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Abstract

In this paper an approach for interpolating a given sequence of points by a fair plane
curve is presented. Since the fairness concept is subjective, a non-classical modeling
tool - fuzzy sets - is used and interactive facilities are provided. Some results of our
implementation are included.

1 Introduction

One of the old geometrical problems that have challenged researchers is to find out a fair curve
that interpolates a given sequence of points. Some classical methods, such as Lagrange’s and
Newton’s interpolation may tend to oscillate more and more between a pair of interpolated
points, as the degree of the used polynomials increases [1]. To avoid such kind of numerical
instability, Schoenberg introduced in 1946 the technique of spline interpolation [2, 3]. Instead
of approximating a curve by a single polynomial of high degree, this technique uses a set of
polynomial pieces of lower degree called spline functions. In this way, the graph of a function
may be numerically stable. Among a great variety of spline functions, those ones whose
parameters have geometrical meanings, such as cardinal splines, B-splines, Bézier splines [4]
and Beta splines [5], have gained popularity among geometrical designers. However, from
the designer’s point of view, the resulting curve may still not be enough fair. Therefore,
additional conditions should be established.

Although the definition of fairness is subjective there are some attempts to give quan-
titative measure of fairness. According to Su and Liu [6] a plane curve is called fair if the
following three conditions are satisfied:
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16



e the curve has GC%-continuity (concept of smoothness);
e there are no unwanted inflection-points on the curve; and
e its curvature varies in an even manner.

In practice, the proposed solutions for constructing a fair curve from a set of points
only minimize the number of curvature extrema. What they consider as fairness means
in fact smoothness. The subjective concept of "unwanted” is understood as no inflection
point and "even” as curvature varying almost linearly between two subsequent points. The
solutions are divided into two categories: the ones that modify simultaneously the whole data
points and the ones that modify some of them. Least-square, energy and bounce method
are examples of methods that involve all the data points, while cardinal spline and discrete
curvature methods can be regarded as point-choosing ones. Both classes of solutions have
been sucessfully applied in car, aircraft and shipbuilding industries [6].

However, we argue whether a fair shape implies necessarily that the resulting curve must
not be undulant, since the notion of fairness is extremely subjective and imprecise. Suppose
a set of points with a zigzag distribution is given and that the designer desires to have a fair
curve passing through them. It would be odd to generate a curve without this zigzag shape,
which the existing techniques would do, since they do not provide any mean for the designer
to adapt the pre-defined objective-function regarding to his requirement. This leads us to
look for a new technique that can generate, from the designer’s point of view, a fair shape
passing through a given set of points, no matter how odd and ambiguous is his concept of
fairness. :

Formally our interpolation problem can be stated as follows:

"Given a set of n points and the "grade of fairness” of the plane curve that passes
through them ((zo, sharper), (z1, smoother),..., (¢, sharper)), find an interpolatory plane
open curve.”

A proposal to solve this problem is divided in two sub-problems:

e the first estimation of the curve shape as a function of the given data; and

e the fine interactive adjustments of the curve shape to conform to the designer’s intuitive
fairness requirement.

For the first estimation it is interesting to use a curve representation that includes the
curvature as its parameter, since curvature reflects directly the "smoothness behaviour” of a
curve at a point. One way to implement the fine interactive adjustments of the curve shape
in an ambiguous fashion seems to be to apply the techniques provided by fuzzy sets. Finally,
to ensure a perfect matching of these two parts it must be decided which parameters of the
curve representation should be fuzzyfied to produce more intuitive effects.

This paper is organized as follows. Section 2 presents some basic concepts necessary for
understanding our method. Section 3 gives a solution for the interpolation sub-problem.
Section 4 discusses a fuzzy fashion for handling the. interactive adjustment sub-problem.
Section 5 describes our implementation approach. Sections 6 shows some obtained results
and Section 7 draws some conclusions.
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2 Basic concepts

This section briefly presents some fundamentals about intrinsic geometrical properties of a
curve and the use of fuzzy sets to represent inexact concepts.

2.1 Geometrical properties

In this section the useful intrinsic geometrical concepts for understanding the paper are
summarized [7].

e Curvature: expresses how much the curve "bends”. Formally, let a : I — R? be a
curve parametrized by the arc length s € I. The number | d—aa-(’ﬂ |= k(s) is called the
curvature of a at s.

