
&RQVWUXFWLQJ�D�+LJKO\�,PPHUVLYH�9LUWXDO
(QYLURQPHQW��$�&DVH�6WXG\
&KULV�)DLVVWQDXHU��'LHWHU�6FKPDOVWLHJ��7RPDV]�0D]XU\N

Institute of Computer Graphics, Vienna University of Technology, Austria

email: faisst | schmalstieg | mazuryk @cg.tuwien.ac.at

$EVWUDFW. Virtual reality (VR) applications raise enormous interest inside and outside computer
science. Unfortunately, VR systems are rather complex, involving many software and hardware
modules being integrated. Theoretical papers are not always of much aid in the actual
implementation of VR applications. We try to fill this gap with a case study on a simple example
VR system, that is used to demonstrate the most important aspects of a VR implementation,
including application design, implementation strategy, selection of hardware and software,
rendering, tracking and display technology. Special attention is paid to practical issues that are
usually only learned by experience, and on the discussion of devices and methods that are
inexpensive and readily available.

.H\ZRUGV: virtual reality, virtual environment, immersion, case study

���,QWURGXFWLRQ
The purpose of this paper is to explain the steps necessary to build a virtual environment (VE)
with moderate hard- and software costs and restricted complexity. Our intention is to provide
insights into practical issues of virtual environments that can help research groups, students or
software companies involved in the implementation of virtual reality (VR) software projects. We
concentrate on the translation of theoretical foundations into working solutions, and we report
concrete experiences we had when doing an experimental implementation. As a study object, we
developed a simple game placing the user in a maze, with the task of fighting computer
controlled drones.

A virtual environment is a software system that creates the illusion of a world that does not exist
in reality. This is done by presenting a three-dimensional representation of the environment to
the user, who can navigate through the virtual world and interact with its inhabiting objects. Such
an application requires a combination of user interaction (input), simulation of processes in the
environment (computation), and multi-sensory stimulus (output). The main advantage of virtual
reality over conventional computer graphics is the feeling of immersion created by convincing
real-time stimulus presented to the user. Immersion, however, is also most difficult to achieve
and sustain: It is a very demanding task to configure a system so that the diverse needs of the
application (management of input, simulation, display) can satisfied with adequate performance
to keep the illusion from breaking.

Covering every aspect of virtual environments is beyond the scope of this paper. We are limiting

ourselves to a set of topics that as a whole allow interesting applications to be constructed. Our
focus is on providing high-fidelity 3-D graphical output and interaction for a single user in a
moderately complex surrounding. Related work includes an overview of software needs [1],
several case studies (e.g., [2, 3]), and a tutorial for implementing multi-user simulations [4].

���:KDW�\RX�KDYH�WR�GR
Getting started is always the hardest task. This section tries to give a very rough "cooking recipe"
on how to make the important decisions when undertaking such a complex venture.
Unfortunately, there is no single method for software engineering, and there certainly is none for
virtual environment engineering. However, one should at least try to avoid some common
misconceptions.

����&KDUDFWHUL]H�WKH�SUREOHP�DQG�WKH�DSSOLFDWLRQ�\RX�ZDQW
WR�FRQVWUXFW
Creating working solutions always requires a solid grasp on the problem. When using novel
technology, especially if it allows a lot of freedom in design (what peripherals to use etc.), it may
be tempting to pick up one’s favorite toys and then retrofit the application to be compatible with
the available environment. Instead, a clear description of the objective is necessary, so that the
design of the system can be derived from it.

����'HFLGH�RQ�WKH�SULPDU\�PHWDSKRU
How is the user represented in the VE? What must he achieve, and how can he achieve that?
Once this decision is made, it should be easy to determine the required level of immersion. There
is a long-lasting and ongoing battle whether total immersion (complete coverage of all or most of
the user’s senses) is necessary at all cost. A practical point of view may be to see it as a cost-
benefit equation. If the wins in overall quality are not huge, it may not be worth the extra effort.
Sometimes it may turn out that a solution using conventional desktop graphics is superior. Not
every problem is suited to be tackled in 3-D and real-time.

