Adaptive Filtering for Progressve Monte Carlo Image Rendering
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ABSTRACT

Imagefiltering is often appliedas a post-proces$o Monte Carlo generategictures,in orderto reduce
noise.In this papemwe presentainalgorithmbasedon densityestimationtechniqueshatappliesanenegy
preservingadaptie kernelfilter to individual samplesduring imagerendering. The usedkernelwidths
diminishasthe numberof samplegjoesup, ensuringa reasonabl@oiseversushiastrade-of atary time.
This resultsin a progressie algorithm, that still corvergesasymptoticallyto a correctsolution. Results
shav thatgenerahoiseaswell asspike noisecaneffectively be reduced Many interestingextensionsare
possible makingthis a very promisingtechniquefor Monte Carloimagesynthesis.
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1 INTRODUCTION

Monte Carlo techniquesare frequently used for

physicallybasedmagesynthesis.Methodslik e path
tracing and bidirectional path tracing are relatively

simple and are able to solve the global illumination

problemfor very generalscenesThe basisof Monte

Carlo methodsis stochasticsamplingand therefore
errorsin theresultingimagesshav up asnoise. The

mostcommonandeasiestvay to reducethis noise,is

to take moresampleswhichin thelimit will resultin

a perfectimage. However samplingin Monte Carlo
renderinginvolves tracing pathsthroughthe scene,
andtheseare very costly operations.Computingan
image where all the noise is reducedto a visibly

acceptabléevel, cantake anawful lot of time.

Pure Monte Carlo methodscomputeeach pixel in
an image independently ignoring ary coherence
betweemeighbouringpixelsA substantiabmountof
researcthasbeendirectedtowardsdesignindfiltering
procedureshatexploit this coherenceMost of these
filtersareappliedasapost-procesaftertheimagehas
beencomputedwith a certainamountof sampleger
pixel.

Note that filtering an image does not necessarily
producea more accurateimage. Thereis always
a trade-of betweennoise and bias involved. For
exampleusinga simple blur filter asa post-process,

may reducesomeof the noisebut it alsoblursedges
in theimage,which may be asvisually distractingas
thenoise.

In this papewe presenanenengy preservindiltering
procedure,basedon density estimationtechniques,
with thefollowing characteristics:

e A variable kernelfilter is applied, not to the
pixelsbutto theindividualsamplegshemseles.
Thevalueof a pixel is anaverageof a number
of samplesbut notall thesesamplesreequally
'‘bad’. The kernel width is basedon some
'badness’ criterion for the sample, allowing
to spreadout bad samplesbut leave the good
sampleswithin the samepixel localised.

¢ The kernel filters are applied during image
creation and not as a post-process. The
usedkernelwidths diminish as the numberof
samplesgoesup, ensuringa reasonablenoise
versushiastrade-of at any time. This results
in a progressre algorithm, that still corverges
asymptoticallyto a correctsolution.

In the next sectionwe will discusssome existing
filtering methodsthat have been used for Monte
Carlo rendering and indicate the differenceswith



our method. Section 3 will explain the density
estimation techniquesupon which this work was
basedln sectiond ourfiltering algorithmis presented
followed by someresultsin section5. Although
goodresultshave beenobtained,thereare still a lot
of improvementsandsomeopenquestionghat need
further research. Thesewill be discussedogether
with the conclusionin section6.

2 PREVIOUS WORK

Filtering out the noisein animageis a very tempting
idea, especiallysince the humaneye and brain is
very goodat determininghow the imageshouldlook
despiteof thenoise.

Lee and Redner[Lee9(] proposedthe use of non-
linear medianand alphatrimmedfilters to eliminate
spike noisein stochasticallyrenderedimages. The
spike noisepixels arethrown out, makingthis a non
enepy preservindilter. In factary filter appliedafter
tonemappingis notenegy preserving.

Rushmeierand Ward [Rushm94 presentan enegy
preservingnon-linearfilter that also targets spike-
like noise, but spreadsit out over a number
of neighbouring pixels dependingon a variance
estimate.

Jensen[Jense9b applies filters only to the light
transportthat was scattereddiffusely at leasttwice,
underthe assumptiorthat this forms the sourceof
most of the noiseand in order not to blur features
causedy the otherpartof thelight transport.

McCool [McCo099 recentlyinvestigatedhe useof

anisotropidiffusionfor noisereduction.Thenoiseis

averagedout usingdiffusion equationdut edgesand
texturescanbe presered. It is anenegy preserving
technique.

