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ABSTRACT

A new model for representing an unorganised 3D data points set is proposed. Based on superquadrics, this model

allows to describe the points set with a union of superellipsoids. Two different segmentation and modeling methods

are developed in order to determine the whole model: a region growing approach and a split and merge one. This

second method leads to a low sensitive model compared to the one obtained by the region growing. The model

is simple and compact: only 11 parameters are needed per superellipsoid. It seems promising for 3D object

compression and 3D object indexing and retrieval. As the topological relations of the superellipsoids are known,

the model can be associated to a graph. The graph theory can thus be used in order to compare and to measure the

similarity between 3D objects.
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1 INTRODUCTION

This study concerns the segmentation and modeling

of an unorganised 3D data points set. The constraints

imposed to the model are related to the concerned ap-

plications:

• coarse visualisation of the 3D object represented

by the points set;

• indexing and retrieval of similar 3D objects from

dedicated databases providing a descriptor;
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• compression of the data set for transmission and

storage.

We need a simple descriptor which allows the repre-

sentation of a 3D data set using a very compact model

and the reconstruction of a coarse version with a con-

trolled distortion rate (fuzzy approximation). For this

purpose, we choose to describe 3D objects with a set

of primitives which are superellipsoids.

Superellipsoids have already been used to model 3D

object [3, 7, 10]. In the majority of these studies, range

images of the 3D object or the 3D scene are used for

modeling. Range data have regular layout and are or-

ganised in the sense that neighbouring points on the

image are mostly neighbouring points in space. We

want to deal with more general 3D data without any a

priori knowledge. The 3D points set considered in this

study is irregular and unorganised.

We propose to compare two different ways to obtain

the descriptor. The first one is an extension of the re-

gion growing method proposed by Leonardis [7, 8].

The second way is an original split and merge ap-

proach that we have developed.

Section 2 defines the primitive surface descriptor:

the superellipsoid. In section 3, we show how 3D data



can be approximated using only one superellipsoid.

Section 4 gives details on the two segmentation algo-

rithms. Finally, the qualitative and quantitative perfor-

mances of the two methods are illustrated in section 5.

2 SUPERQUADRICS AND SU-

PERELLIPSOIDS

The superquadric model [3, 4, 6] has been introduced

in computer graphics by A.H. Barr in 1981. As an

extension of quadric surfaces, four kinds of model can

be distinguished: supertoroid, superhyperboloid with

one or two sheets, and superellipsoid. As the last one

is the only one that defines a closed surface without

hole, it is usually the only one used in our domain area.

For the same reason, we will restrict us to describe 3D

objects with superellipsoids.
A superellipsoid is defined as the solution of the

general form of the implicit equation:

f(x, y, z) =

(

(

x

a1

) 2

ε2
+

(

y

a2

) 2

ε2

)

ε2
ε1

+
(

z

a3

) 2

ε1
(1)

In this equation, one can recognise an ellipsoid

form, enriched with two more parameters (ε1 and ε2)

that allow to control the shape curvature. As for the el-

lipsoid case, the a1, a2, a3 parameters are scale factors

on x, y and z axis respectively.

This form provides an information on the position

of a 3D point related to the superellipsoid surface, that

is important for interior/exterior determination. We

have:

• f(x, y, z) = 1 when the point lies on the surface;

• f(x, y, z) < 1 when the point is inside the su-

perellipsoid;

• f(x, y, z) > 1 when the point is outside.

As an ellipsoid’s extension, a superellipsoid is the

result of the spherical product of two 2D models (two

superellipses). Then, superellipsoids can be defined as

a parametric model from this product:

S(η, µ) =




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2
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Being able to switch directly from the implicit to the

parametric representation is one main point of the su-

perellipsoid model. This is really an advantage, espe-

cially for sampling and rendering, because this is much

more difficult with an implicit model.

Moreover, this is a compact model defined by only

five parameters that permits to handle a large variety

of shapes, including: ellipsoid (ε1 = ε2 = 1), par-

allelepiped (ε1 → 0 and ε2 → 0), cylinder (ε1 = 1
and ε2 → 0)...(see figure 1). In our application, we

constrain ε1 and ε2 to be less than 2, in order to have

convex shape only. Obviously, the general position of

the superellipsoid is obtained with the addition of three

rotation parameters and three translation ones. Thus,

only eleven parameters are required to describe a su-

perellipsoid.

