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ABSTRACT
In the paper, we discuss the visualization of multidimensional vectors taking into account the learning flow of

the self-organizing neural network. A new algorithm realizing a combination of the self-organizing map

(SOM) and Sammon’s mapping has been proposed. It takes into account the intermediate learning results of

the SOM. The experiments have showed that the algorithm gives lower mean projection errors as compared

with a consequent application of the SOM and Sammon’s mapping. This is the essential advantage of the new

algorithm, i.e. we succeed to eliminate the influence of the “magic factor” α  ( 10 ≤<α ) on Sammon’s

mapping results. For larger values of α  ( 1>α ), the mean projection error grows. However, in this case the

new algorithm operates more stable and gives smaller values of the mean projection error.

Keywords
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1. INTRODUCTION
Visualization of multidimensional data is a

complicated problem followed by extensive

researches. There exist a lot of methods that can be

used for reducing the dimensionality of data, and,

particularly, for visualizing the n-dimensional

vectors. A deep review of the methods is performed,

e.g., in [Kas97a] and [Koh01a]. However there is no

universal method. The self-organizing map

[Koh01a] and Sammon’s algorithm (mapping,

projection) [Sam69a] are the methods often used for

the visaulization of multidimensional vectors. When

a multidimensional space is projected onto a plane,

the projection errors are inevitable. It is necessary to

create methods that minimize these errors or that

allow to increase the comprehension of

multidimensional data. It is shown in [Dze01a]

experimentally that a combination of the SOM and

Sammon’s mapping is an effective method of

visualization. The so-called vectors-winners,

obtained after neural network training, are analyzed

and visualized here by using Sammon’s algorithm.

However, the results of Sammon’s algorithm are

dependent on the initial data. In this paper, we have

proposed a new combination of the SOM and

Sammon’s mapping. Here the multidimensional data

are projected onto the plane by using Sammon’s

algorithm, taking into account the process of SOM

training. The experiments have showed that the new

algorithm gives lower mean Sammon’s projection

errors as compared with the applicaton of Sammon’s

algorithm after the SOM training is complete.

Moreover, the dependance of Sammon’s projection

error on the so-called “magic factor” has been

reduced.

2. BASIC ALGORITHMS
Sammon’s algorithm. Sammon’s projection

[Sam69a] is a nonlinear projection method to map a

high-dimensional space onto a space of lower

dimensionality. In our case, the initial

dimensionality is n, and the resulting one is 2.

Let us have vectors iX = ),,...,,( 21 inii xxx  si ,...,1=

from an n-dimensional space 
n

R . The pending
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problem is to visualize (get the projection) these n-

dimensional vectors siX i ,...,1, =  onto the plane

2
R . Two-dimensional vectors 2

21 ,...,, RYYY s ∈  will

correspond to them. Here iY = ),,( 21 ii yy  si ,...,1= .

Denote the distance between the vectors iX  and

jX  by *
ijd , and the distance between the

corresponding vectors in the projected space ( iY  and

jY ) by ijd . Sammon’s algorithm tries to minimize

the distortion of projection:
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The coordinates iky , 2,1,,...,1 == ksi  of the two-

dimensional vectors 2RYi ∈  are computed by the

iteration formula:
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Here 'm  denotes the iteration, α  is named a “magic

factor”, because the error of projection depends on it.

In fact, the error depends both on α  and the initial

values 00
2

0
1 ,...,, sYYY  of vectors sYYY ,...,, 21 . It is

found completely experimentally that ]4.0,3.0[∈α

guarantees fairly good convergence [Koh01a].

a)

b)

c)

Figure 1. Three scenarios of the projecting multidimensional vectors onto the plane

Self-organizing map (SOM). The self-organizing

map (SOM) [Koh01a] is a class of neural networks

that are trained in an unsupervised manner, using

competitive learning. It is a well-known method for

mapping a high-dimensional space onto a low-

dimensional one. We present here some general

details on the SOM. We consider here a mapping

onto a two-dimensional grid of neurons. Let
n

s RXX ∈,...,1  be a set of n-dimensional vectors for

mapping. Usually, the neurons are connected to each

other via a rectangular or hexagonal topology. Let us

consider an example of the rectangular case, because

all ideas can be easily extended to the hexagonal

one. The rectangular SOM is a two-dimensional

array of neurons },...,1,,...,1,{ yxij kjkimM === .

