One Method of the Human Body Model
Animation

R. Berka, I. Jelinek
Department of Computers
Faculty of Electrical Engineering
Czech Technical University
Karlovo nam. 13
121 35 Prague 2
Czech Republic

e-mail
berka@cs.felk.cvut.cz
jelinek@cslab.felk.cvut.cz

Abstract

In the first part of the paper we show a new approach to the modelling of the human
body. The modelling of the human body has two parts - the model structure descrip-
tion (the model of the human body we call figure”) and the model motion control.
The second part of this article is devoted to methods of the the figure’s structure
formal description and to control of the figure’s behavior. For this purpose we have
proposed a special formal language FDL (Figure Description Language). The next
part informs on the implementation our ideas in program VITALIATOR. The imple-
mentation is consistently based on the object oriented approach. In the last part of
our contribution we discuss questions connected with control of all actor’s body parts
and parallel movement control of more figures.

Keywords
computer animation, object-oriented graphics, human body animation, modelling

1 Introduction

Three-dimensional computer animation has advantages not available in traditional
animation - animation can be produced directly from the model of an animated object.
This possibility is very advantageous in the three-dimensional model animation and
visualization. A special interesting kind of modelled animated object is the human-
body.

The human-body is an articulated 3D object. The description of the human-body
model structure and the model movement is a serious problem. In this report, we
will describe a special formal method for controlling the human-body model.

The problem of the human-body model movement control is not a new one. The
first approaches and methods are described in [1], [2], [3], [4], [5]. The system NUDES
[1] is based on stick figure models which consist of a hierarchy of ellipsoids. This
approach has an advantage in very fast hidden-surface problem solving, but movement
of every part of each stick must be controlled independently, the view of the model
on the screen is very primitive.

An interesting method is presented in [1]. The human-body is described and
modelled by a special notation - the LABANOTATION. Human-body is structured
in a hierarchical way, every part of this structure can be identified by its own identifier
and controlled by five kinds of movement operators. The animation of the human-
body model can be described in a simple language. Every statement of this language
consists of the identifier of the human-body model part and a movement operator.
But, controlling of the movement of the model is very complex and complicated.
The similar method is presented in [4]. The parts of hierarchical structure are not
identified by the name, but every part of the human-body model is described by a
relativity parameter to the predecessor in the hierarchy. The parameter of relativity
has values of position, angle, twisting etc. The problems of this approach are the
similar ones as in the publication [5].

In our research we solve the problem of human-body model movement implementa-
tion by a new approach. Computer graphics is a typical application where the object
oriented paradigm is very usefull [6]. As the human-body is an articulated 3D object
with a well defined structure, and the control of human-body model is a typical poly-
morfism task, we decided to use an object oriented method for the implementation
of our approach.

2 THE HUMAN BODY MODEL
2.1 THE SKELETON DEFINITION

For easier control, the human body is in our idea modelled by a simple skeleton. The
main components of this skeleton are nodes. The nodes represent the joints of the real
human body and they play an important part in data representation of this model
and in its control (see Fig. 1).

Figure 1: Figure model

Looking over the Fig. 1 we can imagine the skeleton as the oriented ternary tree
where nodes of the tree correspond with nodes of our model, and its edges are oriented
from the root of the tree to the leafs (see Fig. 2).

Figure 2: Ternary tree representing the model

Every node has its own coordinate system. The node is placed in the space rela-
tively to coordinates of its predecessor.

There is a base set of operations defined over each node to control its state. All
changes of position of the node are always performed by rotation around the one of
three axes (X, Y or Z) in coordinates of the predecessor (operation ROT see section
3.2). The position-change of any node means position-change of all its successors,
but other nodes stay untouched.

The root node plays a special role in the tree. Every other node is positioned
in the space relatively to the root node. The operation MOVE, which shifts whole
structure in the space, can be performed only with the root node.

2.2 THE MOTION CONTROL

The figure behavior in the scene we can control performing some operations over the
model. The first two operations, MOVE and ROT, were mentioned in previous text.