����6HOHFW�WKH�DSSURSULDWH�KDUGZDUH
The decision should be based on the decision made in the previous step. See if you can afford it.
If not, try to analyze your decision: Can you come up with an alternate, still working design
within the available budget (maybe at a tolerable decrease in expected quality), or is your
solution so dependent on the chosen hardware/software that the project cannot be realized at all
with the budget you have at disposal? While such a consideration is true for any technical
project, it is particularly crucial for virtual reality where cost literally explodes when high end
components are desired.

Alternatively, if the budget is a priory fixed, or if the hardware is fixed (for example, when
developing for a particular platform), try to come up with the best application design. It is not
necessary to use all or even any of the gadgets that are available to you: Your application will not
necessarily be better of you are trying to force-fit your problem with a design that makes use of

VR technology but is not intuitive.

����'HFLGH�RQ�WKH�LPSOHPHQWDWLRQ�VWUDWHJ\
Once the major design issues have been resolved, it is necessary to find an implementation
strategy. Oftentimes it becomes necessary to decide on the software support that is needed.
Virtual environments can be very complex software systems: How deep can you afford to dig
into the computer? On the one hand, it is necessary to fine-tune almost any part of the VR
application, so that the high performance demands of an immersive application are met. On the
other hand, the complex structure of a VE does not allow to be concerned with too many details.
The dilemma can partly be resolved by the use of toolkits that support a well-defined aspect of
the VE, and are highly optimized for the task. You should always try to find a toolkit for creating
the 3-D images (rendering toolkit) and for supporting you devices (device drivers in the broadest
sense). Unfortunately, you may need slightly different implementations in some cases, and it is
not always possible to extend, modify or patch the commercial toolkit. The highest level of
support comes from integrated software solutions (e.g., WorldBuilder from Autodesk). If you are
able to use such a product, you can save a lot of effort. However, the set of features supported by
such a closed solution is fixed, and it may often fail to support your most innovative design
ideas.

����*HW�WKH�KDUGZDUH�ZRUNLQJ
It may sound trivial in the age of "plug-and-play", but devices such as HMDs and trackers are
still complicated to handle. This is partly due to the limited distribution of VR devices and a lack
of standards, and will certainly improve over time, but for now a tedious process of trial-and
error can hardly be avoided. It may be necessary to create custom device drivers that have
specific properties, or run under specific software configurations or flavors of operating systems.
Even if you can use the drivers supplied by the vendor, it is also generally necessary to fine-tune
the parameters that can be set for the device (sampling frequency, sensibility etc.).

����'R�WKH�LPSOHPHQWDWLRQ
Once you have a demonstration running that proves that your choice of hardware runs as a more
or less harmonic ensemble, you can start the actual implementation. During the process you will
probably learn that virtual environment system design is less well-understood than for example
database design. Usually a lot of iterations with real user testing is necessary to get things right.
It may be wise if you find a way to throw together prototypes or even barely working mock-ups
of your application just to get enough response [5].

����,WHUDWH�\RXU�GHVLJQ�XQWLO�VDWLVI\LQJ
Probably the most important difference between "normal" software engineering and the
construction of immersive virtual environments is the lack of a general theory, many factors have
to be determined by experiment.

���6RPH�EDFNJURXQG�RQ�YLUWXDO�HQYLURQPHQWV
In this section we will discuss issues that are usually raised when designing an virtual
environment or planning its implementation. We have selected several issues that seem
interesting enough to justify a closer look.

����7UDFNLQJ�WHFKQRORJ\
Immersive VR applications often require the tracking of the user’s head movements to determine
his current direction of gaze. Additionally other parts of the body (e.g., hands) may be tracked to
allow interaction. The most important properties of trackers [6, 7] are XSGDWH�UDWH (defining how
many measurements per second are made), ODWHQF\ (amount of time between the user’s real
action and the beginning of sending of the report representing this action), DFFXUDF\��measure of
error in the reported position and orientation), UHVROXWLRQ (smallest measurable change in
position and orientation) and UDQJH (working volume of the tracker). Beside these properties,
some other aspects cannot be forgotten, like the ease of use, size and weight etc. of the device.