Here xk  is the number of rows, and yk  is the

number of columns. The total number of neurons is

equal to xk × yk . All neurons adjacent to a given

neuron can be defined as its neighbours of a first

order, then the neurons adjacent to a first-order

neighbour, excluding those already considered, as

neighbours of a second order, etc. The dimension of
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the vectors, that will be presented as inputs to train

the network, is n. Each component of the input

vector is connected to every individual neuron. Thus,

there is a connection between the neuron of the

network and every component of the input vector.

The weights of these connections form an n-

dimensional synaptic weight vector (the codebook

vector, also called a reference, model, or parameter

vector [Koh01a]). Thus, any neuron is entirely

defined by its location on the grid (the number of

row i and column j) and by the codebook vector, i.e.,

we can consider a neuron as an n-dimensional vector
nn

ijijijij Rmmmm ∈= ),...,,( 21 . In this way, each vector

(neuron) ijm  represents a part of 
n

R .

The learning starts from the vectors ijm  initialized

randomly (other ways of initializing the vectors ijm

are possible, too). At each learning step, an input

vector X  is drawn from the training set

},...,{ 1 sXX  and passed to the neural network. The

Euclidean distance from this input vector to each

vector ijm  is calculated and the vector (neuron)

},...,1,,...,1,{ yxijc kjkimm ==∈  with the minimal

Euclidean distance to X  is designated as a winner.

Denote the row, where cm  is located, by ci , and the

column by cj , i.e., c is a combination of two

numbers: ci  and cj . The components of the vector

ijm  are adapted according to the rule

←ijm )( ij
c
ijij mXhm −+ , where 

c
ijh  is the learning

rate, which is maximal for the winning neuron, and

decreases with an increase in the neighbourhood

order and learning steps.

Let us introduce a term “learning epoch”. The epoch

consists of s learning steps: the input vectors from

1X  to sX  are passed to the neural network in

consecutive or random order. The consecutive order

was used in [Dze01a]. Both the orders were

examined in [Dze01b]. In this paper we use the

random order, because we try to eliminate the

influence of numeration of the input vectors on the

learning process. The whole learning process

consists of v epochs.

After a large number of learning steps, the network

has been organized and n-dimensional input vectors

sXX ,...,1  have been mapped – each input vector is

related to the nearest neuron, i.e., the vectors are

distributed among the elements of the map during

training. Some elements of the map may remain

unrelated with any vector from },...,{ 1 sXX , but

there may occur elements related with some vectors.

Using the SOM-based approach above we can draw

a table with cells corresponding to the neurons. The

cells corresponding to the neurons-winners are filled

with the numbers of vectors sXX ,...,1 . Some cells

may remain empty. One can decide visually on the

distribution of vectors sXX ,...,1  in the n-

dimensional space 
n

R  in accordance with their

distribution among the cells of the table.

