dependency onthetargetfunction ������� . Where�
����� is smallawider kernelis used.

Thischoice,asAbramsonproves,hassomedesirable
bias reductionproperties. Of course������� is to be
estimatedand thereforenot known, so that a pilot
estimatefor �
����� is required. (Our approachto this
problemwill beexplainedin section4.)

As said,for theimagesynthesisproblem,weestimate
a function

( ���S� usingseveral pdf’s 0 , � ) � and this
leadsto a differentweight ?R,/. 	 for eachsample

) ,/. 	 .
Thevalueof ? is determinedby how goodthe used
importancesamplingpdf’s fit the function *+� ) � . A
big value for ? meansthat 1n"j0 is small, but that* is large for that sample. It is well known that
badimportancesamplingcanbe a terrible sourceof
noisein the image. Ideally 1n"j0 is proportionalto* so that every samplehasan equalweight. As a
resulta biggervalueof ?R,/. 	 requiresa biggerkernel,
as this can be seenas a ’bad’ sample. So also for
our adapteddensityestimationframework a similar
kernelwidth dependency holdsbetweensamplevalue
andestimatedfunctionasshown in figure2.

We propose an adaptedversion of the heuristic
of Abramson in order to accommodateunequally
weightedsamples:

��� ) ,N. 	8�T]po ? ,/. 	( ��� ,/. 	 �Dq ac
(6)

Note that filling in this dependency into equation3,
shows that the top value of the kernel becomes
independentof the weight ? ,N. 	 . Also note that the
targetimageplanefunction

( ����� is usedasreference
(and not *+� ) � , which we can evaluate exactly),
where?R,/. 	 actsasa onesampleestimateof

( ����� .
3.5.2 Number of Samples

The kernelwidth shouldalsodependon the number
of samplesused.As this numberincreasesthekernel
width shouldgo to

\
in order to reducebias in the

solution. Asymptotically for ( � r s ) a perfect
solutioncanbeobtained.

For fixed kernel widths an optimal � dependency
canbe derived with regard to a meansquarederror

gji t eFg#h
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Figure 2: Variablekernel densityestimation:
for unequalsampleweightsthe chosenkernel
width canstill berelatedto thetarget function( ���S� . Largesamplevalueswith respectto

( ���S�
requirewider kernels.

metric[Silve86]:

�v] o ��Yq aw
(7)

In graphicshowever a square root dependencyhas
beenusedmoreoften[Shirl95, Walte97].

In our experiencethe first rule tends to overblur
discontinuitiesin theimage,for whichtheeyeis quite
sensitive, while the secondrule leadsto noticeable
varianceevenfor a high numberof samples.Several
in-betweenexponentsweretried andfor themoment
wewill denotethedependency by ageneralexponentx .

3.5.3 Final heuristic

We chosethe following final heuristicfor the kernel
width:

��� ) ,/. 	 ���zy 9 o ��Yq|{}9 o ? ,N. 	( ����,N. 	3�jq ac
(8)

Theconstanty isareferencekernelwidth thatdefines
a basevaluefor how muchsamplesshouldbespread
out.

4 THE ALGORITHM

In this sectionwewill giveadetailedoverview of the
completefilteredimagesynthesisalgorithm.

The basisof the algorithm is tracing (bidirectional)
pathsand for eachpath that has a contribution to
the image plane, an appropriatekernel width is
determined. This sampleis then ’splatted’ into an
imagebuffer usingthatkernel.