Evolvent

....... /o Osculating circle

Figure 1: Intrinsic geometrical caracteristics of a curve

e Radius of curvature: is the inverse R = } of the curvature (Figure 1).

e Osculating circle: is a second degree approximation of a curve, as the tangent is a
first degree approximation. Formally, let a : I — R? be a curve parametrized by the
arc length s, with curvature k(s) # 0, s € I. The limit position of the circle passing
through a(s), a(s + k1), a(s + ks) when hy, hy — 0 is the osculating circle at s, the
center of which is on the line that supports the normal vector n(s) and the radius of
which is the radius of curvature k(l—a) (Figure 1).

e Evolute: is the geometrical loci of the osculating circles centers. Formally, let o : I —
R? be a regular parametrized plane curve (arbitrary parameter t), and define normal
vector n = n(t) and curvature k = k(t). Assume that k(t) # 0, t € I. In this situation,
the curve B(t) = aft) + %—%ﬁn(t),t € I, is called the evolute of a. The curve a is
called the evolvent of B (Figure 1). Pogorelov [8] states that it is possible to obtain
the evolvent a from its evolute B along with one point of the evolvent. This may be
done as stated (Figure 1):
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1. the evolute tangents are evolvent normals. So, given an evolute, a family of
evolvents is determined; and

2. given a point of the evolvent, we determine within a family which is the desired
evolvent. '

2.2 Fuzzy sets

Fuzzyness is a type of imprecision inherent to certain classes which do not have defined
boundaries. These classes, the fuzzy sets, arise when we look for describing ambiguity,
vagueness and ambivalence in mathematical models of empirical phenomena. In particular,
the computer simulations of systems of high cardinality, so usual in real world, require some
special non-classical mathematical formulation to deal with the imprecise descriptions. Fuzzy
sets, which are classes that admits the possibility of partial membership in them, seem to
be an adequate tool for dealing with such kind of problems [9].

Let X denote a space of objects. A fuzzy set A in X is a set of ordered pairs A =
{(z, xa(z))|z € X and xa(z) € [0,1]}, with x4(x) being the "grade of membership of z in
A”. In this work we assume, for simplicity, as in [10], that x4(z) is a number in the interval
[0,1], instead of considering its values varying through a more generic algebraic structure
[9, 11]). Hence, questions like z € X may have answers different from yes (x4(z) = 1, that
is, fullmembership of z) or no (xa(z) = 0, that is, nonmembership of z).

The operations OR (V), AND (A) and NOT (-) between fuzzy subsets A and B on X
may be defined in many ways. We adopt the following definitions for these operations (9]:

¢ OR: AU B = {(z, Maz(xa(z), xa(z)))|lz € X};
e AND: AN B = {(z, Min(x4(z), x8(z)))|z € X}; and
o NOT: ~A = {(z,1 — xa(z))|z € X}.

As an example, one could define the concept big radius of curvature as a fuzzy set A.
The following classifications of radii of curvature z were to be assumed:

e radii of curvature in the range of 0 to 100 are not big, so they have a null membership
to big radius of curvature concept (xa(z) =0,0 < z < 100);

e radii of curvature from 100 to 200 are more or less big, so they have a membership to big
radius of curvature concept that varies linearly from null to unit (xa(z) = ’;380, 100 <

z < 200); and

e radii of curvature above 200 are big, so they have a unitary membership to big radius
of curvature concept (xa(z) = 1,z > 200).

Figure 2 shows the fuzzy set that describes the big radius of curvature concept.

We observe that the grade of membership x4(z) of an object z in A can be interpreted
as the degree of compatibility of the predicate associated with A and the object z. It is also
possible to interpret x4(z) as the degree of possibility of z being the value of a parameter
fuzzyly restricted to A.
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grade of membership of xin A

x=angle(degrees)

Figure 2: Big radius of curvature concept represented as a fuzzy set

3 Interpolation problem

Let S be the designer given point sequence together with the specification of "how fair” the
plane curve that passes through them (grade of ”local fairness”) should be. The desired
curve C to interpolate the points in S is looked for.