All previous methodswork asa preprocessDutré et
al. [Dutre93 useda gaussiarkernel aroundvisible
path vertices in object spacefor particle tracing.
Howeverafixedkernelwidth wasusedandexpensve
eye rays were neededto evaluate the kernel for
affectedpixels.

Our methodincludesaspectsfrom several of these
previous methodsbut still is significantly different
from themin thatit usesan enegy preservingfilter

with variable kernelwidth for individual samplegin

image space)andis appliedduring rendering. The
progressivenessf our solution is one of the main

differenceswith the previouswork.

3 DENSITY ESTIMATION
3.1 Standard density estimation

Our work is partly basedon density estimation
which is a techniquefor recovering a probability
density function (pdf) from a numberof obsened
samplesof this function. There are three main
approachesin density estimation:; the histogram
method, nearest neighbour methods and kernel
densityestimationSilve8§. Ourmethodusesaform
of kerneldensityestimation.

Given an unknawn pdf p(z) and N obsenationsor
samplesr; generatedy this pdf, a standarckernel
densityestimatorfor p(t) is givenby [Silve8q :

1 N t—x;
p(t):N—hdizle( 5

) @)

with K a certainkernelfunction, h the kernelwidth
or bandwidthandd the dimensionof the domainof
p. Theestimatorcanbe seenasif every samplez; is
spreadout by thekernelfunction K.

The estimatedvalue of this estimatoris the original
pdf p(t) corvoluted by the kernel function C((t —
z)/h). So the result will aways have a bias
dependingnthekernel X andthewidth h.

Expressiondor varianceandbiasof theestimator(1)
canbederived[Silve8§ andlearnusthatin orderto
reducevariancea large h shouldbe chosen,but for
biasreductiona small » shouldbe taken. The width
of the kernelthus allows to tradebiasfor noiseand
viceversaandit shouldbechoserverycarefully. The
choiceof kernelwidth is in factmuchmoreimportant
thanthechoiceof thekernelshape.

Variable kernel density estimationusesa different
kernel width h; for every obsened sample z;.

Intuitively a smaller kernel width could be chosen
wherethe densityof obsenationis largeanda wider
kernelwhereonly few obsenationsarefound.

3.2 Density estimationin rendering

Densityestimatiorhasbeenusedin renderingmainly
to reconstructdiffusely reflected illumination on
surfacesin ascene.

Heckbert[Heckb9(q first noted that reconstructing
this illumination is in fact a density estimation
problem. He usesthe histogrammethodto construct
adaptve radiosity textures. Shirley et al. [Shirl95],

Myszkowski [Myszk97], andWalter et al. [Walte97

use kernel density estimationto reconstructdiffuse
illumination on surface after storing surface hits

generated by path tracing. = Myszkowski and
Walter [Walte9§ usean adaptie kernelwidth based
on the density of the samples. Jensen[Jense9p



usesanearesheighboumethodwhenreconstructing
illumination from a photon map. Most of this
illumination however is only used indirectly in a
gather pass, allowing a less accuratestorageand
reconstruction.

3.3 Density estimation for multiple importance
sampling

In our exampleswe will use a density estimation
approachon the image plane (dimensiond = 2),
wheresamplesaregeneratedisingbidirectionalpath
tracing [Lafor93, Veach94. Note that we needto
reconstrucenarbitraryillumination functionandnot
a pure pdf. Also note that that the sampleson
screenoriginate from a number of different pdf's
usingmultiple importancesampling [Veach9%

Moreoverdothe samplebtainedn theimageplane
originatefrom a much higherdimensionalsampling
procedureg(tracing paths),so that even sampleswith
the same image plane position can have a vastly
differentvalue. The imageplanefunction radiance
f(z) thatwe wantto reconstrucis in factthe result
of anintegrationover all possibletransporipathsthat
go throughthis particularimagepositionz. We will
denotédull transporpathsgoingthroughz asacapital
X andsimilarly we will denotefunctionsdefinedona
full transporpathby a capitalletter. For examplethe
contribution of a path X to the correspondingmage
positionz is denotedby F'(X).

With respectto this renderingcontext we needto
slightly modify the kerneldensityestimator:

Supposewe want to reconstructa 2D image plane
function f and do this by taking N, samplesor
paths X} ; from a set of pdf's P,. Due to the
multiple importancesampling,eachsampleX;, ; has
to be assigned weight W, (X} ;) to getanunbiased
solution. Theconstrainty , W (X) = 1 ensureshis
unbiasednesgsee[Veach95 for moreinformation).
Now the modified variable kernel density estimator
becomes:

Wi (Xg,i) F(Xg,i)
Z N, Z Pr(Xg,3) '
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UsingN = 3, Ny andGy; = MW X i) F (X 1)

NP (X1,5)
this canbewritten morecompactlyas:
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Ipathsaretracedfrom eye andlight simultaneouslyandevery
vertex from the eye pathis connectedo every vertex of the light
path.Eachconnectiorresultsin a differentpdf.

