GRAPHICAL REPRESENTATION OF RULES
IN AN OBJECT-ORIENTED ENVIRONMENT

Kenneth Messa
Bogdan Czejdo
Erick Villalobos

Department of Mathematics and Computer Science
Loyola University
New Orleans, LA

ABSTRACT

In this paper a graphical representation of rules is proposed. The graphical
rules are formulated based on Extended Entity-Relationship (EER) diagrams.
Such diagrams are compiled into an object-oriented language code that is
included as a component of the developed software system. Other components
can be directly coded in an object-oriented language or generated using other
graphical tools. We identify and discuss two types of graphical rules: class
graphical rules and instance graphical rules. The syntax and semantics of both
types of graphical rules are discussed. The graphical rules can contain object-
oriented code in addition to graphical diagrams. The methods of integration of
diagrams and object-oriented code are described.

1. INTRODUCTION

In the process of development of many software systems, including
interactive graphical systems [2], experiments with a variety of working models
are generally suggested. Rapid prototyping can be very helpful in the
development process of such systems [14]. Rule-based programming [1, 5, 6,
12] is considered a good candidate for rapid prototyping because of the
relatively simple procedure of inserting and deleting rules for the prototyped
system. At the same time, existing rule-based programming languages do not
support encapsulation and modularity and, as a result, it seems quite difficult to
develop large rule-based systems [13]. One way to take significant advantage of
rule-based programming is to integrate the rule-based system with an object-
oriented language [10] or database language [7].

This research was partially supported by NSF grant # CDA-9300071

476

In this paper we describe an object-oriented environment that includes
database primitives and show how graphical rules can be integrated into such
an environment. The approach is an extension of our previous work [3, 4, 8, 9],
where we proposed the use of graphical specifications based on an extended
Entity-Relationship (EER) model and showed how such graphical specifications
can be described in an object-oriented environment.

We identify and discuss two types of graphical rules: class graphical rules
and instance graphical rules. Specification of each type of graphical rule can
contain both graphical diagrams and object-oriented code. The syntax of
graphical diagrams is defined by an EER meta-model. The semantics of
graphical diagrams is described by the graphical rules themselves (meta-rules).
A Smalitalk database library is assumed for the parts requiring direct object-
oriented code.

The paper is organized as follows. In the next section, the description of two
types of graphical rules is provided. In Section 3 the processing of graphical
rules is discussed. In Section 4 the syntax of graphical rules is defined using an
EER meta-model. The semantics of graphical rules is discussed in Section 5.
The Summary presents some conclusions.

2. CLASS AND INSTANCE GRAPHICAL RULES

In this section we describe class and instance graphical rules. We will give
an example of each type of graphical rule and describe how it is processed.

A class rule is a rule that is applied to a class and consists of three
elements: base class name (CN), left hand side (LHS) and right hand side
(RHS). The LHS consists of a non-empty sequence of condition components.
Each condition component is either a condition diagram (CD) or condition text
(CT). The CD and CT components can share the same variables. The LHS
component returns a single boolean value which determines if the RHS is to be
executed. The RHS component describes actions that are executed when the
rule is fired. These actions consist of a sequence of action components. Each
action component is either an action diagram (AD) or action text (AT). In order
to integrate efficiently these components, we allow them to share the same
variables.

An instance rule consists of three components: base class name (CN), left
hand side (LHS) and right hand side (RHS). The structure of the LHS of an
instance rule is the same as the structure of the LHS of a class rule. The LHS
component of an instance rule returns a boolean value for each object in the
CN class. This boolean value determines if the RHS is to be executed for a
particular object. The RHS component for an instance rule is also similar to the
RHS component of a class rule. The only difference is that here it is executed for
each applicable object.

Both condition diagrams and action diagrams are based on Extended
Entity-Relationship (EER) diagrams [3, 9]. As an example let us consider the
data processing system for student registration that includes two entity sets
Student and Section, and two relationship sets Enrolled and Waitlisted.