Combining Sammon’s mapping with the self-

organizing maps. The way of integration of

Sammon’s mapping and the SOM is presented in

[Dze01a]. The self-organizing map provides

structured information about the set of the analysed

vectors: several elements (neurons) of the two-

dimensional rectangular grid are activated (become

winners), while the remaining elements are not

activated. The activated elements of the grid may be

considered as points on the plane. The number of

row and column characterizes any of these elements,

i.e., the location of these elements is fixed on the

plane by the nodes of a rectangular grid. However,

the elements are characterized by n-dimensional

vectors, too. A natural idea arises to apply the

distance-preserving projection method to additional

mapping of vectors-winners rZZZ ,...,,
21

,

corresponding to the neurons-winners, in the SOM

[Kas97a]. Sammon’s mapping may be used for such

purposes. The combined algorithm is as follows: all

input vectors sXX ,...,1  are first processed using the

SOM; then the vectors-winners, whose number r is

less or equal to s, are displayed using Sammon’s

mapping. In [Dze01a] such a combination of

mapping methods has been examined and grounded

experimentally by comparing the results of

Sammon’s mapping of the vectors, that correspond

to some parameters characterized by their correlation

matrix, and Sammon’s mapping of the vectors-

winners in the SOM.

Therefore, two scenarios of visualizing the n-

dimensional vectors were analysed in [Dze01a] and

[Dze01b]. They are given in Figures 1a and 1b: the

original Sammon’s algorithm and its consequent

combination with the SOM.

The third scenario is presented in Figure 1c. It is a

new combination of the self-organizing map and

Sammon’s algorithm. The experiments have showed

that namely this combination of SOM and

Sammon’s mapping is very good in search for a

more precise projection of multidimensional vectors



in the sense of criterion sE  (1), when vectors,

corresponding to the neurons-winners of the SOM,

are analysed.

3. A NEW ALGORITHM
We suggest the following way of integrating the

SOM and Sammon’s algorithm:

1. The training set consists of s n-dimensional

vectors sXXX ,...,, 21 . The neural network will be

trained using e learning epochs.

2. All the e epochs are divided into equal training

parts – blocks. Before the training of the neural

network starts, we choose the number γ of blocks

into which the training process will be divided. Each

block contains p training epochs (p = e div γ).

Denote by q a block of the training process

consisting of p epochs. q = 1,…, γ.

3. Denote vectors-winners obtained by the q-th

block of the training process by q

r

qq

q
ZZZ ,...,,

21
 and

two-dimensional projections of these vectors-

winners, calculated using Sammon’s algorithm, by
q

r

qq

q
YYY ,...,,

21
 ( ),,(

21
q
i

q
i

q
i yyY =  qri ,...,1= ). Note

that the number qr  of vectors-winners will be

smaller or equal to s. The vectors-winners
11

2
1
1 ,...,,

qr
ZZZ , obtained after the first block of the

training process (q=1), are analyzed by using

Sammon’s algorithm. However, there is a unique

relation between a vector-winner and the

corresponding vector (or several vectors) from the

training set { sXXX ,...,, 21 }. The initial coordinates

of two-dimensional vectors ),,( 0
2

0
1

0
iii yyY =

,,...,1 1ri =  for Sammon’s algorithm are set as

follows: 
3

10
1 += iyi , 

3

20
2 += iyi . Two-dimensional

projections 11
2

1
1

1
,...,,

r
YYY  of vectors-winners are

calculated using Sammon’s algorithm.

4. The vectors-winners obtained after the q-th block

of the training process are analyzed by using

Sammon’s algorithm. The initial coordinates of two-

dimensional vectors q

r

qq

q
YYY ,...,,

21
 for Sammon’s

algorithm are selected taking into account the result

of the (q-1)-st block. Note that 1−≠ qq rr  in general.

A way of the selection is presented below. We must

determine the initial coordinates of each two-

dimensional vector q
iY  correspondent to the neuron-

winner q
iZ , qri ,...,1= . The sequence of steps is as

follows. Determine vectors from { sXXX ,...,, 21 }

that are related with q
iZ . Denote these vectors by

,...,
21 ii XX  ( ∈,...,

21 ii XX  },...,,{ 21 sXXX ).