0DJQHWLF�WUDFNHUV are the most often used in VR immersive applications. They typically consist
of a stationary part (emitting the electromagnetic signal) and a number of movable parts (called
sensors or receivers) mounted on the tracking points. Both emitter and receiver consist of three
mutually perpendicular coils. The magnetic fields generated by the emitter are picked up by the
receiver and transformed into magnetic current by induction. Both AC and DC current is in use,
where DC-based trackers are less sensitive to interference by metal and magnetic fields in the
tracking area.

Advantages of magnetic trackers include small and light sensors, no open-line-of-sight
constraint, no sensitivity to acoustic and lighting conditions, relatively high update rates and low
latency. The most severe disadvantages are vulnerability to metallic objects and ferromagnetic
materials and rapid deterioration of accuracy with increasing distance between sensor and emitter
caused by electromagnetic distortion.

$FRXVWLF�WUDFNHUV use ultrasonic waves (above 20kHz) for determining the position and
orientation of objects in space. As the use of sound allows the determination of relative distance
between two points only, multiple emitters (typically 3) and multiple receivers (typically 3) with
known geometry are used to acquire a set of distances to calculate position and orientation from
the time the sound takes to travel. Advantages of acoustic trackers are small size and weight,
inexpensiveness, and independence from magnetic interference. However, they suffer from an
open-line-of-sight restriction, vulnerability to acoustic interference (echoes), and rather low
update rates.

Other tracking technologies include several flavors of optical tracking and mechanical tracking,
but magnetic and acoustic tracking have a major non-technical advantage over these methods:
They are commercially available off-the-shelf components with some maturity. Although this is
a rather trivial issue, it currently limits your choices to magnetic vs. acoustic: If you can manage
to avoid electromagnetic disturbance in your area of work (get a wooden desk!), you will
probably opt for a magnetic tracker such as the Polhemus Fastrak or Insidetrak, or the Ascension
Flock of Birds. If you can live with the line-of-sight restriction, an acoustic tracker may be

appropriate, e.g., the Logitech tracker. Pay attention on how to connect these peripherals to your
system: usually a serial or parallel connection or PC plug-in board are used.

����&RRUGLQDWH�V\VWHPV�DQG�WKHLU�UHODWLRQV
The rendering transformation for computer graphics usually involves object coordinates, world
coordinates, and camera coordinates. We need REMHFW�WR�ZRUOG and ZRUOG�WR�H\H matrices.
However, most rendering systems (e.g., Iris Performer) require the specification of the object-to-
world and eye-to-world matrices. For a head-tracked HMD, the latter can be decomposed as
follows [8]:

* (\H�WR�KHDG: defines the position and orientation of the eye in the coordinates of the tracker
reference point (headTP in fig. 1) on the head (typically the sensor). The two eye-to-sensor
transformations (one for each eye) are IL[HG for a given HMD geometry.

* +HDG�WR�WUDFNHU: defines the position and orientation of the head in the coordinates of the
tracker’s stationary part (typically the emitter). This transformation changes G\QDPLFDOO\ as the
user walks or rotates his head, and is measured by the tracking device.

* 7UDFNHU�WR�URRP: defines position and orientation of the tracking system’s emitter module in
the physical room. In that way independence of the position of the tracker in the physical room is
achieved. This transformation is IL[HG for a given physical tracking system configuration.

* 5RRP�WR�ZRUOG: defines position and orientation of the (physical) room in (virtual) world
coordinates. This is necessary because the simulation places the user in a simulated vehicle that
moves in the virtual world. This transformation changes G\QDPLFDOO\ according to the users’
actions like flying, tilting or world scaling.

If we use other trackers than for the head (e.g., hand tracking), a corresponding matrix hierarchy
is used. The only difference is that a hand-to-world matrix is used like an object-to-world matrix
(e.g., for display of the user’s hand). Fig. 1 shows the hierarchy of transformations.