7

MOVE has effect only in connection with the root node. ROT has three forms -
ROTX, ROTY, ROTZ round axes X, Y or Z. ROT applied to the root node rotates
the whole figure in coordinates of the root node. Application to every other node
performs rotation of this node round any axis in its predecessor’s coordinates.

Some other operations over the figure’s structure are shown in section 3.2 concern-
ing the figure behavior describing language.

The position of the node is determined by its placement relative to the root node
and by the position of the root node in the world coordinates. This is the founda-
tion of transformations for each node from its coordinates to the world coordinates.
The transformations are expressed by transformation matrices. Fig. 3 shows a simple
structure where the relation between local coordinates of node L; and world coor-
dinates is given by concatenation of transformations between every two following
predecessors L; and L;_; of node L; (j € (4,1), ¢ € (2, k), where k is the number of
all the model’s nodes).

Figure 3: Fragment of the model structure

When any node changes its position, transformation matrices corresponding to all
successors of this node must be re-computed. Matrices corresponding to other nodes
keep their original state.

Describing structure and behavior of one or more figures in the scene, we need any
formal language to determine how many actors are in the scene, what is their shape,
and when and what the figures must do. The next chapter is devoted to this problem.

3 FORMAL DESCRIPTION
3.1 FIGURE DESCRIPTION

The formal language describing the skeleton’s structure is generated by
the grammar G:

G={N,T,R,S}, where

N={S0,P}....... is the set of non-terminal symbols
T={)8,Q,&,x,y} . is the set of terminal symbols
S e is the start symbol from set N
R is the set of rules

1. § - x0O00

2. O — &yPPP

3. P—oa@

4. P — 80

R b

The script analysis starts by the finding of symbol ”!”. The first rule represents
the rise of the root node. Symbol ”x” substitutes information about figure position,
orientation, and color and shape of the root node. Three symbols ”O” mean three
successors of the root node.

Other nodes are generated after the second rule. Symbol ”&” is a prefix starting
every new node in the script. Symbol ”y” represents information about the position
(relatively to coordinates of its predecessor), color and shape of the part between the
node and its predecessor.

Three symbols ”P” represent three successors of the node. In this case the suc-
cessor can or cannot be generated. It depends on the symbol found after generation
of the current node. The symbol "@” means the current node is the leaf of the tree,
but the symbol ”$” is followed by any information about the successor of a current
node.

3.2 THE FORMAL DESCRIPTION OF THE FIGURES’
BEHAVIOR

Describing behavior of actors in the scene we need a simple formal description. This
description should contain a time factor defining time-proportions among actions in
the scene. Next, we request the notation containing a description of the figures’
structure and a description of their behavior.

For this purpose, we made very simple language containing 9 instructions. Some
of these instructions are corresponding to operations over-the-figure described in the
sections 2.1 and 2.2 about the human body model.

The instructions have the format as follow:

Instructions rotating by component-of-body round any axis

— ROTX <T> <Fi> <Pj> <An> <NS>
— ROTY <T> <Fi> <Pj> <An> <NS>
— ROTZ <T> <Fi> <Pj> <An> <NS>

Instruction shifting whole figure

— MOVE <T> <Fi> <Pi> <X> <Y> <Z> <NS>
Instruction defining length of one time tick

- DEFT <T>
Instruction creating the figure

— MAKF <T> <figure formal description after grammar G >
Instruction deleting the figure

— KILF <T> <Fi>
Instruction drawing the figure

— SHOW <T> <Fi>
Instruction hiding the figure

— HIDE <T> <Fi>

Note: Each action starts when T equals to a global time counter value.

The meaning of used symbols:

T....... time counter value
Fi...... figure identifier (i € (1, N), where N is the number of all figures)
Pj...... body part identifier (j € (2, k), where k is the number of all

the figure’s nodes)
An...... rotation angle increase
X,Y,Z ... coordinates increase (shifting)

NS...... number of steps (phases) the An should be divided to

This language is very easy to use. A screenplay described by this formal notation
contains both - the structure of each figure, and its behavior in the scene.

10

Figure 4: Transformations of the model’s parts

The model described in previous sections and formal notations described in this
section, could be used in different forms of implementation. The ideas of ternary
tree, nodes as joints of a real human body, or the addressing of nodes in notation
offer itself to be implemented in any object oriented language. In the next chapter
we will show implementation of these methods using C++.

