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ABSTRACT

We propose a biologically motivated computational step, called non-classical receptive field (non-CRF) inhibition,

to improve the performance of contour detectors. Non-CRF inhibition is exhibited by 80% of the orientation

selective neurons in the primary visual cortex of macaque monkeys and has been demonstrated to influence the

visual perception of man as well. We introduce an image processing operator, the bar cell operator, which consists

of a Gabor energy operator augmented with non-CRF inhibition. This operator responds strongly to isolated lines,

edges and contours, but exhibits a weaker or no response to edges that make part of texture. We evaluate the

contour detection performance of the proposed operator for images of natural scenes with associated ground truth

edge maps. The bar cell operator consistently outperforms the Canny edge detector, mostly due to a reduced

number of false positives.
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1 INTRODUCTION

An important finding in the neurophysiology of the vi-

sual system of monkeys and cats, made in the begin-

ning of the 1960s, was that the majority of neurons

in the primary visual cortex act as edge detectors. A

typical neuron from this cortical area will respond vig-

orously to an edge or a line of a given orientation and

position in the visual field. In the following years, the

study of the properties of such neurons has been an

active area of research and, in 1981, a Nobel prize for

medicine and physiology was awarded to D. Hubel and

T. Wiesel who pioneered this work [Hub82]. Compu-

tational models for two types of orientation selective

cells, called the simple cell [AP79, MTT78b] and the

complex cell [MTT78a, SH85], gave the basis for bi-

ologically motivated edge detection algorithms in im-
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age processing and computer vision. In particular, a

family of two-dimensional Gabor functions was pro-

posed as a model of the receptive fields of simple cells

[Dau85, JP87].

Later neurophysiological research revealed a consid-

erable functional diversity in the rather broad class

of orientation selective cells. Besides the subclasses

of simple and complex cells, further subclasses were

identified, such as end-stopped cells (originally also

called hypercomplex cells [HW68, PvdH91]), contour

cells [BvdZP97, PH01], and grating cells [vdHPD91,

vdHPD92]. The computational models for all these

subclasses assumed that the only condition for a cell to

elicit a vigorous response is that the appropriate stim-

ulus be present within a specific region of the visual

field. This region is presently referred to as the classi-

cal receptive field (CRF).

Detailed studies have unveiled, however, that the be-

haviour of orientation selective cells is more complex

than suggested by these early computational models.

In particular, measurements have shown that once a

cell is activated by a stimulus in its CRF, another, si-

multaneously presented stimulus outside that field can

have an effect on the cell response. This, mostly in-

hibitive effect, is referred to as non-classical receptive



field (non-CRF) inhibition and is exhibited to a dif-

ferent extent by 80% of the orientation selective cells

[KvE92, JGWS01].

For instance, Nothdurft et al. [NGvE99] measured

the response of neural cells when different texture

surrounds were present outside the CRF. First, they

mapped the CRF of a cell by determining the opti-

mal orientation position and size of bar which made

the cell elicit a strong response. Then, they placed tex-

ture consisting of oriented elements of the same type as

the optimal stimulus in the area outside the CRF. Ap-

proximately one-third of the orientation selective cells

exhibited an inhibition effect caused by the surround-

ing texture irrespective to the orientation of the sur-

rounding texture elements, see Fig. 1. In general, an

orientation selective cell with non-CRF inhibition will

respond most strongly to a single bar, line, or edge in

its receptive field and will show reduced response with

the addition of further bars to the surrounding. The re-

sponse decreases with the distance from the CRF. Neu-

ral cells which show this behaviour were called bar

cells [vdHPD92] and a computational model was pro-

posed for them in [PK97].
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Figure 1: (a) The response of a neuron to a stimulus

composed of a single bar of optimal size and orien-

tation inside the CRF (dotted square). A decreased

resonse is recorded when texture consisting of iden-

tical bars is present in the area outside the CRF: the

surrounding bars have the same orientation (b) and or-

thogonal orientation (c) relative to the optimal stim-

ulus. (d) In absence of the optimal stimulus, the re-

sponse is reduced to the level of spontaneous activity

(Courtesy of C. Nothdurft and Visual Neuroscience).

The above mentioned neurophysiological behaviour of

bar cells correlates well with the results of various psy-

chophysical experiments, which have shown that the

perception of an oriented stimulus, such as a line, can

be influenced by the presence of other such stimuli

(distractors) in its neighbourhood. This influence can,

for example, manifest itself in a decreased saliency of

groups of parallel lines [Kan79], Fig. 2.