To determinethe kernel width for the samples,we
needto know an approximatevalue for the image
planefunction

( ���S� (seeequation8). The proposed



� Trace Paths ( �R~ samples/pixel) and store
screen hits ( ��	 , ?!	 )� Image

(S�~ = Fixed width kernel density
estimation (width: y � 9 � : �
� <~ ) using stored
hits� Image

( ~ � Variable width kernel density
estimation (width: eq. 8) using

(S�~ as
reference� Dispose stored hits� �R���
���H���z� ~� For �6� �

to number of iterations J

– Choose �!�
– �R���
���H�#����� �
–

( �A� �����8��� � : ����
���P���
� 9 ( � : � (Scale down)

–
( � ��� Trace paths ( � � samples/pixel)
and apply var. kernel using

( � : � as
reference� (j�
is the final image

Figure3: Overview of theprogressive filter &
renderalgorithm

algorithm usesa numberof iterationsand in each
iteration � an new approximation

( � ����� (an image)
is madeusing

( � : � as a referencefor kernel width
determination.

To startupthealgorithm,aninitial batchof paths( �R~
samplesper pixel2) aretracedandthe hits on screen
are all stored. Only storageof screenposition � ,/. 	
andsampleweight ? ,/. 	 is necessary. Usingthesehits
a first approximation

(S�~ is madeusing fixed kernel
densityestimation(as in [Abram82]) with a kernel
size �V��y � 9 � : � � <~ . The constanty �

shouldbe
largeenoughto eliminatemostof thevariancein the
image.We usevaluessothatthekernelwould havea
diameterof 8-10pixelsin theimage(for � ~ � �

).

Using the same stored samples, a second
approximation

( ~ is constructed using variable
kernel widths, using

(S�~ as the referenceimage. In
our implementationthe constanty in this estimate
is setto get a spreadof 4-8 samplesper pixel (when� ~ � �

and ?�" ( � �
). Thevalueof y canbevaried

to exchangebiasfor varianceandvice versa.It stays
constantduringall subsequentiterations.

2Weuse’samplesperpixel’ for � appearingin thekernelwidth
heuristic. Normally onewould usetotal numberof samplesasin
thedensityestimator(3) but thedifferenceis only aconstantfactor
(numberof pixels in the image)andwe have moved it to the the
constant� . This allows us to specify � in termsof a numberof
pixels.

If no precautionsare taken, the kernelwidths � can
becomeso narrow that they would not cover any
pixel centre at all, making no contribution to the
image. Although in theory a valid solution is still
obtained,we have chosento restrictthekernelwidth
to a minimum of one screenpixel. Note that in
standardbidirectionalpathtracing(BPT) this would
correspondto usinganonepixel wide Epanechnikov
kernel placed in the pixel centre as a weighting
functionfor samplesgoingthroughthispixel3.

An overview of the completealgorithm is given in
figure3. Note that it is a relatively simpleprocedure
and that only the first batch of samplesmust be
stored. This in contrastto other densityestimation
approachesin graphics [Shirl95, Myszk97] where
largenumbersof hits hadto bestored.

5 IMPLEMENT ATION & RESULTS

We have implemented the algorithm in
RenderPark [Bekae99] using bidirectional path
tracing (BPT) for computing the light transport.
The methodwas testedon a scenecontainingmany
different illumination features including diffuse,
glossy and specular surfaces, direct and indirect
caustics,glossyreflections,. . .

Wehaveincludedrenderedimagesof thisscenemade
with thefollowing specs:

� Figure4: StandardBPT using4 samplesper
pixel.� Figure5: StandardBPT using64 samplesper
pixel. Note thespike noiseon the left lighting
fixtureanin theneighbourhood(reflectionfrom
thesamefixture).� Figure7: Thenew algorithmusing4 samples
per pixel, with exponent x � �#��� " � , fixed
width constant y � � � pixels, � ~ � �
sampleperpixel, �!�R��&#��� : � , variablewidth
constanty��Y� .� Figure 8: New algorithm using 64 samples
per pixel and the sameparametersas in the
previousfigure.� Figure6: A ’reference’imagerenderedwith
BPT using2048samplesper pixel. Note that
even in this imagesomenoisearoundthe left
lighting fixture is present.This noiseis in fact
causedby highly glossy reflectionof the left
causticby the fixture, somethingthat is very
hardto computeusingBPT.� Figure9: Magnificationsof a certainpart of
theimagesin orderto revealmoredetail.