Fig. 1: Abstract and schematic view of the display transformation for VR

����'LVSOD\�WHFKQRORJ\
The chosen display technology [9] is of crucial importance when trying to design an immersive
experience. At a budget, the choice is rather limited; however, careful considerations must be
paid to the human factors, because the quality of the visual presentation largely determines how
successful your implementation is going to be. In the following we outline what we think are the
options one generally has at a reasonable cost (i.e. the peripherals may not exceed the price of
the core system).

)LVK�WDQN�95� A large (19" and more) color monitor with high-quality can make partly
immersive experiences possible without any extra costs for peripherals. However, you must be
aware of the limitations: At no time is the user totally immersed in the scene, for he may always
be distracted by what is going on in his immediate surrounding. Interactions requiring even a
limited form of body movement are not possible. Head tracking has only limited effect. Despite
the obvious limitations, the feeling of immersion can still be surprisingly high.

The monitor-only solution may be greatly enhanced by the use of liquid crystal shutter glasses
allowing sequential stereoscopic view - corresponding images for the left and right eye are
presented in sequential frames on the monitor in synchronization with the glasses, that use liquid
crystal technology to darken the other eye in turn. The action radius is still limited by the user
having to look at the monitor, but the monitor provides very good image quality with high
resolution and brightness. The glasses are not more uncomfortable than normal sunglasses.
Therefore they may be worn for an extensive period of time, which is beneficial if the
application is to be integrated into a normal desktop workplace environment (e.g., a CAD seat).
Shutter glasses are also cheaper than HMDs.

+HDG�PRXQWHG�GLVSOD\. Wearing the display on one’s head brings total immersion: The user’s
visual perception is bound to the images presented by the computer. The intention is to focus the
user on the VE, so that he can interact with the VE just like he would with reality. However, the
quality of today’s commercial products is still relatively poor. Furthermore total immersion
requires protection of the user’s action volume, because he cannot see real obstacles anymore and
may hurt himself. The options for HMDs include both LCD and CRT based devices. Most

devices accept separate video input for each eye, usually they accept NTSC or PAL signals.
Conversion from RGB signals as provided by the graphics boards is usually done by an external
conversion box. Stereoscopy can either be neglected (in that case the same input is presented to
both eyes), or two input signals are necessary. These can be provided by two separate image
generators (either two graphics boards in one computer, or two computers that are synchronized
over a network). Two signals can also be generated by special graphics boards (like the SGI
multi-channel option), but this solution is often prohibitively expensive. HMDs normally include
a head-mounted tracker, so that the user is always presented with an image according to his
current viewing frustum.

����(IILFLHQW�PRGHOLQJ�DQG�UHQGHULQJ�RI�YLUWXDO�HQYLURQPHQWV
0RGHOLQJ�WRRONLWV��A complex system such as a VE will also require ways of integrating the
geometric description of objects with their programmed behavior in a structured, standardized
way: a 3-D modeling toolkit is required. Such toolkits are best developed using an object-
oriented or pseudo object-oriented approach, where each kind of object (polygon, light source
etc.) is modeled as a class. Instances of these classes are arranged in a hierarchical scene graph as
needed (primitives as leaves, transformation nodes etc. as intermediates). Instancing of
subgraphs allows the model to exploit similarities in the scene (e.g., the geometry for four
identical wheels of a car need only be specified once). Such a scene graph is processed by
traversal, and for each visited node the appropriate method of the corresponding class (e.g.,
draw) is called. Flexibility is achieved by allowing user defined traversal strategies, callback
upon traversal of specific nodes, and subclassing of node types. Hierarchical bounding volumes
allow efficient culling and intersection testing.

While such a modeling toolkit allows the construction of VE scenes at a sufficiently high level,
they are no substitute for a good interactive modeling or CAD package. Therefore you need to
make sure that the rendering system of your choice supports import for the geometry file format
of your favorite modeling system. Do not forget that you need to check whether much-needed
high-level information (such as which primitives belong to one object) must survive the data
exchange!

Creating a toolkit for modeling and rendering is tedious and labor-intensive. It is better to use an
existing solution, most of which are more than powerful enough to support your needs, and also
are optimized for specific hardware configuration, which is extremely hard to do yourself.
Popular choices include OpenInventor [10], Iris Performer [11], DVS [12], or Sense8
WorldToolKit.