Determine neurons-winners of the (q-1)-st block that

were related with ,...,
21 ii XX  Denote these neurons-

winners by ,...,
11

21

−− q

j

q

j
ZZ  ( ∈−−

,...,
11

21

q

j

q

j
ZZ

},..,,{
11

2
1

1 1

−−−

−

q

r

qq

q
ZZZ ), and their two-dimensional

projections, obtained in a result of Sammon’s

algorithm, by ,...,
11

21

−− q

j

q

j
YY  ( ∈−−

,...,
11

21

q

j

q

j
YY

},...,,{
11

2
1

1 1

−−−

−

q

r

qq

q
YYY ). The initial coordinates of

q
iY  are set to be equal to the mean value of the set of

vectors { ,...,
11

21

−− q

j

q

j
YY }. Afterwards, two-

dimensional projections q

r

qq

q
YYY ,...,,

21

( ),,(
21
q
i

q
i

q
i yyY =  qri ,...,1= ) of the vectors-winners

are calculated using Sammon’s algorithm.

5. The training of the neural network is continued

untill q=γ. After γ-th block we get two-dimensional

projections 
γγγ

γr
YYY ,...,,

21
 of the n-dimensional

vectors-winners 
γγγ

γr
ZZZ ,...,,

21
 that are uniquely

related with vectors sXXX ,...,, 21  (see Section 2).

4. STRATEGY OF INVESTIGATION
Our purpose was to examine the mean projection

error by the new algorithm compared with that

obtained by the algorithm 1b [Dze01a] in

dependance on the “magic factor” α  (2). Therefore,

the experiments were carried out using different

values of the “magic factor” α .

The projection error sE  is minimized by a gradient

method (2). With an increase in the order number of

the iteration, the projection error decreases. But

sometimes the error may vary, i.e., it decreases,

increases, and decreases again [Apo99a]. It may

increase in the last iteration. Therefore, we fix the

least projection error over all the iterations as a final

result.

The projection errors can differ for various sets of

the initial values of neurons, because they are

generated at random. Thus, much higher or much

lower projection error, that is of a random nature,

can be obtained both by the new algorithm and by



algorithm 1b. To avoid that, the experiments have

been carried out 200 times with different, randomly

generated sets of the initial values of neurons. Then

the results have been averaged. Therefore, we get the

so-called mean projection error for a fixed value of

α .

5. RESULTS OF ANALYSIS
The advantages of the new algorithm, proposed in

Section 3 and given in Figure 1c, in comparison

with algorithm 1b [Dze01a] have been shown

analyzing the data on coastal dunes and their

vegetation in Finland [Hel98a]. The following

parameters 1a - 16a  characterize the dunes: 1a  is the

distance from the water line; 2a  is the height above

the sea level; 3a  is the soil PH; 4a , 5a , 6a , and

7a  are the contents of calcium (CA), phosphorous

(P), potassium (K), magnesium (Mg); 8a  and 9a

are the mean diameter and sorting of sand; 10a  is

the northernness in the Finnish coordinate system;

11a  is the rate of land uplift; 12a  is the sea level

fluctuation; 13a  is the soil moisture content; 14a  is

the slope tangent; 15a  is the proportion of bare sand

surface; 16a  is the tree cover.

The correlation matrix },...,1,,{ sjirR
jiaa ==  of

these sixteen parameters is given in [Hel98a]. Using

the method developed by Dzemyda [Dze01a], sixteen

vectors sXXX ,...,, 21 , s=16, of unit length have

been computed. Their dimension n is equal to 16.

The values of the vectors are presented in [Dze02a].

These vectors correspond to the parameters 1a - 16a .

Namely, they are used during the experiments.

Cases with various parameters of the proposed

algorithm and its constituent parts have been

analyzed:

• size of neural network (2x2, 3x3, 4x4, 5x5, 6x6);

• number of training epochs e (100, 200, 300);

• number γ  of training blocks and number p of

epochs per each training block (e= pγ);

• values of the “magic factor” α  in Sammon’s

mapping (0.1; 0.11;…; 1.99; 2).