The grade of local fairness could be measured by the use of radius of curvature. Greater
radii imply smoother shape at a point and lower radii, sharper shape. Furthermore, it is
easier to adjust the curve shape by simply modifying locally the radius of curvature as
shown in Section 4. However, it would still be necessary to find a way to model the global
fairness concept of the designer. As the evolute represents the relationship among the radii
of curvature, it would be chosen to model the global fairness concept of the designer!

According to Section 2, if the equation of a curve is given, then the evolute of the curve
can be determined. Conversely, having the evolute and one point of a curve, one is able to
detemine the curve. But the evolute of a curve is only known when the curve is known. So,
what should be done to get a fair curve C having been given only some of its points and a
fuzzy local fairness behavior of the curve?

Our approach is to construct the curve C from an estimated evolute, namely pseudo-
evolute (PE), instead of the evolute itself. The estimation of PE is based on the designer
given grade of local fairness. From PE the curve C is obtained by determining the radii-
vectors, which are represented by the pair (magnitude,direction). The radii-vectors have the
same direction of the PE tangents as the radii of curvature of a curve have the direction
of its evolute tangents. So, to obtain C from PE is geometrically analogous to obtain any
curve from its evolute. Notice that PE supports the curve global fairness concept, while the
radius-vector expresses the curve local fairness concept.

In Section 5.1 an approach to the determination of directions and magnitudes of radii-
vectors is explained.
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4 Parameter fuzzyfication

In our case, as we reduce our problem stated in Section 1 to the construction of a fair
curve from PE, which is estimated from the radii-vectors of points in S, we choose these
radii-vectors as the parameter to be fuzzyfied.

The magnitude of each radius-vector is computed from a designer given SMOOTHER
/ SHARPER relationship related to its preceding radius-vector. This means that only the
relative radius-vector values matter. Since the relationships between the magnitudes of the
radii-vectors are specified by the designer (to convey his expectation of relative fairness
behaviour) at the points of S, only their directions can vary freely. In order to reduce the
search-space for ”good” radius-vector directions, we fuzzyfy the fair concept by assigning to
these directions a grade of membership.

For assigning a grade of membership to the chosen radius-vector directions we have
established the so-called ”danger zones” to avoid certain non-fairness behaviours. These
danger zones allow us to formalize and measure effectively the designer concept of fairness.
From them it is possible to devise the range of ”values” that the radius-vector directions
must not or should assume. Expressing in terms of grade of membership, we say that the
values of the radius-vector directions within the danger zones have null or minimal grade
of membership to the fair concept. The choice of a "good” radius-vector from the defined
fuzzy set can be performed by a defuzzyfication procedure as explained in details in [12].

An approach for the fuzzyfication is given in Section 5.2.

5 Implementation

5.1 Interpolation solution

The main idea is to consider C as a set of pieces C; and to use the evolvent construction to
determine each of these pieces. Initially a radius-vector is estimated and associated with each
point of S. With these radii-vectors and the points in S, PE is estimated and C determined
from the radii-vectors. The radius-vector directions are given by the PE tangents and their
magnitudes are calculated from the linear interpolation of two subsequent estimated radii-
vectors for the points in S.

PE is represented by a set of Bézier curves. We decided for Bézier curves, because some
geometrical caracteristics of these curves are easy to be controled, and for cubic ones, for
the fact that they provide some grades of freedom in the manipulation without additional
complexities.

Based on the N points of S the N — 1 Bézier polygons B;, 1 < ¢ < N —1, are computed,
each one associated to a piece C; of the curve C. In order to get a “reasonable” first
estimation of PE, the polygon B; should satisfy the two requirements [12].

e Its endpoint positions and tangents should coincide with the radius-vector magnitudes
and directions of the C; end-points.
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e Let P,, P,, P, be three consecutive points in S; C,, Cj be the pieces of C, respectively,
between points P,,P, and P,,Py; R,, R,, R; be the radii-vectors associated, respectively,
to P,, P,, P,; and By, B;, B3 and By the four control points of the Bézier polygon
associated to C,. These control points must satisfy:

- B; =Po+a,~§:,a,- #0,7=1,2; and
- B;=P, + R, #£0,i =3,4.

The values of o; are chosen in such a way that the convexity of the Bézier polygon is
ensured.