5HQGHULQJ�DFFHOHUDWLRQ��When designing a virtual environment experience, one may never
forget that the hardware alone cannot bring high quality immersion, unless the image generation
is programmed efficiently. Vendors of graphics boards constantly try to outperform each other
with impressive polygon-per-second figures indicating peak performance of their products.
However, professional graphics programmers know that a tenth of the figure stated by the PR
information is the typical real-application performance. When dividing this number by the 20 or
so frames that are necessary to maintain smooth animation for a convincing and pleasant VR
experience, the polygon budget for a single frame gets really tight even for moderately complex
scenes. Textures make up for the lack of detail, but low cost image generators usually do not

support them (however, last-generation video games such as the Sony Saturn already support
textures).

Nevertheless it is absolutely mandatory that the graphics capability at hand is exploited as much
as possible. Consequently a simplistic approach along the line "throw all polygons in the
rendering pipeline and forget about it" is not sufficient. Instead, it is necessary to carefully
consider the trade-off between cost for preprocessing and actual rendering (which is more or less
done by hardware). The most prominent methods for rendering acceleration are:

* 9LVLELOLW\�SUHSURFHVVLQJ: In a large virtual environment, most of the geometry is invisible,
partly because many objects lie outside the viewing frustum (typical HMDs have only a 40deg.
field of view!), partly because of occluders (e.g., walls in a building). The (in)visibility of these
parts of the scene can be determined by the hardware (typically Z-buffer), but the overload
created from processing (scan converting etc.) the massive amount of geometry that is not visible
anyhow is exactly what makes the rendering inefficient. It is therefore better to use some CPU
capacity to pre-determine what is really visible or a superset thereof, and only pass this pruned
dataset to the rendering hardware. This can be done by standard viewing frustum culling (e.g.,
using auxiliary data structures like BSP trees [13]) or by specialized data structures that exploit
occlusion [14].

* /HYHO�RI�GHWDLO�UHQGHULQJ: Realistic models for virtual environments can become very
complex, consisting of thousands of geometric primitives [15]. If objects are far away or very
small, the details cannot be seen and the effort spent on rendering them is wasted. To
compensate, a model may be represented in multiple levels of detail (LOD), e.g., using an
increasing number of polygons for each successive LOD. A good selection of the LOD for each
object at runtime requires sophisticated heuristics [16].

���&DVH�VWXG\
����0RWLYDWLRQ
A game is a good example to demonstrate the important aspects we are interested in: It will only
work if it is capable of providing a high level of immersion. If it fails in this respect, the user will
not be captured. Furthermore, it involves all the aspects of a virtual reality application, without
being too complex.

From the type of application, the requirements for software and hardware can be derived. First,
one has too choose the metaphors that will be involved in the interaction of the user with the
environment, in particular navigation. In our game, the user navigates in a maze and gets drawn
into shooting fights with enemies. To support this situation, we need 3-D display of the maze
with rapid viewpoint control, so that the user can quickly spot the enemies. We also need a
simple and direct method for navigation and aiming at enemies, because these actions will be
time-critical. We chose to address these requirements with a head-mounted display (HMD) with
head-tracking, and a hand-held 3-D mouse. The HMD is driven by a 3-D accelerated SGI Indy
workstation, which places the system cost somewhere in mid-range. Low-cost (PC-based)
hardware would not have provided the necessary, prices for 3-D acceleration are dropping
rapidly, and we can soon expect the hardware to be available at commodity prices.

����6\VWHP�2YHUYLHZ
In this section, we discuss what hardware and software components are necessary for the
construction of our example VE (fig. 2). We are decomposing the task into the "classical"
domains of information processing (input, computation, output). However, note that a VE is a
closely-coupled human-in-the-loop system that must run at interactive speeds.

Fig. 2: System overview diagram

,QSXW� System input comes from the interaction devices that are connected as peripherals to the
computer, in our case the trackers for head and hand. Transforming the data collected by the
devices into useful information (e.g., filtering out noise) can be a difficult task.