Under the same initial conditions, the errors of

projection have been calculated for all the

parameters referred above by using both 1b and the

new algorithm. As mentioned above, the

experiments have been repeated 200 times with

different (random) initial values of the components

of the neurons-vectors. The ratio between the mean

projection errors, obtained by both 1b and the new

algorithm, has been calculated. It appears from

Table 1 and Figure 2, that this ratio is always greater

than one. Thus, the mean projection errors, obtained

by the new algorithm, are smaller. When increasing

the number γ of the training blocks (Figure 2), this

ratio increases: essentially when the SOM is of a

smaller size. The ratio decreases with an increase in

the network size.

Figures 3 and 4 show that the mean projection error,

obtained by the new algorithm, depends much less

on the value of the “magic factor” α  in comparison

with algorithm 1b. Figures 3 and 4 illustrate four

cases, however, the similar results are observed in

the most of remaining cases. This is the essential

advantage of the new algorithm, i.e., if we need to

visualize the neurons-winners of the SOM, we

succeed to eliminate the influence of the “magic

factor” α  on Sammon’s mapping results. This

conclusion is true for 10 ≤< α . For larger values of

α , the mean projection error grows. However, in

this case the new algorithm operates more stable

than algorithm 1b, and it gives smaller values of the

mean projection error.

Figure 5 illustrates output of both the algorithms

(projection of the multidimensional test data on a

plane). We do not present scales of variables,

because we are interested in observing the

interlocation of points on a plane. Dimension of the

SOM is 6x6, number of epochs is 200, number γ of

training blocks is 40. Following the recommendation

in [Koh01a], the value of α  has been selected equal

to 0.35. The visually presented distributions of the

points are quite different. This proves the necessity

to make every effort for minimization of the

distortion of projection sE  (1).

6. CONCLUSIONS
When comparing the mean projection error,

obtained by using the combination of the SOM and

Sammon’s mapping (algorithm 1b), with that by the

new algorithm that takes into account the learning

flow of the self-organizing neural network, we see

lower projection errors in the results got by the new

algorithm. A larger number γ of training blocks

decreases the mean projection error. However, that

needs much more computing time.

The main result of this paper is that, if we need to

visualize the neurons-winners of the SOM, we have

a strategy how to eliminate to a certain extent the

influence of the “magic factor” α  on Sammon’s

mapping results, i.e., the mean projection error,

obtained by the new algorithm, depends much less

on the value of the “magic factor” than that obtained

by algorithm 1b.



e 100 200 300

p 50 25 20 10 5 50 40 25 20 10 5 50 25 20 10 5

γ 2 4 5 10 20 4 5 8 10 20 40 6 12 15 30 60

2x2 2.15 2.65 2.72 2.81 2.81 2.84 2.91 2.99 3.01 3.02 3.04 3.09 3.16 3.17 3.16 3.19

3x3 1.07 1.1 1.1 1.13 1.16 1.07 1.09 1.11 1.11 1.34 1.58 1.09 1.11 1.12 1.14 1.16

4x4 1.5 1.67 1.69 1.79 1.82 2.36 2.44 2.51 2.54 2.62 2.66 3.32 3.47 3.5 3.58 3.59

5x5 1.03 1.03 1.04 1.05 1.05 1.04 1.04 1.04 1.05 1.05 1.05 1.04 1.05 1.04 1.04 1.05

6x6 1.06 1.07 1.09 1.1 1.11 1.12 1.17 1.18 1.17 1.19 1.19 1.27 1.29 1.29 1.3 1.3

Table 1. The ratio between the projection errors obtained by algorithm 1b and the new algorithm
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Figure 2. Ratio of the projection errors for different number of training blocks γ
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Figure 3. Dependence of the projection error on the “magic factor” α



a)

100 tarining epochs, 20 training blocks, SOM 4x4
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b)

200 tarining epochs, 40 training blocks, SOM 4x4
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Figure 4. Dependence of the mean projection error on the “magic factor” α
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Figure 5. Examples of visualization:

a) algorithm 1b (α =0.35, sE = 0.0890), b) the new algorithm (α =0.35, sE = 0.0764)