Figure 1: Examples of superellipsoids according to ε1
and ε2.

3 APPROXIMATION OF 3D

DATA WITH ONE SUPEREL-

LIPSOID

Given a set of N unstructured 3D data points, the first

challenge is to determine the parameters of our model

for fitting with a global distortion constraint. The

method was formerly proposed by F. Solina in 1990

[11] and is the most popular at the moment. This is

a least squares fitting method. The following global

distortion is minimised:

N
∑

i=1

d(xi, yi, zi)
2 (3)

where d(x, y, z) is the distance between a 3D data

point and the superellipsoid surface (see below).

When the points set is not closed, several superel-

lipsoids may approximate it correctly. Solina resolved

this difficulty by imposing a constraint which favours

the small superellipsoids. This is achieved by applying

the coefficient
√

a1a2a3 to the global distortion.



To compute this minimisation, one needs to know

how to calculate the distance between a point and the

surface. This computation will often be used during

the process and the common Euclidean distance is far

too expensive. Usually, the distance is estimated with

an approximation based on the implicit form of the su-

perellipsoid. Solina proposed this approximation for

the distance:

d(a, x, y, z) = f(a, x, y, z)
ε1
2 − 1 (4)

where a represents the superellipsoid parameters and

(x, y, z) the point coordinates.

This leads to D, the mean distortion per point given

by:

D(a, x, y, z) =

√
a1a2a3

N

N
∑

i=1

(f(a, x, y, z)
ε1
2 − 1)2 (5)

To minimise D, a non-linear regression method is

required. The Levenberg-Marquadt approach is a

numerical method that combines a gradiant and a

quadratic descent method [1]. It is most of the time

performant (especially for strongly constrained sys-

tem) and thus is widely used. Other approaches can

also be considered. The genetic algorithm gives bet-

ter results but the computation cost is not accept-

able. Downhill simplex method [9] could be used

too but gives results equivalent to those obtained by

Levenberg-Marquadt.

The previous distance d is size dependent. That

conducts to erroneous results when comparing two su-

perellipsoids with different scales, and also in oblong

cases. To improve the approximation and especially

when d is far from the Euclidean distance (figure 2),

other distance estimations have to be chosen. The

radial Euclidean distance [2] (that is the distance be-

tween the point P and the intersection of the OP line

and the surface, where O is the superellipsoid centre)

is not more expensive to compute and gives better re-

sults because it is adjusted according to the scale (fig-

ure 2c and 2g).

d(a, x, y, z) = ||−−→OP || ∗ (f(a, x, y, z)
ε1
2 − 1) (6)

Another estimation can be an approximation of the

Euclidean distance[8] based on Taubin approach [12]:

d(a, x, y, z) =
|f(a, x, y, z) − 1|
||−→5f(a, x, y, z)||

(7)

which is more expensive because of the gradiant com-

putation but more accurate when the point is near the

surface (figure 2d and 2h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Equidistant lines of an oblong superellipsoid

with Solina’s estimation (b,f) radial Euclidean distance

(c,g) the Taubin’s approximation of the Euclidean dis-

tance(d,h).

4 DESCRIPTION OF 3D DATA

WITH A SET OF SUPEREL-

LIPSOIDS

The main motivation of this study is to approximate a

set of unstructured 3D points using a set of superel-

lipsoids as presented in section 2. The main difficulty

consists in partitioning or segmenting the data in order

to obtain a compact set of primitives and to provide a

local approximation of good quality.

We develop two different algorithms. The first

one is an extension of the approach proposed by

Leonardis [7, 8], and the second is an original method

that we propose [5].

Note that we use the distance from equation 6 to per-

form the different approximations for these two meth-

ods.

4.1 The region growing approach

In 1994, Leonardis has proposed a method to model

range data with a set of superellipsoids [7, 8]. He

uses a algorithm based on the region growing prin-

ciple. The method can be divided in three steps: the

seeds initialisation, the growing process and the selec-

tion process. The algorithm starts with the first point



and then alternate with the last two at different oc-

curences.

Leonardis applied this method to deal with range

images. Such data are quite regular and well organised

(i.e. the neighbours of a point are known and these are

almost always at the same distance). We extend this

method to any unorganised 3D data points.

4.1.1 Seeds initialisation

The method is initialised with the creation of a seeds

set (figure 3). A seed is a small 3D data points set

which can be modeled with a superellipsoid.