Figure 2: Reduced perceptual saliency of a line when

embedded in other parallel lines: the left section of the

rectangle is “lost” in the surrounding grating.

As non-CRF inhibition seems to be a common prop-

erty of orientation selective neurons, and proves to

play a significant role in our perception of edges and

lines, we considered that a more close examination of

this mechanism for edge detection in image processing

and computer vision is worthwhile. Our main hypoth-

esis is that non-CRF inhibition suppresses edges which

make part of texture, while it does not suppress edges

that belong to the contours of objects. An edge de-

tection algorithm which employs this inhibition mech-

anism will thus primarily detect contours of objects,

and it will not react to edges which belong to texture

regions. The edge maps generated by such an edge

detector will be more useful for contour-based object

recognition tasks, such as shape comparison [GP02],

than traditional edge detectors which do not make a

difference between contour and texture edges.

The paper is organized as follows. Section 2 describes

the computational model. The simple cell and com-

plex cell models and the related Gabor and Gabor en-

ergy filters are briefly discussed, and an operator which

models non-CRF inhibition, the bar cell operator, is

introduced. In Section 3, we evaluate the performance

of the bar cell operator. A suitable performance mea-

sure is introduced, and experimental results obtained

with the bar cell operator and the Canny edge detector

are compared. Finally, we summarize the results and

draw conclusions in Section 4.

2 COMPUTATIONAL MODEL

2.1 Simple Cells and Gabor Filters

The spatial summation properties of simple cells can

be modelled by a family of two-dimensional Gabor

functions [Dau85]. We use a modified parameteriza-

tion to take into account restrictions found in exper-

imental data [PK97]. A receptive field function of

such a cell, in engineering terms the impulse response,



gλ,σ,θ,ϕ(x, y), (x, y) ∈ Ω ⊂ R
2, which is centered

around the origin, is given by:

gλ,σ,θ,ϕ(x, y) = e−
x̃2+γ2ỹ2

2σ2 cos(2π
x̃

λ
+ ϕ),

x̃ = x cos θ + y sin θ, ỹ = −x sin θ + y cos θ,
(1)

where γ = 0.5 is a constant, called the spatial as-

pect ratio, that determines the ellipticity of the recep-

tive field. The standard deviation σ of the Gaussian

factor determines the linear size of the receptive field.

The parameter λ is the wavelength and 1/λ the spa-

tial frequency of the cosine factor. The ratio σ/λ de-

termines the spatial frequency bandwidth, and, there-

fore, the number of parallel excitatory and inhibitory

stripe zones which can be observed in the receptive

field. In this paper, we fix the value of the ratio σ/λ
to σ/λ = 0.56, which corresponds to a half-response

bandwidth of one octave. The angle parameter θ,

θ ∈ [0, π), determines the preferred orientation. The

parameter ϕ, ϕ ∈ (−π, π], is a phase offset that deter-

mines the symmetry of gλ,σ,θ,ϕ(x, y) with respect to

the origin: for ϕ = 0 and ϕ = π it is symmetric (or

even), and for ϕ = −π
2

and ϕ = π
2

it is antisymmetric

(or odd); all other cases are asymmetric mixtures.

The response rλ,σ,θ,ϕ(x, y) of a simple cell with a re-

ceptive field function gλ,σ,θ,ϕ(x, y) to an input image

with luminance distribution f(x, y) is computed by

convolution:

rλ,σ,θ,ϕ(x, y) = f(x, y) ∗ gλ,σ,θ,ϕ(x, y) (2)

In image processing and computer vision, the filter de-

fined by (1) and (2) is known as the (linear) Gabor fil-

ter.

2.2 Complex Cells and Gabor Energy Fil-

ters

The Gabor energy is related to a model of complex

cells which combines the responses of a pair of simple

cells with a phase difference of π
2

. The results of a pair

of symmetric and antisymmetric filters are combined,

yielding the Gabor energy Eλ,σ,θ(x, y) as follows:

Eλ,σ,θ(x, y) =
√

r2
λ,σ,θ,0(x, y) + r2

λ,σ,θ,−π
2
(x, y),

(3)

where rλ,σ,θ,0(x, y) and rλ,σ,θ,−π
2
(x, y) are the out-

puts of a symmetric and an antisymmetric filter, re-

spectively. It can be shown that the Gabor energy is

equal to the square root of the local power spectrum of

the image [GPKon]. In the following, we will use Ga-

bor energy maps Eλ,σ,θi
(x, y) for a number of Nθ dif-

ferent orientations, with θi given by θi = i π/Nθ, i =
0, 1, . . . , Nθ − 1.