3Currentlyweareusingasimpleboxfilter in ourstandardBPT
renders



Performance
�

wise the filtered renderingstake about
10 to 15 percent more time than the standard
bidirectionalpathtracingimages.The64samplesper
pixel filteredimagetook about1 hourto computeon
anSGIOctane195MhzR10000.

Looking at the quality of the images following
remarkscanbemade:� Distracting spike noise present in the BPT

images (even at 2048 samples/pixel) is
effectively reducedusing the new algorithm.
Note especiallythe scatteredyellow spotsthat
originate from reflection of the left lighting
fixture.� Difficult illumination features(e.g. left light
fixture andbottom-leftglossyreflectionof the
caustic)appearvery noisy in the BPT images.
Using the new algorithm these featuresare
adequatelyblurred so that they look more
visually pleasing. However they tend to
be overblurred if comparedto the reference
image,which is anotherexampleof biasversus
variancetrade-off. The overblurring occurs
becausethe usedapproximatereferences

( � : �
underestimatetheactualradiancevalue.Using
additionalinformation like surfacereflectance
or normals, it might be possible to use
better(irregularly)shapedkernelsto lower this
overblurring.� One of the difficulties in choosing the
parametersof the algorithm was preventing
excessive blurring of edges. We found that
the parametershadto be chosenso that still a
smallamountof variance(low frequency noise)
was allowed in smooth regions, otherwise
edges would be too blurry. A promising
extensionwould be to prevent edgeblurring
by modifying thekernelshape,restrictingit at
objectboundaries.� Notethatthe(edge)blurringclearlydiminishes
as � goesup from 4 to 64 samples.� A typical problem in density estimation is
boundary bias that occursat the boundaries
of the domain (screenbordersin our case).
The causeof this bias is that at the border
only samplescontribute from one side of the
border since samplesoutsidethe domain are
not generatedbut could contribute to pixels
insidetheborder. This causesdarkeningat the
edgesof the image(slightly visible figure 7).
Currentlywe do not prevent this bias,but well
known remedieslike kernel mirroring can be
easilyappliedhere.

6 CONCLUSION

We presentedan adaptive filtered Monte Carlo
rendering method. A kernel filter is applied to

individual samplesusing an adaptive kernel width
based on a ’goodness’ criterion of the sample.
The method is energy preservingand results in a
progressivealgorithmthatstill convergesto a correct
solution.

Results show that a reasonabletrade-off between
bias and noisecan be maintainedat any time. As
desireddifficult illumination features(for the used
MC method), that normally result in a high noise
level, areblurredmorethaneasyto computefeatures.

Still many possibleextensionsand open problems
needto befurtherresearched.

� The boundarybias problem at the edgesof
the imageshouldbe solved. This is however
moreof an implementationissueratherthana
fundamentalproblem.� Someparameters( y , y �

, x ) in the algorithm
needto be configuredby hand. An automatic
selectionis desirablebut this is not an easy
problem to solve. The results we obtained
however were not dramaticallydependenton
thechoiceof parameters.� Currently we are using only the sample
values and their impact point on screenfor
determiningthe kernel. Othereasyto acquire
informationfrom thesceneor pathscouldalso
beusedto enhancetheimages.Someideasare:
usingnoncircularkernelfootprintsthatdepend
on the surfacenormals,restricting kernelsto
oneobjector surfaceto preventedgeblurring,
. . .

Theseextensionsand problemsare currently under
investigation.
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Figure4: Standardbidirectionalpathtracing,4
samples/pixel

Figure5: Standardbidirectionalpath tracing,
64 samples/pixel

Figure 6: Reference: bidirectional path
tracing,2048samples/pixel

Figure 7: New progressive adaptive filter
algorithm,4 samples/pixel

Figure 8: New progressive adaptive filter
algorithm,64 samples/pixel

Figure9: Magnificationsof figure5 (left) and
figure8 (right)