The space is partitioned following a 3D grid. We

model with a superellipsoid the content of every cell

of this grid. If the distortion of the approximation is

less than a threshold, this new object is included in the

active seeds set, else it is rejected.

(a) (b)

Figure 3: Seeds initialisation (a) Original data (b)

Seeds.

4.1.2 Growing process

This procedure increases slowly the size of all the ac-

tive seeds until their associated points set corresponds

to full parts of the 3D object.

For each active seed, new points are included in or-

der to make it grow. The difficulty is to determine

which points belong to the same part. In order to re-

duce the research area, we restrict us to the neighbour-

ing points of the seeds, which are high potential can-

didates.

Then, the approach consists into fitting the union

of these candidate points and the ones of the growing

seed with an ellipsoid. If the distortion is less than a

threshold, all candidate points are merged in the grow-

ing set. Otherwise, considering that the seed can no

more grow, it is removed from the active seeds list and

set as inactive. The same procedure is applied for each

active seed until all seeds are fully grown. Figure 4

shows these different states during the region growing

and selection process, before obtaining the final de-

scriptor.

Some problems remain with our adaptation to a set

of unorganised points, especially in the choice of the

neighbourhood. We use the k-nearest points of the

seed, but they are less relevant than in the case of reg-

ularly spaced data (like in range images). Thus, our

seeds may not grow enough with this method. To im-

prove that, we have chosen to not reject the whole can-

didate points set if it is not appropriate. We split ran-

domly the new points set in two smaller parts. We try

to add each new subset and keep the subset that pro-

duces best results. The splitting process is repeated un-

til no more point can be added to the seed, or until the

approximation satisfies with the growing criteria and

in this case the subset is added to the seed. Another

delicate point is the determination of k for the num-

ber of neighbours in the 3D case. When k is too high,

points belonging to an other part of the object can be

added. At the contrary, if it goes smaller, the seeds will

certainly not grow correctly and sufficiently. In com-

pensation, we also consider the maximum of distortion

to avoid including aberrant points.

4.1.3 Selection process

The seeds initialisation process can accept many seeds

per part of the object. More, after some growing steps,

some superellipsoids can overlap and model almost

the same points set. The aim of this third step is to re-

move redondant superellipsoids from the final descrip-

tor.

(a) (b) (c) (d)

Figure 4: (a-c) Steps of the region growing and selec-

tion processes. (d) The final descriptor.

To achieve this selection, Leonardis proposed to

maximize a function where the variable is a binary

vector of all possible configurations of the next round

(Q is a N vector and M is a N ∗N matrix where N is

the active and inactive seeds number):

max
Q

(Q.M)

where:

• Q is the selection vector. Qi = 1 means that the

ith seed must be kept and Qi = 0 means that the

ith seed must be removed from the descriptor;

• M is a matrix whose diagonal terms reflect the

size and distortion of the seed, and off-diagonal

ones correspond to intersecting points between

two superellipsoids.



Q is then computed by a greedy algorithm. Basically,

when a seed is selected, its contribution to neighbour-

ing seeds is reported on each row of the M matrix.

This is well suited for range images as the coeffi-

cient range is more or less unvarying and can be fixed

in advance. The same method is applied except that we

produce our own matrix coefficients more adapted to

irregularly spaced 3D points. A M ′ matrix is defined

with:

• M ′

i,i = K1(1− χi

T
)ni

n
where ni is the size of the

points set of the ith seed, n the number of whole

data points, χi is the mean distortion of the ith

seed and T the tolerated distortion contraint;

• M ′

i,j = −K2

χi,j

T

ni,j

ni
where i 6= j, ni,j is the

size of the intersection of the points set of the ith

and the jth seed and χi,j is the mean distortion

between the superellipsoid of the ith seed and the

intersection points set of the ith and the jth seed.

The selection can be processed after one or more

growth steps. But note that each seed rejected during

the process of selection will no more be approximated.

So, it is better to remove the seeds as soon as possible

to accelerate the whole process, but we have to take

care about not rejecting seeds with high growth capa-

bility.

4.1.4 Conclusion

As shown in the results presented in section 5, we

succeed to model some 3D objects with this method.

However, the results were not as good as expected,

mostly because of the initial data.