2.3 Non-CRF Inhibition

We extend the Gabor energy operator presented above

with an inhibition term to qualitatively reproduce the

above mentioned non-CRF inhibition behaviour of

most orientation selective cells. For a given point in

the image, the inhibition term is computed in a ring-

formed area surrounding the CRF centered at the con-

cerned point.

Let DoGσ(x, y) be the difference of Gaussians defined

by:

DoGσ(x, y) =
1√

2π(4σ)2
e
−

x2+y2

2 (4σ)2 − 1√
2πσ2

e−
x2+y2

2σ2

(4)

We define the weighting function wσ(x, y) as follows:

wσ(x, y) =
1

||H( DoGσ ) || H( DoGσ(x, y) ),

H(z) =

{
0 z < 0

z z ≥ 0,

(5)

where by ||.|| we denote the L1 norm. The function

H(z) ensures that the operator has only positive re-

sponse. Figure 3 shows the plot of this function.
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Figure 3: Weighting function which models the con-

tribution of the non-CRF surround.

We model non-CRF inhibition by computing an inhibi-

tion term tλ,σ(x, y). First, we construct an energy map

Êλ,σ(x, y) with values of maximum Gabor energy re-

sponse:

Êλ,σ(x, y) = max{Eλ,σ,θi
(x, y) | i = 0, 1, . . . , Nθ−1},

(6)

The inhibition term tλ,σ(x, y) is computed as a con-

volution of the maximum energy map Êλ,σ(x, y) with

the weighting function wσ(x, y):

tλ,σ(x, y) = Êλ,σ(x, y) ∗ wσ(x, y) (7)

The computation of the above suppression term does

not take into account the different orientations for

which the maxima of the Gabor energy response



Êλ,σ(x, y) is achieved. Therefore, we refer to this type

of inhibition as isotropic non-CRF inhibition.

We introduce a new operator bλ,σ(x, y) which takes as

its inputs the maximum energy map Êλ,σ(x, y) and the

inhibition term tλ,σ(x, y):

bλ,σ(x, y) = H(Êλ,σ(x, y) − αtλ,σ(x, y)), (8)

with H(z) defined as in (5). The factor α controls the

strength of the inhibition of the surround on the max-

imum Gabor energy term. If there is no texture in the

surrounding of a given point, the response of this oper-

ator at that point will be equal to the maximum Gabor

energy term. An isolated edge passing through that

point will be detected by the introduced operator in

the same way as it is detected by the Gabor energy

operators. However, if there are other edges in the sur-

rounding, the inhibition term tλ,σ(x, y) may become

so strong that it cancels completely the contribution of

the maximum Gabor energy term, resulting in zero re-

sponse of the operator introduced above. Defined in

this way, the concerned operator will respond to iso-

lated lines, edges, and bars, but it will not respond to

groups of such stimuli that make part of texture, see

Fig. 4(c). We will refer to this operator briefly as the

‘bar cell operator’, in analogy with the function of the

type of visual neuron that exhibits a similar behaviour

[vdHPD92, PK97].

(a) (b) (c)

Figure 4: (a) Synthetic input image. (b) The Gabor

energy operator responds to lines and edges indepen-

dently of the context, i.e., the surrounding in which

these lines and edges are embedded. (c) The bar cell

operator with isotropic inhibition responds selectively

to isolated lines and edges only.

2.4 Binary Edge Map Construction

We construct binary edge maps from the bar cell re-

sponse bλ,σ(x, y) by two post-processing operations

called nonmaxima suppression and hysteresis thresh-

olding [Can86, SHB99].

An orientation map Θ(x, y) with the orientation

for which the maximum Gabor energy response

Êλ,σ(x, y) is achieved can be computed as follows:

Θ(x, y) = θk, where

k = argmax{Eλ,σ,θi
(x, y) | i = 0, 1, . . . , Nθ − 1}.