So the only difference with estimator (1) is the
introductionof aweightGy, ; for every sampleaswell
asdependeng of h on the sample(or path) X. It
can be shown easily that the expectedvalue of this
estimatoris alsoa corvolution of the targetfunction
with thekernel.

3.4 Kernel shapeselection

The shapeof the kernel  determineshow samples
arespreadout into their neighbourhood We usethe
fairly standardEpanechnikv kernelwhich is given

by:

(4)

_ %(1 —|z|?) if|z| <1
K(z) = { 0 otherwise

This kernelhassomedesirablepropertiesconcerning
the mean integrated squareerror of the estimator
(see[Silve86 p40]). Otherkernelslike a gaussian
can be usedif the estimatedfunction has certain
smoothnessequirementsput sincethe radianceon

thescreercanbeanarbitrarydiscontinuougunction,

we seeno benefitsin using anotherkernelthan the

Epanechnikv.

3.5 Kernelwidth selection

Evenmoreimportantthanthe kernelshapes a good
selectionof the kernelwidth or bandwidth.For every
sample X}, ; a choicehasto be madefor h(Xj ;).
Two important factorsthat determineour heuristic
for the kernel width are the density and weight of
the samplesandthe numberof samplesusedin the
estimation. We will discussthesein the next two
subsections.

3.5.1 Density and weight of samples

In standardiensityestimation(seeequationl), where
eachsamplehasan equalweight, the densityof the
sampleds directly relatedto the width of the kernel
thatshouldbe used.A lower densityrequiresawider
kernelin orderto reducevarianceo anevenlevel over
thedomain.Thisis shovn schematicallyin figure 1.

Looking at this figure another relation becomes
obvious: where the estimatedpdf p(z) is large a

narron kernelis usedandwherep(x) is smallawide

kernelis used.This is equivalentto relationbetween
thedensityof thesamplesandkernelwidths,sincethe

samplesaredistributedaccordingto p(x).

In [Abram82 Abramsonsuggestgaking the kernel

width h(z;) proportionalto theinversesquae root of
the estimatedunctionvalueat the sampleposition

h(zi) ~ (p(z:) "% (5)



Figure 1: Variable kernel density estimation:
the chosen kernel width is related to the
densityof the sampleswhich correspondso a
dependengonthetamgetfunctionp(x). Where
p(z) is smallawider kernelis used.

This choice,asAbramsonproves,hassomedesirable
bias reduction properties. Of coursep(z) is to be
estimatedand thereforenot known, so that a pilot
estimatefor p(z) is required. (Our approachto this
problemwill beexplainedin section4.)

As said,for theimagesynthesigproblem we estimate
a function f(z) using several pdf's P (X) andthis

leadsto a differentweightGy,; for eachsampleXy, ;.

Thevalueof G is determinedoy how goodthe used
importancesamplingpdf’s fit the function F'(X). A

big value for G meansthat W/P is small, but that
F is large for that sample. It is well known that
badimportancesamplingcanbe a terrible sourceof

noisein the image. Ideally W/ P is proportionalto

F so that every samplehasan equalweight. As a
resulta biggervalueof G, ; requiresa biggerkernel,
asthis canbe seenas a 'bad’ sample. So also for

our adapteddensity estimationframeawvork a similar
kernelwidth dependengholdsbetweersamplevalue
andestimatedunctionasshown in figure 2.

We propose an adaptedversion of the heuristic
of Abramsonin order to accommodateunequally
weightedsamples:

AXea) ~ (fi':f») ©

Note thatfilling in this dependenginto equation3,

shaws that the top value of the kernel becomes
independenof the weight G, ;. Also note that the

targetimageplanefunction f (z) is usedasreference
(and not F'(X), which we can evaluate exactly),

whereG}, ; actsasaonesampleestimateof f(z).

M=

3.5.2 Number of Samples

The kernelwidth shouldalsodependon the number
of samplesused.As this numberincreaseshe kernel
width shouldgo to 0 in orderto reducebiasin the
solution. Asymptotically for (N — oo) a perfect
solutioncanbe obtained.

For fixed kernel widths an optimal N dependeng
canbe derived with regardto a meansquarederror

Figure 2: Variable kernel density estimation:
for unequalsampleweightsthe choserkernel
width canstill berelatedto thetargetfunction
f(x). Largesamplevalueswith respecto f(x)

requirewiderkernels.

metric[Silve84:
1\
v~ () @

In graphicshowever a squae root dependencyas
beenusedmoreoften[Shirl95, Walte97].