477

The entity sets are represented graphically, as in typical ER diagrams, by a
rectangle containing the name of that entity set. The relationship sets are
represented graphically by a diamond box containing the name of that
relationship set.

The selection conditions are indicated by the condition box. Conditions can
be of the following type: attribute condition and set condition. Attribute
conditions are represented graphically by attaching the condition box to an
attribute icon. Set conditions are represented graphically by attaching the
condition box to an entity set icon.

Variables can be of the following type: attribute variable, and set variable.
Attribute variables are represented graphically by attaching the variable box to
an attribute icon. Set variables are represented graphically by attaching the
variable box to an entity set icon.

Let us consider a rule:

Rule 1: "If there are less than 5 computer science majors, then change their
major to ‘Math' and list their names”.

This is the class rule because the LHS component is based on a class and
can be rewritten as "If there are less than 5 computer science majors in the
class Student...". The LHS components can be represented in Figure 1A
(condition diagram) and Figure 1B (condition text). In the condition diagram, the
set of students who satisfy the condition is selected and the result is stored in
the variable labeled VARa.

(major)| ="CompSci’)

VARa

Student

Figure 1A. Condition Diagram for Rule 1.

The boolean value is computed for the condition text by comparing the count of
VARa with the number 5. The operator count is defined for all sets of objects.

AVARa count <5

Figure 1B. Condition Text for Rule 1.

478

The RHS of the rule 1 can be specified by an action diagram in Figure 1C
and action text in Figure 1D. In the action diagram, all students who are
currently Computer Science majors are identified, their names are stored in the
set variable VAR1 and the property 'major' takes the new value 'Math'. In the
action text the appropriate I/O operations are performed, i.e. the names of
identified students are printed.

(major)| ="CompSci’ ><:= ‘Math’
(name){ VAR1)

Student

Figure 1C. Action Diagram for Rule 1.
VART1 list.

Figure 1D. Action Text for Rule 1.
Let us consider another rule:

Rule 2: "If any section has at most 3 students on the waiting list, then change
their status to enrolled for that same section” .

This is an instance rule because the LHS describes a condition for each
object in the class Section. The LHS components can be represented in Figure
2A (condition diagram) and Figure 2B (condition text). In the condition diagram,
the set of students who are on the waiting list for a given course is selected and
the result is stored in the variable labeled VARa.

The boolean value is computed using the condition text by comparing the
count of VARa with the number 3.

479

{ VARa)

Section Student

Figure 2A. Condition Diagram for Rule 2.

AV ARa count <=3

Figure 2B. Condition Text for Rule 2

The RHS of the rule 2 can be specified by two action diagrams in Figure 2C
and 2D. In the first action diagram, all students who are currently on the waitlist
for the given section are identified, placed in VAR1 and then deleted from
waitlist. The deletion is indicated by filling the icon of the relationship set
WaitListed with characters "D". In the second action diagram, each student in
VARI is enrolled into particular section The insertion is indicated by filling the
icon of the relationship set Enrolied with characters "I". Since the RHS of this
rule can be specified completely by the action diagrams, there is no action text
for this rule.

CVARL D

Section Student

Figure 2C. Action Diagram 1 for Rule 2.

480

in VAR1)

T Enrolled Student

[

Section

Figure 2D. Action Diagram 2 for Rule 2.

3. PROCESSING OF GRAPHICAL RULES

The graphical rules can be translated into object-oriented code (e.g. into
Smalltalk code) and executed using an inference engine. In order to simplify the
translation we will assume that the object-oriented programming environment
will contain a library of database abstractions. In this section we will shortly
describe this library. Then we will show how graphical rules are translated
using Rules 1 and 2 as examples.

3.1 Library of Database Abstractions

The Library of Object-oriented Database Abstractions (LODA) was written
by us in the object-oriented language Smalltalk [10], but can be easily
expressed in other object-oriented programming languages. The library is
based on Extended Entity-Relationship model abstractions.