(9)

From the orientation map Θ(x, y) and bar cell re-

sponse bλ,σ(x, y), which specify the normal to the

local edge direction and the local edge strength, re-

spectively, nonmaxima suppression thins the edges in

bλ,σ(x, y) to one-pixel wide candidate edges. Hystere-

sis thresholding provides the final binary edge map

from the candidate edges by computing two thresh-

old values, th and tl. The first value, th, is computed

based on percentage p of the candidate edge pixels that

should be retained in the final edge map. The low hys-

teresis threshold value, tl, is a fraction of th; in our

experiments, we chose tl = 0.5 th.

We decided to perform the same post-processing op-

erations as in the Canny edge detector [Can86] in or-

der to simplify comparison at a later stage. Prior to

post-processing, the Canny edge detection operator

computes the gradient magnitude and direction with

a scale-dependent differential operator [Td90].

3 PERFORMANCE EVALUATION

Most state-of-the-art methods for evaluation of edge

detector performance use natural images with an as-

sociated ground truth specified by a subject [BKD01].

Some studies [SGB01] show that the performance of

a detector is task-dependent. For a task like object

recognition, for example, some detectors may perform

better than others despite similar results obtained for

synthetic images. The proposed bar cell detector aims

explicitly at better detection of object contours in pres-

ence of surrounding texture. Therefore, we evaluate its

performance for extraction of object contours in natu-

ral images rich in textured background. We selected

a set of 20 images which depict either man-made ob-

jects on textured background or animals in their natural

habitat; for each image, an associated ground truth bi-

nary edge map was drawn by hand. Figure 5, first and

second column, presents a subset of four such images

together with their corresponding ground-truth edge

maps.

3.1 Performance Measure

Let EGT and BGT be the set of edge pixels and back-

ground pixels of the ground truth edge image, respec-

tively, and ED and BD be the set of edge pixels and

background pixels of the operator-detected edge im-

age, respectively. The set of correctly detected edge

pixels is E = ED ∩ EGT. False negatives, i.e. ground-

truth edges missed by the edge detector, are given by



the set EFN = EGT ∩ BD, while false positives (spuri-

ous edges) are given by the set EFP = ED ∩ BGT.

We define the performance measure of an edge detec-

tor as:

P =
card(E)

card(E) + card(EFP) + card(EFN)
, (10)

in which card(X) denotes the number of elements of

set X .

The performance measure P is a scalar taking values

in the interval [0, 1]. If all true edge pixels are correctly

detected and no background pixels are falsely detected

as edge pixels, then P = 1. For all other cases, the per-

formance measure takes values smaller than 1, being

closer to zero as more edge pixels are falsely detected

and/or missed by the edge detector operator.

Since edges cannot always be detected at exact integer

image coordinates, we consider that an edge pixel is

correctly detected if a corresponding ground truth edge

pixel is present in a 5×5 square neighborhood centered

at the respective pixel coordinates. The false negatives

and false positives are determined by eliminating those

pixels which are correctly detected from the ground

truth edges and detected edges, respectively.

3.2 Experimental results

In the following, we assess the performance of the bar

cell contour detector, and compare it with the perfor-

mance of the Canny edge detector. The Canny edge

detector has two parameters: σ, the standard deviation

of a Gaussian smoothing kernel, and p, the percent-

age of candidate edge pixels which are retained in the

final edge map. The bar cell contour detector has an

additional parameter, α, which is the texture inhibi-

tion factor. For the Canny edge detector, we used 8

scales, σ = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4}. For

the bar cell contour detector we used 4 scales cover-

ing the same domain, σ ∈ {1.2, 1.6, 2.0, 2.4} and 2

texture attenuation factors, α ∈ {1.0, 1.2}. For both

methods, we used 5 values of the percentage of can-

didate edge pixels, p = {50%, 40%, 30%, 20%, 10%}.

This results in 40 parameter combinations for each of

the methods. The number of orientations used by the

bar cell model was fixed to Nθ = 12.

For comparable values of σ and p, the edge maps de-

livered by the bar cell operator had better performance

than Canny’s edge maps. Figure 5 shows the best per-

formance edge maps obtained for four of our test im-

ages for both Canny’s edge detector (third column) and

bar cell contour detector (fourth column). For a bet-

ter illustration, we also computed the percentage of

false positives efp as the number of false positives di-

vided by the number of correctly detected edge pix-

els (efp = card(EFP)/ card(E)), and the percentage

of false negatives efn as the number of false negatives

divided by the number of ground truth edge pixels

(efn = card(EFN)/ card(GT)). The performance mea-

sures, parameters, and percentages of false positives

and false negatives are displayed below each image.