4 THE PROGRAM VITALIATOR
4.1 THE FIGURE’S DATA REPRESENTATION

The data representation for the human body is drafted as a ternary tree. Every
node is represented by the object of class Limb. Information contained in the data
structure of this object, express position of node in coordinates of predecessor, in
tree-structure, color and shape of component between predecessor, and current node.

The data structure of the node contains two important transformation matrices
M; and T; (i € (1, k), where k is the number of all figure’s nodes). The matrix M;
represents transformation from coordinates of the current node to coordinates of its
predecessor. .

The matrix 7T} is a composition of matrices M; from all predecessors and represents
a transformation from coordinates of the node to world coordinates (see Fig. 4).

TFﬁM‘ 1)

i=1

The object of class Limb owns methods to receive and to process messages from the
neighbor node. Every message has a uniform format containing type of the message,
a part identifier, a number of steps and a data area. Reading the message type
information, the receiving object determines what algorithms will be used for the next
transformations. The part identifier serves for decision whether the received message
concerns this node or not. The data area contains one real number (representing a
rotation angle for a node) or three real numbers (representing changes of three axes
X, Yor Z). The second type of the message (translation) is accepted only by the root
node.

11

The number of steps determines to how many phases the position change (trans-
lation or rotation) will be divided.

The root node has special functions in the described structure to fix the whole
skeleton in the space of the world coordinate system. The next part of the root node
is to receive messages from superior data structures and to distribute them to the
tree-structure of other nodes.

The message format for the root node is similar to the format for other nodes,
but in addition the root node receives a figure identifier. The figure identifier has the
meaning of information which determines if the received message is addressed to the
current figure or not. The root node is represented by an object of a class Figure
inheriting some methods and data from the class Limb.

An object of class Figure can perform special transformations with a whole skele-
ton, which are not necessary for other nodes (for example, translation or rotation of
the whole figure around one of the coordinate axes).

4.2 GENERATION OF THE FIGURE USING THE FOR-
MAL NOTATION

In the previous chapters, the figure’s model and its representation is described using
an object-oriented paradigms. The description of the figures and their behavior comes
to VYTALIATORs input in form of a script containing the simple commands (see
section 3.2). The analyzer reads the text and builds the dynamic data structure
representing the figure. All objects representing the figure are generated by this way.

The constructor of class Figure (see the previous section) is called for every figure to
be placed in the scene. This constructor calls a constructor of class Limb three times
to build three successors of the root node (see Fig. 1 and Fig. 2). The constructor of
class Limb calls itself recursively also three times and whole structure is completed
when an analyzer read all data from the script.

4.3 THE FIGURE CONTROL TECHNIQUE

The script mentioned above contains both commands to create figures and commands
to control behavior of these objects in the scene. The commands are read and sent by
the messages to the figure in form of instructions. Every message contains identifier
of figure, identifier of node and time counter value (saying when the message should
be processed).

Determining when the message will be processed we need a new object as interface
between figure and its environment. This object is called Queue Manager and its
main component is a queue of instructions. This queue stores instructions containing
a time counter value giving information when the instruction will be sent by message
into the structure. The time is represented by an integral value of a counter which is
managed by the superior data structure. The rest of instruction contains information
about the type of instruction, the number of steps and operands.

Receiving a message Queue Manager stores it to the end of the queue as an in-
struction. If the value of global time counter corresponds with the time counter in
the first instruction from the queue Queue Manager sends this instruction into the
structure of the figure. The object of class Limb which identifies itself as a receiver

12

------------ > messages

.................... » ackn°w|.d’..

Figure 5: Data flow in figure’s structure

of this message perform transformation determined by the received message. The
transformations are executed only partly and the rest of the calculation is inserted,
as the last instruction in set of instructions with the same time value, to the queue
of Queue Manager. Fig. 5 shows data flow in the figure’s structure which receives
messages with instructions and returns results of performed operations.

Using this control system we can achieve a pseudo-parallel effect when two mes-
sages in different nodes of the structure, but with the same time value, are processed
simultaneously. In this case two different figure’s components move at the same time.