Specification of queries in an EER database involves use of the
selectWhere, selectAll, relate and relateUsing operators. The selectWhere
message selects those objects from the set that satisfy some condition. For
instance, in order to select all faculty whose degree is PhD, we might invoke the
message

Faculty selectWhere:#('degree' '=' 'PhD').
This operator builds a new set from an existing one with a (usually) smaller
collection of objects.

The selectAll message selects all of the objects from the set. For instance,
we can select all faculty by invoking the message

Faculty selectAll.

This operator also builds a new set from an existing one.
In order to relate objects using a specific relationship set, one specifies the

481

entity set and the connecting relationship set. For instance, we may want to
relate the entities in Faculty using the relationship Teaches to obtain a subset of
Student. We would call this operation by:

Faculty relateUsing:Teaches.

Another relationship is defined using the subclass/superclass relationship
between classes. The intersect: operator allows one to obtain the set of
entities that are members of a subclass. For example, if TenuredFaculty is a
subclass of Faculty, and if setOfFaculty is a set of Faculty entities, then the
operator below returns the set of tenured faculty that are in setOfFaculty:

setOfFaculty intersect:TenuredFaculty.

To embed a set of entities from the subclass into the parent class, a simple
assignment operator is used.

In order to retrieve the values of an attribute, one specifies the entity and the
attribute name. For instance, we may want to retrieve the value of 'degree’ of an
entity aFaculty by the following operation:

aFaculty degree.

This operation can also be applied to an entity set in a "projection” operation.
For instance, in order to retrieve the value of 'name’ of each entity in the set
setOfFaculty, we invoke the following:

setOfFaculty name.

In addition to actual attributes, there are certain additional "calculated”
attributes that are available for entity sets. For example, one may determine the
number of entities of the particular entity set, setOfFaculty using the operator
count as in:

setOfFaculty count.

This operator may be invoked for the entire entity set as well.

We also need the facility to insert and delete data. In our object-oriented
system, in order to insert values into an entity set, the messages insertValues:
and deleteWhere: are used to insert and delete data respectively.

The changeAll:with: operator updates the value of the indicated attribute
and might be invoked as in the example:

setOfFaculty changeAll:'degree' with:'PhD’'.

Similar operations are available for the relationship sets.

482

Operations are also available to create and destroy entity sets as part of a
database. For creation, there is an operation createEntitySet:withAttributes:
that creates an entity set with particular attributes and adds it to the database
and the message to remove an entity set from a database is given by
dropEntitySet.. There also are messages to create and destroy relationship
sets. All of the operators are described in more detail in [8].

3.2 Translation of Graphical Rules

Graphical diagrams that are part of graphical rules are translated into
object-oriented code that uses the library of database abstractions. As an
example of this conversion, let us consider the condition diagram of the
graphical rule in Figure 1A, which can be converted and appended to the
condition text giving as a result the following:

setOfStudent :=

student selectWhere:#('major' '=' 'CompSci').
VARa := setOfStudent.
AVARa count< 5

The action diagram of this rule (from Figure 1C) can be converted and
appended to the action text giving as a result the following:

setOfStudent :=
student selectWhere:#('major' '=' 'CompSci').
setOfStudent changeAll:'major' with:'Math’'.
VAR1 := setOfStudent name.
VAR1 list.

As a second example, let us consider the condition diagram of the graphical
rule in Figure 2A, which can be converted and appended to the condition text
giving as a result the following:

setOfstudent := object relateUsing:WaitListed.
VARa := setOfStudent.
AVARa count <= 3

In this code, object refers to each object in Section. Sections that satisfy the
LHS will be passed to the RHS by the inference engine, as described in the
next section.

The action diagram of this rule (from Figures 2C and 2D) can be converted,
giving as a result the following:

setOfStudent := object relateUsing:Waitlisted.

483

VAR1 := setOfStudent.
Waitlisted delete:object and:setOfStudent.
setOfsStudent := Student select:VAR1.
Enrolled newWith:object and:setOfStudent.

3.3 Inference Engine

The graphical rules need to be processed in a way similar to other rule-
based systems. Here we describe a simplified inference engine that shows the
basic method for rules execution. More advanced inference engines can also
be used, such as the one described in [5].