Two problems are to be underlined with this

method. The first is intrinsic to the approach. We do

not know whether each part of 3D object will be in the

final descriptor, because the seeds initialisation does

not insure that there will be a seed occurrence in each

part of the object. Moreover, we are not sure that an

important seed has not been removed during the selec-

tion process.

The second problem is linked to the data type. The

data points set is irregular and then not so suitable with

the growth step. This is due to the difficulty to find an

adequate matrix M ′ and to set K1 and K2 correctly,

because it depends on the scale of the object and on

the varying distance between points in a same part of

the object.

4.2 The split and merge approach

As an alternative to the previous algorithm and to deal

with more general 3D data, we propose a new method

based on split and merge approach [5].

Like usual split and merge algorithms, the method

occurs in two sequential steps: the split and the merge

procedures.

4.2.1 Split procedure

The aim of this first step is to split the data so that all

points in a subset belong to the same part of the object

(but two subsets can belong to the same part).

The split procedure must produce all the boundaries

of the object because the latter step (i.e. merge step)

will just remove superfluous ones but never create new

regions.

This procedure is recursive and consists in the sub-

sequent steps (figure 5):

1. The set of 3D points is fitted by one superellip-

soid (as seen in section 3).

2. If the distortion D is less than a threshold T (the

tolerated distortion constraint), the procedure is

over. Otherwise, step 3 is processed.

3. The set of 3D points is splitted into two regions

using the plane P orthogonal to the inertia axis of

this set (P contains the centroid of the set).

4. Each half-subset is approximated independently

using one superellipsoid. For each subset, the

procedure is iterated from step 2.

(a) (b) (c)

Figure 5: Split procedure. (a) Original data and first

approximation. (b) First split step. (c) Second split

step. All subsets are well approximated.

At the end of this process, we obtain a partition

where each subset can be modelled with one superel-

lipsoid with a distortion less than the threshold T . The

threshold T doesn’t have to be the same that the qual-

ity T ′ we want for the final descriptor. But note that

we do not really know when the split process is over or

if one subset will be merged with another in the sec-

ond step. Each subset could arrive unchanged to the

final descriptor and so the criteria could be no more

compliant according to the global quality threshold.

The splitting plane is also of great importance (fig-

ure 5). The easiest way (and the fastest) is to split the



bounding box in two equal smaller boxes, but that pro-

duces poor results. We choose to split in a much more

intelligent way, using the properties of the inertia axis

which is easy to process. We do not really require a

thiner algorithm, because of the merge step that will

balance the rough splitting.

This procedure may be compared with the seeds ini-

tialisation process of the region growing approach. A

great difference is that no part of the 3D object can be

omitted here. Each subset of points owns its superel-

lipsoid and so will be in the final descriptor. Another

important point is that the resulting superellipsoids do

not overlap each other.

4.2.2 Merge procedure

Normally, all the points in the subsets created in the

previous procedure belong to the same part of the ob-

ject. Now, the subsets belonging to the same part will

be merged, in order to reduce the number of descrip-

tors per part (ideally one superellipsoid per part).

This procedure minimises the number of superel-

lipsoids without increasing the whole distortion. The

topological relations between 3D points are taken into

account while deciding to merge or not. The following

steps are processed (figure 6):

1. For each subset of points, we determine the list of

neighbouring subsets. The neighbourhood con-

sidered here is particularly large: a subset is

neighbour of another subset if it is the direct (con-

nex) neighbour (first order) or if it is the neigh-

bour of a direct neighbour (second order).

2. We try to merge each subset with each of its

neighbours. We merge the couple which min-

imises the approximation distortion D if this one

is less than a threshold T ′ and if the sum of the

size of the two superellipsoids is not smaller than

the size of the new superellipsoid. The process

continues from step 3, otherwise if all the distor-

tions are greater than T ′, the process is over.

3. A new set of superellipsoids is obtained. We go

back to step 1.

Testing all couples of neighbours before to merge

is tiresome, but this permits to be independant of the

order in which merges are processed. Special care is

taken to the size of the superellipsoids. Imagine that

the points set represents a table, the procedure may try

to merge two or more legs of this table. The approx-

imation of the “two legs” will be usually a plate. As

the legs are slim, the distortion will be small because

all points will be near the surface: each leg at one ex-

tremity of the plate. The criteria that helps us to reject

this kind of merge is the increase of the volume. The

(a) (b)

Figure 6: (a) The merge procedure starts. (b) Two su-

perellipsoids are merged. The final descriptor is the

union of two superellipsoids.

size of the plate is usually much greater than the sum

of the size of the two legs (figure 7).