&RPSXWDWLRQ� Once input data is obtained, it has to be processed so that the application can use
it. An interaction module transforms the raw data (e.g., state of button changes) into semantic
events ("user shoots missile"). To do this, the interaction module may require information about
the current state of the simulation (e.g., the projectile fired by hitting the button may depend on
the selected weapon, and whether there is ammunition available). The data is then passed on to
the central coordination component, which is responsible for invoking the other modules to keep
the system running. In particular, it has to look after the simulation of the objects that are present
in the VE, in particular the autonomous agents (in our case, the robot drones that attack the user)
and the representation of the user (e.g., simulating movement of the users vehicle based on
velocity, acceleration etc.). A special task of the simulation that is both important and complex
(because of the high computational effort) is collision detection and response. All these modules
operate on the world model, a special database describing the details of the VE.

2XWSXW� Part of the world model is occupied by the geometric representation, which is then used

for creating the images in real-time on the HMD. Needless to say, real-time rendering in
convincing quality is a difficult problem into which a lot of effort is being invested.

����:RUOG�PRGHO�DQG�LQWHUDFWLRQ�PHWDSKRU
While it is often argued that VEs will revolutionize human-computer interaction because of the
potential to interact with the computer in the same way we interact with the real world, the
immature quality often encountered in today’s VR technology forbids complex types of
interaction. It is therefore of utmost importance to carefully choose and fine-tune the metaphors
used for the design of the interaction with the VE, so that it does not place too high demands on
the user.

Navigation of the user in the virtual world is especially important. Without doubt the most
natural navigation would be to let the user walk physically. Unfortunately, this is rarely possible
because of difficulties in tracking larger areas, safety considerations when wearing HMDs,
screen-bound applications when not using an HMD, length of cables etc. Therefore a navigation
metaphor has to be chosen that allows the user to remain relatively stationary (standing or
sitting) while navigating. A suitable solution is the simulation of a (simplified) vehicle that is
operated in a similar way as the real-world counterpart. Fly-through allows movements in 3-D
more or less without any restriction. Drive-throughs and walk-throughs are used if the user is
meant to remain "on the ground" of the virtual environment. The usage of the vehicle is generally
greatly simplified (no physics etc.) to make usage as easy as possible, unless accurate simulation
of the vehicle operation is the focus of the application (e.g., flight training).

While it is crucial that the navigation problem be solved, one may not neglect the other aspects
of the interaction component. Depending on what the goal of the VE is, a variety of functions
may need support. In general, using interaction elements that we know from the 2-D desktop
area does not work very well in an immersive 3-D environment. For example, it turns out that
displaying menus in 3-D is often not perceived very well by the user. Insufficient quality (e.g.,
tracking inaccuracy) may make some otherwise good ideas unworkable. Instead, new methods
are suddenly possible (e.g., gesture recognition). If the system has a real-time aspect (e.g., when
the user is attacked in a game), the interface must be extremely simple and direct so that the user
is able to respond fast. The same holds for conventional user interfaces, but in VEs the problem
is more common.

For our simulation, we chose to simulate a simple "glider" vehicle that transports the user in the
maze. The vehicle always moves in the direction of its nose. The vehicle is controlled by buttons
of the 3-D mouse (left, right, forward, back). No physics are simulated for the vehicle. Parts of
the hull of the vehicle are represented in the scene (see fig. 3), so that the user can determine the
vehicle’s orientation (and hence the direction of movement). The user’s hand (with the 3-D
mouse represented by a gun) is also displayed so that the user can visually coordinate his manual
actions, in particular shooting (one 3-D mouse button is reserved to trigger the gun). The head-
tracking allows to move the direction of sight independently of the direction of vehicle
movement (e.g., one can look out of the "side" window), which is important to check for enemies
behind oneself. After a short period of adjustment, the users feel quite comfortable with this
simple metaphor.