In our experiencethe first rule tendsto overblur
discontinuitiesn theimage for whichtheeyeis quite
sensitve, while the secondrule leadsto noticeable
varianceevenfor a high numberof samples.Several
in-betweenexponentswveretried andfor the moment
wewill denotethedependengby agenerakexponent
.

3.5.3 Final heuristic

We chosethe following final heuristicfor the kernel
width:

= (5) (i) @

Theconstant is areferencéernelwidth thatdefines
a basevaluefor how muchsampleshouldbe spread
out.

4 THE ALGORITHM

In this sectionwe will give adetailedoverview of the
completefilteredimagesynthesisalgorithm.

The basisof the algorithmis tracing (bidirectional)
pathsand for eachpath that has a contribution to
the image plane, an appropriatekernel width is
determined. This sampleis then’splatted’into an
imagebuffer usingthatkernel.

To determinethe kernel width for the samples,we
needto know an approximatevalue for the image
planefunction f(z) (seeequation8). The proposed



e Trace Paths (INy samples/pixel) and store
screen hits (x;, G;)

e Image fi = Fixed width kernel density
estimation (width: C’ - N, '/?) using stored
hits

e Image fo = Variable width kernel density
estimation (width: eq. 8) using f} as
reference

¢ Dispose stored hits
® Niotat = No
e For j = 1 to number of iterations J
— Choose N;
— Niotar +=N;j
- fj ="t p; ) (Scale down)
— fj+ = Trace paths (IV; samples/pixel)

and apply var. kernel using f;_; as
reference

e f;isthe final image

Figure3: Overview of the progressie filter &
renderalgorithm

algorithm usesa numberof iterationsand in each
iteration j an new approximationf;(z) (animage)
is madeusing f;_, asa referencefor kernelwidth
determination.

To startupthealgorithm,aninitial batchof paths( Ny
samplesper pixel?) aretracedandthe hits on screen
areall stored. Only storageof screenposition zy, ;
andsampleweightG}, ; is necessaryUsingthesehits
a first approximationf} is madeusing fixed kernel
density estimation(as in [Abram83) with a kernel

sizeh = C'- Ny'/*. The constantC’ shouldbe
large enoughto eliminatemostof the variancein the
image.We usevaluessothatthekernelwould have a
diameterof 8-10pixelsin theimage(for Ny = 1).

Using the same stored samples, a second
approximation f, is constructed using variable
kernelwidths, using f§ asthe referenceimage. In

our implementationthe constantC' in this estimate
is setto geta spreadof 4-8 sampleger pixel (when
No = 1andG/f = 1). Thevalueof C canbevaried
to exchangebiasfor varianceandvice versa.lt stays
constanduringall subsequeriterations.

2We use’'samplegerpixel’ for N appearingn thekernelwidth
heuristic. Normally onewould usetotal numberof samplesasin
thedensityestimator(3) but thedifferences only a constanfactor
(numberof pixelsin the image)andwe have moved it to the the
constantC'. This allows usto specify C in termsof a numberof
pixels.

If no precautionsare taken, the kernelwidths A can
becomeso narrov that they would not cover ary
pixel centreat all, making no contritution to the
image. Although in theory a valid solution is still
obtainedwe have chosento restrictthe kernelwidth
to a minimum of one screenpixel. Note that in
standardbidirectionalpathtracing (BPT) this would
correspondo usinganonepixel wide Epanechnikv
kernel placed in the pixel centre as a weighting
functionfor samplegyoingthroughthis pixel.

An overview of the completealgorithmis givenin

figure 3. Notethatit is arelatively simpleprocedure
and that only the first batch of samplesmust be
stored. This in contrastto other density estimation
approachesn graphics[Shirl95 Myszk97 where
large numbersof hits hadto be stored.

5 IMPLEMENT ATION & RESULTS

We have implemented the algorithm in
Renderfark [Bekae99 using bidirectional path
tracing (BPT) for computing the light transport.
The methodwastestedon a scenecontainingmary
different illumination features including diffuse,
glossy and specular surfaces, direct and indirect
causticsglossyreflections,...