5.2 Adjustment solution

For the implementation of radius-vector directions it is used a radius-vector angles rela-
tive to a reference line, which is ranged from 0 to 180 degrees. Without loss of generality
this reference line is the x-axis of the adopted coordinate system. The range [0,180] may
be used, instead of [0,360], because only the direction of the radius-vector is necessary in
the determination of Bézier polygon, for each C;. The orientation of the radii-vectors is
irrelevant.

The danger zones, within which a radius-vector angle should not be, are determined from
some geometrical properties that the cubic Bézier curve should satisfy as [12]:

e non-colinear condition: E; # Bi(P, — P,) ,8; # 0, 1 = a,b. If this condition fails, the
Bézier polygon will degenerate to a straight line;

e non-parallel condition: E: # */,-(}—Z:-) i # 0, i = a,b. If this condition fails, the
Bézier polygon will have: | B; — B; |<| B; — B3 | and/or | Bs — By |<| B; — B |,
causing oscilations in C;. If oscilations are desired, this condition can be exploited to
get desirable shapes; and

e non-intersection condition: I?o # 64(Po—P,) +eb(]_?,2) ,E # 8y(P>— P) +ea(}_2;),6,-,e,~ >
0, = a,b. This condition controls concavity changes and oscilations. It is indeed a
combination of non-parallel and non-colinear conditions.

Given a relationship GREATER/LOWER among R,, R, and Rj, which corresponds to
the SMOOTHER/SHARPER relationship given by the designer, two situations can occur:

e the line connecting the intersection point I; between radii-vectors R, and R, and the
intersection point I, between radii-vectors R, and R crosses the convex hull of S an
odd number of times: it is desired when inflection points and changes in concavity

should be avoided; and
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e the line connecting the intersection point I; between radii-vectors R, and R, and the
intersection point I, between radii-vectors R, and R crosses the convex hull of S an
even number of times: it is desired when looking for inflection points and changes in
concavity.

This analysis about the intersection points supports the identification, for each radius-
vector, its danger zones from which the fuzzy sets on radius-vector angles are determined.
Our deffuzyfication method is based on the operations on these fuzzy sets.

6 Results

Figure 3 shows a curve passing through three given points (marked with cross), its corre-
sponding estimated evolute PE (two cubic Bézier curves) and the radii-vectors of the given
interpolated points (drawn in red line). The given interpolated points, the radius-vector
angles and o; are given in the following table.

(x,5) Radius-vector angle (rad) | a1 | a2 az | g
(550,450) 0.35 0.50 { 0.25 | 0.50 | 0.25
(200,150) 1.17 0.50 | 0.25 | 0.50 | 0.25
(100,440) 1.30 0.50 [ 0.25 | 0.50 | 0.25

FE SUAYE

Figure 3: A fair curve passing through three points.

For the sake of clarity, the estimated evolutes PE and the radii-vectors will be omitted
in the subsequent figures.

Figure 4 shows a curve obtained from six points. Notice the ”zigzag” distribution of
these points and the inflection points that our algorithm introduced to yield the "best”
shape, regarding to our fair concept.

Figure 5 interpolates the same points of Figure 4. However, the shape desired in Figure
5 was one with more undulations.

Observe that different fair concepts lead to different "the best” fair curves.
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Figure 5: A fair curve with the fair concept that undulations are allowed.

7 Conclusions

An approach for the interpolation of a given sequence of points is shown. Differing from the
classical approaches, our method presents two new flavours:

e it tries to capture "exactly” the .fair concept of the designer by using non-classical
foundations; and

e it is interactive by using easily manipulatable gec?metrica.l entities, so the designer may
feedback his fine adjustments on the successively generated curves until the desired
curve shape is achieved.

However, some questions are still open and we intend to work on them further:
e using the quadratic Bézier curves instead of cubic ones may be a good choice to PE;
e extending the method to the closed curves may be useful;

o fuzzyfying the o; parameters may be a good way to model the designer way of changing
the radius-vector magnitudes locally;
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e improving the method to make better the first estimation of the radius-vector directions
may lead to a faster convergence to the desired curve; and

¢ making a comparison between our method and the classical ones may give a better
evaluation of our results.
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