4.4 THE DATA STRUCTURE FOR THE MULTI-ACTOR
CONTROL

In the previous text we presented the basic data structure, the simple description,
and the control technique for one figure in the scene only. In the following part we
will show how to extend the current data structure to control more then one figure
in the scene.

In the system controlling more than only one figure, it is necessary to base some
global structure and methods which can communicate with all figures via the mes-
sages. In this global structure the figure is represented by Queue Manager receiving
the messages. The discussed global structure is solved in our project by a new class
Scheduler. The object of class Scheduler manages all actors via messages. Reading
an instruction from input, Scheduler sends it as a message to all figures. The figure,
represented by Queue Manager, identifying itself as receiver of this message puts the
instruction into the queue.

Scheduler sends messages into linked structure of Queue Managers in the cycle.
In one cycle every Queue Manager of the structure can process one instruction from
the queue independently whether Queue Manager is the receiver of the message or
not. Queue Managers return acknowledge, containing information about the status
of their queues. If any Queue Manager has full queue it indicates this situation by a
returned message. The same principle is used when all Queue Managers have empty

13

e

figurel figure2 figured

receliver of the message

———————» Mmessages containing Instructiors
............. » acknowledges and results

Figure 6: Data flow among linked figures

queues or whether actualizing of the global time-counter is necessary.

The time value of the first instruction in the queue represents the local time of
Queue Manager and this instruction is processed only if the local time value is lower
or equal to the global time value. The need of the global time-counter actualization
appears when all Queue Managers’ local time value is higher than the global time
value. This is the principle of the time synchronization. The data flow among all
figures is shown on Fig. 6.

Using the Queue Manager to control all the components of the figure we can
achieve pseudo-parallel effects in the structure of the figure. Using the Scheduler we
can achieve a pseudo-parallel effect in the whole scene. This means the parts of figures
and whole figures can move independently of other figures and their parts.

5 Conclusion

In this paper we have shown the modelling technique for the animation of a hu-
man body, methods for the formal description of the data structures, and a formal
description of an actor’s behavior in the scene using the object-oriented paradigm.

These methods have become the basis for realization of our program called VI-
TALIATOR. VITALIATOR is implemented in C++ and enables the animation of a
human body in real-time. The structure of the animated body and its behavior are
described by a screenplay language which is being read in the form of input text.
First results with the VITALIATOR prompts that demands for control of figures in
the scene aren’t as high as we expected. The memory requirements and computing
time requirements are linear dependent on the number of actors in the scene.

On the other hand the drawing algorithms are very time-consuming and their use
must be supported by hardware.

In the future we will try to solve these problems using some hardware with support
of any frequent operations. As we have indicated, the problems would be specifically
with drawing time, and therefore the hardware support should be directed into a
graphic sub-system (Z - buffer or some form of parallelism).

14

References

[1] Thalmann, D. - Magnenant-Thalmann, N.: Computer Animation, Theory and
Practice, Springer Verlag, 1990

[2] Jelinek,l.: Computer Graphics Applications, Czech Technical University, Prague
1991, in Czech

[3] Watt, A. - Watt, M.: Advanced Animation and Rendering Techniques, Addison-
Wesley, 1992

[4] Thalmann, D. - Magnenant-Thalmann, N.: Synthetic Actors in Computer-
Generated 3D Films, Springer Verlag, 1992

[5] Thalmann, D. - Magnenant-Thalmann, N.: State-of-the-art in Computer Ani-
mation, Proceedings of Computer Animation ’89, Springer Verlag, 1989

[6] Nenadal, K. - Véclavikova, D.: Borland C++, Object Programming and Lan-
guage Description, Grada, Prague 1992, in Czech

[7] Berka,R.: Object oriented animation, MSc Thesis, CTU Prague, 1994, in Czech

[8] Berka,R., Jelinek,l.: VITALIATOR - The Human Body Animating System, CTU
Seminar '94, CTU, Prague 1994, pp. 45 - 46

[9] Berka,R., Jelinek,l.:Formal Methods in Human Body Model Animation, 10.
SSCG, Bratislava, June 1994, Slovakia, pp. 220 - 225

15