����+DUGZDUH�DQG�6RIWZDUH
For tracking, we use a Polhemus Fastrak with two sensors, one for the head and one for the hand.
The tracker unit is connected to the serial port of a 486-based PC running Linux that acts as a
tracker server. Using standard TCP/IP, the PC in turn is connected to the Indy workstation that
runs the virtual environment and generates the images. UDP sockets are used for efficient
communication of the tracker data to the workstation. We use the PC for tracking, because it
provides a cheap way of distributed computation. The prediction filter applied to the tracker data
consumes a substantial amount of CPU power. It is much cheaper to dedicate an inexpensive
Intel CPU to the task than buy a more powerful workstation. Additionally, most of the cheaper
VR peripherals are developed for the PC market, and it is therefore straightforward to connect
them to PCs, whereas connecting to workstations can be annoyingly complicated.

Our system is able to compensate for the delay introduced by head tracker measurement,
network transmission, and rendering using a Kalman filter based predictor as described in [17].
This method greatly reduces the effect of "swimming" of images that are not consistent with the
head movement, and is also capable of reducing the noise in the measurement.

Presentation of the VE to the user is done with an EyeGen3 HMD from Virtual Research. This
HMD accepts two NTSC composite signals and displays them at TV resolutions. Conversion of
the monitor signal is done with an external RGB-to-NTSC converter. We use the same input for
both eyes and neglect stereoscopy, predominantly for cost reasons. The HMD provides
immersion even though images are not stereoscopic. Future plans involve using two Indys
synchronized over a network to generate separate images for both eyes. For rendering, we chose
to use the Iris Performer toolkit, because it provides excellent performance on SGI workstations.

����2EMHFW�VLPXODWLRQ
The simulation of objects determines the kind of experience the user has in the virtual
environment. Without simulation, the VE would only consist of "dead" geometry without
interesting situations. In our test implementation, the simulation is only concerned with two
types of objects: The user himself and the enemy drones.

8VHU. Simulating the user more or less consists of appropriate responses to the user’s input. The
glider vehicle that is occupied by the user is rotated and moved back and forth according to the
commands given with the 3-D mouse’s buttons. No physical properties are computed for the
vehicle; it starts, moves and stops completely determined by the user’s commands. This does not
only simplify the simulation, it also is convenient for the user who is kept busy fighting the
drones. The application is responsible for displaying the part of the user’s geometry that is visible
(the shoulder, arm and hand, and the trunk of the vehicle) to aid the user’s orientation.

'URQHV. The drones’ simulation focuses on moving them through the maze and attacking the user
on sight. This involves a strategy for direction selection: Drones always move along corridors,
until they reach a crossing. In "easy mode", drones wander aimlessly, whereas in "hard mode",
they move in the user’s general direction. Upon sight they directly approach the user and fire in
the user’s current direction.

����&ROOLVLRQ�GHWHFWLRQ
Because humans are used to the fact that solid objects cannot intersect, collision detection (and
response) is very important for realism in VEs, especially because force feedback is generally
unavailable. However, physical realism is not mandatory for convincing collision detection.

Our environment consists of moving entities (user, drones, projectiles), and static decoration
(walls of the maze). We do not intersect the actual geometry of the moving objects, but rather
approximate them with simple geometric bounding volumes. We use a sphere for the user, cones
for the drones, and small spheres for the projectiles. Using simple geometric shapes, performing
the intersection computations is much easier than with a potentially complex polygonal
datastructure (of course at the cost of exactness!). For our application this simplification is
sufficient. We can further exploit the fact that most of the potential collisions (involving user,
drones, walls) can be determined from the 2-D projection of the shapes onto the ground floor.
Only the projectile-object collisions need to be determined in 3-D since a shot may miss the
target because it is aimed to high or to low.

����)ORZ�RI�DFWLRQ
The following fragment of pseudo code briefly outlines the steps that are executed in the main
loop of the program. The most important steps are tracker reading, user and drone simulation,
shot simulation, collision detection, and rendering:

while(user_stamina >= 0)
read_tracker_data
case user input of
left,right,forward,back: move_vehicle
trigger: fire_shot
for every drone
move_drone
if user_in_sight then fire_shot
compute_shots
for every pair of objects:
case collision_detection
vehicle_to_wall: stop_vehicle
vehicle_to_drone: lower_user_stamina
usershot_to_drone: destroy_drone
droneshot_to_user: lower_user_stamina
set camera according to head tracker
for each object: draw_object

Fig. 3 gives an impression of the implementation: On the right hand side the user’s arm can be
seen, just before and immediately after he fires a projectile at an enemy drone.