We have includedrenderedmagesof thisscenemade
with thefollowing specs:

e Figure4: StandardBPT using4 sampleger
pixel.

e Figure5: StandardBPT using64 samplegper
pixel. Note the spike noiseon the left lighting
fixtureanin theneighbourhoodreflectionfrom
the samefixture).

e Figure7: Thenew algorithmusing4 samples
per pixel, with exponenta = 1.5/5, fixed
width constantC’ = 8 pixels, Ny = 1
sampleperpixel, N; = 2N;_;, variablewidth
constanC' = 4.

e Figure 8: New algorithm using 64 samples
per pixel and the sameparametersas in the
previousfigure.

e Figure6: A 'reference’imagerenderedwith
BPT using 2048 samplesper pixel. Note that
evenin this imagesomenoisearoundthe left
lighting fixture is present.This noiseis in fact
causedby highly glossyreflectionof the left
causticby the fixture, somethingthat is very
hardto computeusingBPT.

e Figure9: Magnificationsof a certainpart of
theimagesn orderto revealmoredetail.

3Currentlywe areusinga simpleboxfilter in our standard3PT
renders



Performancewise the filtered renderingstake about
10 to 15 percent more time than the standard
bidirectionalpathtracingimages.The64 sampleger

pixel filteredimagetook aboutl hourto computeon

anSGI Octanel95MhzR10000.

Looking at the quality of the images following
remarkscanbe made:

e Distracting spike noise presentin the BPT
images (even at 2048 samples/pigl) is
effectively reducedusing the new algorithm.
Note especiallythe scatteredsellow spotsthat
originate from reflection of the left lighting
fixture.

¢ Difficult illumination features(e.g. left light
fixture andbottom-leftglossyreflectionof the
caustic)appearvery noisy in the BPT images.
Using the new algorithm these featuresare
adequatelyblurred so that they look more
visually pleasing. However they tend to
be overblurredif comparedto the reference
image,whichis anotherexampleof biasversus
variancetrade-of. The overblurring occurs
becausehe usedapproximatereferencesf;_;
underestimat¢he actualradiancevalue. Using
additionalinformationlike surfacereflectance
or normals, it might be possible to use
better(irregularly) shapedernelsto lower this
overblurring.

e One of the difficulties in choosing the
parametersof the algorithm was preventing
excessve blurring of edges. We found that
the parameterhadto be chosenso that still a
smallamountof variancglow frequeng noise)
was allowed in smooth regions, otherwise
edgeswould be too blurry. A promising
extensionwould be to prevent edge blurring
by modifying the kernelshapeyestrictingit at
objectboundaries.

¢ Notethatthe(edge)blurring clearlydiminishes
asN goesup from 4 to 64 samples.

e A typical problem in density estimation is
boundary bias that occursat the boundaries
of the domain (screenbordersin our case).
The causeof this bias is that at the border
only samplescontritute from one side of the
border since samplesoutsidethe domain are
not generatedbut could contribute to pixels
insidethe border This causeslarkeningat the
edgesof the image (slightly visible figure 7).
Currentlywe do not preventthis bias, but well
known remedieslike kernel mirroring can be
easilyappliedhere.

6 CONCLUSION

We presentedan adaptve filtered Monte Carlo
rendering method. A kernel filter is applied to

individual samplesusing an adaptve kernel width
based on a ’goodness’ criterion of the sample.
The methodis enegy preservingand resultsin a
progressie algorithmthatstill corvergesto a correct
solution.

Resultsshowv that a reasonabletrade-of between
bias and noise can be maintainedat ary time. As
desireddifficult illumination features(for the used
MC method), that normally resultin a high noise
level, areblurredmorethaneasyto computefeatures.

Still mary possibleextensionsand open problems
needto befurtherresearched.

e The boundarybias problem at the edgesof
the imageshouldbe solved. This is however
more of animplementatiorissueratherthana
fundamentaproblem.

e SomeparametergC, C', ) in the algorithm
needto be configuredby hand. An automatic
selectionis desirablebut this is not an easy
problemto solve. The resultswe obtained
however were not dramaticallydependenbn
thechoiceof parameters.

e Currently we are using only the sample
values and their impact point on screenfor
determiningthe kernel. Othereasyto acquire
informationfrom the sceneor pathscouldalso
beusedto enhancéheimages.Someideasare:
usingnoncircularkernelfootprintsthatdepend
on the surface normals, restricting kernelsto
oneobjector surfaceto preventedgeblurring,

Theseextensionsand problemsare currently under
investigation.
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Figure4: Standardidirectionalpathtracing,4
samples/pigl

Figure5: Standardbidirectionalpathtracing,
64 samples/pigl

Figure 6: Reference: bidirectional path
tracing,2048samples/pigl

Figure 7: New progressie adaptve filter
algorithm,4 samples/pigl

Figure 8: New progressie adaptve filter
algorithm,64 samples/pigl

Figure9: Magnificationsof figure 5 (left) and
figure 8 (right)