(a) (b)

Figure 7: Merging (a) without size control (b) with

size control

4.2.3 Conclusion

Our new segmentation method seems to be more

adapted to our unorganised and irregular data than

the former region growing approach. In our approach

there is no reference to an a priori points relationship

knowledge like neighbourhood.

Furthermore, the split and merge algorithm permits

to keep topological relations between superquadrics.

In fact, during the process, the improving descriptor

is not only a set of unorganised superellipsoids but

a graph where the node are superellipsoids and the

edges label a neighbourhood relation. This is probably

more difficult to arrange hierarchically the descriptors

issued from the region growing process, because of the

descriptor progression way, and the fact that seeds can

intersect themselves.

5 RESULTS

We applied the two approaches on synthetic 3D ob-

jects obtained by combining superellipsoids. The data



points set are sampled on the surface of these objects

(figures 8a, 9a, and 10a).

For the object of figure 8, the final descriptor ob-

tained with the two methods has the same num-

ber of primitives than the original synthetic model.

The whole distortion is equivalent for these two ap-

proaches. In figure 9, the split and merge approach

finds the exact number of superellipsoids (4) whereas

the region growing conducts to a redundant descrip-

tor (15 primitives). Note that the distortion is higher

although the descriptor is more complex. Figure 10

gives another example with the split and merge method

which converges perfectly to the synthetic data set

with a quite good quality of approximation.

(a) (b) (c)

(d) (e) (f)

Figure 8: Model A (a) Original data (1746 points) (b)

The end of the split step (c) Split and merge result

(D = 0.0020) (d) Region growing seeds (d) An in-

termediate step of region growing (f) Region growing

result (D = 0.0051).

The split and merge approach was applied on real

data : the Stanford Bunny (figure 11a) and a duck

from the MPEG 7 3D objects database (figure 11c).

The obtained results let out a limit of the method. It

works perfectly as long as the parts of the object are

shaped like superquadrics. When trying to segment

objects with not so well defined boundaries, it gives

only a rough idea of the whole shape (figure 11 ). That

may be a problem for precise reconstruction applica-

tion, but is not so serious for indexation and objects

comparison.

To talk about implementation, note that every grow-

ing process for each seed can be computed separately

in the region growing method. In the same manner, the

approximation of every couple of neighbours during

(a) (b) (c)

(d) (e) (f)

Figure 9: Model B (a) Original data (2433 points) (b)

The end of the split step (c) Split and merge result

(D = 0.00005) (d) Region growing seeds (e) An in-

termediate step of region growing (f) Region growing

result (D = 0.022)

the merge procedure is realised independently. Then,

parallel computing can be easily used. With our imple-

mentation and without any other special optimisations,

the whole process takes a few minutes to achieve using

standard PC configurations.

6 CONCLUSION

A new model for representing an unorganised 3D data

points set is presented. This model is a set of superel-

lipsoids whose union leads to an efficient representa-

tion of the 3D objects. The basic model (superellip-

(a) (b)

Figure 10: Model C (a) Original data (2996 points) (b)

Split and merge result (D = 0.00039).



(a) (b)

(c) (d)

Figure 11: (a)The Stanford Bunny (8135 points) (b)

Split and merge result (D = 0.019) (c)The MPEG 7

Duck (3500 points) (d) Split and merge result (D =
0.016). .

soid) is simple and compact. Indeed, only 11 parame-

ters are necessary to describe such a model.

Two competing segmentation and modeling meth-

ods are developed using the set of superellipsoids. The

first one is a region growing approach which has not

proved to be very effective. It is indeed very sensitive

to the initialisation process and also to the parameters

needed for region growing. The second method is a

split and merge approach that leads to satisfactory re-

sults both in terms of compacity (final number of su-

perellipsoids) and approximation error obtained.

This second method seems promising for the appli-

cation domains such as 3D object compression and es-

pecially 3D object indexing and retrieval. The split

and merge algorithm allows to keep the topological

relations between the superellipsoids. This leads to a

graph. In other words, we can use the graph theory

to compare graphs and thus to measure the similarity

between 3D objects. This aspect is currently under in-

vestigation.
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