Fig. 3: Screen shots from the example implementation

���&RQFOXVLRQ
We have presented a case study for the construction of a virtual environment to aid those
planning to implement a similar system. A simple checklist outlines fundamental steps to take in
the realization process: A characterization of problem domain and application leads to a design
metaphor; when a decision is made on hardware and implementation strategy, and the hardware
is proven to work, the actual implementation can be done, and the design evaluated. This
"cooking recipe" is supplemented by a treatment of necessary background knowledge on virtual
environments, including tracking technology, coordinate transformations for VEs, display
options, modeling and rendering. A simple demo implementation

of an immersive 3-D maze game using an HMD with head and hand tracking is used to serve as
an example to illustrate the concepts that have been discussed.

5HIHUHQFHV�

[1] M. Zyda, D. Pratt, J. Falby, C. Lombardo, K. Kelleher: The Software Required for the
Computer Generation of Virtual Requirements. Presence, Vol. 2, No. 2, pp. 131-140 (1993)

[2] C. Codella et al.: Interactive Simulation in a Multi-Person Virtual World. Proceedings of
SIGCHI, pp. 329-334 (1992)

[3] C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko, M. Oberman, M. Teitel: Reality

Built for Two: A Virtual Reality Tool. SIGGRAPH Symposium on Interactive 3D Graphics, pp.
35-38 (1990)

[4] R. Gossweiler, R. J. Laferriere, M. L. Keller, R. Pausch: An Introductory Tutorial for
Developing Multiuser Virtual Environments. Presence, Vol. 3, No. 4, pp. 255-264 (1994)

[5] R. Pausch, T. Burnette, M. Conway, R. DeLine, R. Gossweiler: Alice: A Rapid Prototyping
System For Virtual Reality. SIGGRAPH’94 Course, No. 2 (1994)

[6] K. Meyer, H. Applewhite, F. Biocca: A Survey of Position Trackers. Presence, Vol. 1, No. 2,
pp. 173-200 (1992)

[7] R. Holloway, A. Lastra: Virtual Environments: A Survey of the Technology. SIGGRAPH’95
Course, No. 8, pp. A.1-a.40 (1995)

[8] W. Robbinet, R. Holloway: The Visual Display Transformation for Virtual Reality. Presence,
Vol. 4, No. 1, pp. 1-23 (1995)

[10] P. Strauss, R. Carey: An Object Oriented 3D Graphics Toolkit. Proceedings of
SIGGRAPH’92, No. 2, pp. 341 (1992)

[11] J. Rohlf, J. Helman: IRIS Performer: A High Performance Multiprocessing Toolkit for Real-
Time 3D Graphics. Proceedings of SIGGRAPH’94, pp. 381 (1994)

[12] S. Ghee, J. Naughton-Green: Programming Virtual Worlds. SIGGRAPH’94 Course, No. 17
(1994)

[13] B. Naylor: Interactive playing with large synthetic environments. SIGGRAPH Symposium
on Interactive 3D Graphics (1995)

[14] S. Teller, C.H.Séquin: Visibility Preprocessing For Interactive Walktroughs. Proceedings of
SIGGRAPH'91, Vol. 25, No. 4, pp. 61-69 (1991)

[15] M. Deering: Data Complexity for Virtual Reality: Where do all the Triangles Go?.
Proceedings of VRAIS'93, pp. 357-363 (1993)

[16] T. A. Funkhouser, C. H. Sequin: Adaptive Display Algorithm for Interactive Frame Rates
During Visualisation of Complex Virtual Environments. Proceedings of SIGGRAPH'93, pp.
247-254 (1993)

[17] T. Mazuryk, M. Gervautz: Two-Step Prediction and Image Deflection for Exact Head-
Tracking in Virtual Environments. Proceedings of EUROGRAPHICS'95, pp. 29-41 (1995)