The operator apply: determines the application of the rules. This operator
applies the rules in a pre-determined order until no left hand side of any rule is
satisfied. The apply: operator also checks that each rule is not executed twice
in the same environment.

Rules apply:[:aRule| aRule fire]

In the case of a class rule, the fire operator can be defined as follows:

aRule perform: (aRule 1lhs) with: (aRule className) ifTrue: [
self perform: (aRule rhs) with: (aRule className)].

In this definition aRule represents the rule that is being fired. The message /hs
returns the LHS component of the rule, the message className returns the
class name of the rule and rhs returns the RHS component.

In the case of an instance rule, the operator fire is defined as:

aRule className do: [object|
aRule perform: (aRule 1hs) with:object ifTrue:|[
aRule perform: (aRule rhs) with:object.]].

This fire operator enumerates through all objects of the base class (className)
and executes the RHS for those objects where the LHS evaluates to true.

" 4. SUMMARY

In this paper a graphical representation of rules is proposed. The graphical
rules are formulated based on Extended Entity-Relationship (EER) diagrams.
Such diagrams are compiled into an object-oriented language code that is
included as a component of the developed software system. _

We identified and discussed two types of graphical rules: class graphical
rules and instance graphical rules. The syntax and semantics of both types of
graphical rules were discussed. We allow both graphical diagrams and object-
oriented code in each part of the graphical rule. This way, we significantly
alleviate the mismatch between the rule-based programming paradigm and the

object-oriented paradigm.

484

5. REFERENCES

1. L. Browson, et al. Programming Expert Systems in OPS5--An Introduction
to Rule-Based Programming, Addison-Wesley, Reading, MA, 1985.

2. S. Chang (ed). Visual Languages, Plenum Press, NY, 1986.

3. B. Czejdo, R. Elmasri, M. Rusinkiewicz and D. Embley. "A Graphical Data
Manipulation Language for an Extended Entity-Relationship Model", /[EEE
Computer, March 1990.

4. B. Czejdo and K. Messa. "Generating Smalltalk Code From Graphical
Operations and Rules", Proceedings of the IEEE Symposium on Visual
Languages, Bergen, Norway, 1993.

5. C. Eick. "Activation pattern controlled rules: towards the integration of data-

driven and command-driven programming”, Applied Intelligence, 2(1):75-91,
1992.

6. J. Giarratano and G. Riley. ExpertSystems -- Principles and Programming,
PWS-Kent, Boston, 1989.

7. A. Hsu and T. Imielinski. "Integrity checking for multiple updates”,
Proceedings of the ACM-SIGMOD Conference on Management of Data,
Austin, 1985, pp. 152-164.

8. K. Messa and B. Czejdo. "Entity-Relationship Model in Object Oriented
Languages and its Applications”, Proceedings of the 1992 Annual
Conference of the International Association For Computer Information
Systems, New Orleans, 1992, pp. 301-311.

9. K. Messa and B. Czejdo. "Generating Database Applications in Smalltalk
from an Extended Entity-Relationship Model", Proceedings of the 17th Annual
Energy-sources Technology Conference, New Orleans, January, 1994.

10. D. Miranker, et al. "The C++ embeddable rule system”, Proceedings of the
International Conference on Tools for Al, San Jose, November 1991, pp. 386-
11. Objectworks\Smalltalk Release 4.1. User's Guide, ParcPlace Systems,
Sunnyvale, California, 1992.

12. N. Rowe. Artificial Intelligence Through PROLOG, Prentice Hall,
Englewood Cliffs, NJ, 1988.

13. E. Soloway, J. Bachant and J. Jensen. "Accessing the maintainability of
XCON-in-RIME coping with problems of very large rule-bases”, Proceedings of
the Sixth National Conference on Artificial Intelligence, Seattle, 1987, pp. 824-
829.

14. M.M. Tanik and R.T. Yeh. "Rapid Prototyping in Software Development’,
Computer, May, 1989.

- 48§