These results show that, indeed, the bar cell contour

detector suppresses edges in the presence of surround-

ing texture. In some cases, such as the image on the

second row (“Goat 3”), the Canny edge map contains

so many spurious edges that it is hard to distinguish be-

tween the contours of the object and the other edges.

In contrast, the object contours in the bar cell edge map

can be easily recognized. For all twenty images used in

our experiment the best performance measure is con-

sistently higher for the bar cell contour detector, and

this is mostly due to a reduced percentage of false pos-

itives.

4 SUMMARY AND CONCLUSIONS

The non-CRF inhibition algorithm presented in this

paper treats classes of edges and lines in two different

ways: single contour lines and edges, on one hand, be-

ing considered as non-texture features, are not effected

by the inhibition, while groups of lines and edges, on

the other hand, viewed as texture features, are sup-

pressed. As already noted in the introduction, this dif-

ferent treatment correlates well with our visual percep-

tion.

The model of non-CRF inhibition we use in this study

is simple and straightforward. The response of an ori-

entation and scale specific operator in a given position

is suppressed by the responses of the same operator

in other neighboring positions. Our model makes use

of a single parameter, α, the coefficient with which

the weighted summation inhibition term is taken into

account. The value of this parameter can be deter-

mined in an optimization problem derived from a spe-

cific goal, e.g. maximization of the performance of the

operator for a certain set of images.

Inhibition mechanisms have been applied previously

to biologically motivated edge detectors in order to im-

prove certain aspects of their function. A symmetric

Gabor filter, will, for instance, respond not only along

a line but also alongside the line at a certain distance

from it. Similarly, the largest response of an antisym-

metric Gabor filter to a line will be displaced from

the line. In [Hei95, PKL93], various inhibition mech-

anisms have been proposed to remove these flanking

responses. These works differ from the current work

in two major aspects. First, the inhibition mechanisms

act within the CRF. Second, the purpose of the inhi-

bition is quite different: it deals with the removal of



Original Ground truth Best Canny Best bar cell
image edge map edge map edge map

Elephant 2 P = 0.23, σ = 2.4, P = 0.42, σ = 2.0,

t1 = 10%, α = 1.0, t1 = 10%,

efp = 71%, efn = 50% efp = 31%, efn = 49%

Goat 3 P = 0.14, σ = 2.4, P = 0.34, σ = 2.0,

t1 = 10%, α = 1.0, t1 = 10%,

efp = 83%, efn = 55% efp = 46%, efn = 51%

Rhinoceros P = 0.18, σ = 1.8, P = 0.38, σ = 2.4,

t1 = 10%, α = 1.2, t1 = 10%,

efp = 78%, efn = 30% efp = 55%, efn = 38%

Gazelle 2 P = 0.23, σ = 2.2, P = 0.38, σ = 1.6,

t1 = 20%, α = 1.0, t1 = 20%,

efp = 72%, efn = 38% efp = 44%, efn = 46%

Figure 5: Natural scenes with objects on textured background (first column), their corresponding ground truth

edge maps (second column), the best edge maps obtained with the Canny edge detector (third column), and the

best edge maps obtained with the bar cell contour detector (last column).



flanking responses, rather than with the suppression of

texture edges.

In this paper we model only the isotropic inhibitory

behaviour of bar cells. However, there is physiological

evidence that anisotropic inhibition, i.e. edges of the

same orientation as the main stimulus have stronger

suppression effect than edges of different orientations,

is equally important: approximately one third of the

cells with non-CRF modulation exhibit isotropic inhi-

bition while another third are accounted for anisotropic

inhibition [NGvE99]. Elsewhere [GPW02] we studied

the effect of anisotropic inhibition as well. For natural

images like those shown in Figure 5 we obtain slightly

better results using the isotropic inhibition.

The surround inhibition can be incorporated as an ad-

ditional processing step in most edge detection opera-

tors. More specifically, it can be added to the Canny

edge detector as an intermediate step between the gra-

dient computation and edge thinning and binarization.

This inhibition step may be expected to improve con-

tour detection performance in images that contain ob-

jects of interest on a cluttered or textured background.
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