
Enhancements of Viterbi Search for Fast Unit Selection Synthesis

Daniel Tihelka, Jiřı́ Kala, Jindřich Matoušek

Dept. of Cybernetics, Faculty of Applied Sciences, University of West Bohemia, Czech Rep.
dtihelka@kky.zcu.cz, jkala@kky.zcu.cz, jmatouse@kky.zcu.cz

Abstract
The paper describes the optimisation of Viterbi search used in
unit selection TTS, since with a large speech corpus necessary
to achieve a high level of naturalness, the performance still suf-
fers. To improve the search speed, the combination of sophis-
ticated stopping schemes and pruning thresholds is employed
into the baseline search. The optimised search is, moreover, ex-
tremely flexible in configuration, requiring only three intuitively
comprehensible coefficients to be set. This provides the means
for tuning the search depending on device resources, while it
allows reaching significant performance increase. To illustrate
it, several configuration scenarios, with speed–up ranging from
6 to 58 times, are presented. Their impact on speech quality
is verified by CCR listening test, taking into account only the
phrases with the highest number of differences when compared
to the baseline search.
Index Terms: speech synthesis, unit selection, Viterbi search,
space search pruning

1. Introduction
The unit selection technique is known for its ability to produce
nearly natural-sounding synthetic speech, but also for its huge
hardware requirements necessary to achieve the quality. Speech
corpora containing tens of hours of speech are not rare in this
technique. While storage and memory do not represent such a
big limitation, finding the best candidate sequence in the graph
of candidate instances may require a not-negligible amount of
time. This is especially crucial for server applications which
must dispatch several simultaneous synthesis requests as fast as
possible.

In the search process, it is the complexity of the join cost1

computing which consumes the largest part of the computation
time, as the cost must be evaluated in run-time, one order of
magnitude more often than the target cost2. In the past, various
techniques attempting to bypass the join cost computing were
presented. For example, the most frequent subset of join cost
values can be cached to avoid their computing [1]. This does
not affect the selected sequence, as all candidates are still con-
sidered in the selection process, but due to cache search com-
plexity and its size, it is suitable rather for smaller corpora. Al-
ternative approaches reduce the number of computations by the
reduction of unit candidates number, employing miscellaneous

This work was supported by the Grant Agency of the Czech Re-
public, project No. GAČR 102/09/0989, and by the Ministry of Edu-
cation of the Czech Republic, project No. 2C06020. The access to the
MetaCentrum computing facilities was supported by the research intent
MSM6383917201.

1Evaluates unit candidates join smoothness; also known as concate-
nation cost.

2Evaluates prosodic properties of units related to what is required.

Figure 1: The schematic diagram of units and theirs candidates
searched in unit selection by Viterbi algorithm.

preselection techniques based on various statistics [2, 3]. This,
however, may change the selected sequence, as some candidates
are excluded from the selection.

An original approach has been chosen in [4], where the
Viterbi search (used in a majority of unit selection systems, in-
cluding those referenced) was enhanced by two stopping crite-
ria. They, in general, do not allow the computation of join cost
in cases where no better cumulative cost3 can be found for a
unit. Our present paper is based on this approach, which is fur-
ther extended. Contrary to [4], where only algorithm speed was
evaluated, we have also carried out listening tests to evaluate the
impact of various algorithm settings on the quality of generated
speech.

2. Viterbi search algorithm optimisation
Having the sequence of I units to synthesize, let in the paper

TCi(k) ≥ 0, k = 1, . . . , Ki, i = 1, . . . , I

represents the value of target cost computed for the k-th candi-
date of i-th unit (matched against the target specification of the
i-th unit),

JCi−1,i(k, l) ≥ 0, k = 1, . . . , Ki−1, l = 1, . . . , Ki,

i = 2, . . . , I

is the value of join cost computed between k-th candidate of
unit i−1 and l-th candidate of unit i (all Ki−1Ki combinations
of candidates are computed and examined), and

C∗

i (k),

K∗

i (k), k = 1, . . . , Ki, i = 1, . . . , I

contains the best cumulative cost for the k-th candidate of i-th
unit, and the index of its best predecessor, computed as

C∗

i (k) =

(
TC1(k), i = 1

min
l

“
C∗

i−1(l) + JCi−1,i(l, k) + TCi(k)
”
, i > 1

K∗

i (k) =

(
undefined, i = 1

arg min
l

“
C∗

i−1(l) + JCi−1,i(l, k) + TCi(k)
”
, i > 1

3The sum of TC and JC for a sequence of candidates.

Copyright © 2010 ISCA 26-30 September 2010, Makuhari, Chiba, Japan

INTERSPEECH 2010

174

2.1. Baseline search algorithm

For the sequence of i = 1, . . . , I units and their target specifi-
cations, the scheme of the basic Viterbi is:

1. Initialise for the first unit:

foreach k = 1, . . . , K1

compute TC1(k)

set C∗

1 (k)

2. Compute for all other units i = 2, . . . , I:

foreach k = 1, . . . , Ki

foreach l = 1, . . . , Ki−1

compute JCi−1,i(k, l)

compute TCi(k)

set C∗

i (k) and K∗

i (k)

3. Find the sequence of the best candidates:

set k∗

I
= arg min

k
C∗

I
(k)

backtrack k∗

i = K∗

i+1(k∗

i+1)

where k∗

i is the index of the i-th unit candidate used to create the
synthetic speech.

The basic scheme can be substantially (see Table 1) improved
by a simple heuristics – when the cumulative cost of l-th prede-
cessor of the current candidate k is larger than the lowest cumu-
lative cost of the candidate k obtained so far, the join cost to the
l-th candidate does not have to be evaluated, since the candidate
will never by chosen as the best predecessor K∗

i (k) (whatever
the join cost value, see C∗

i (k) computing). The modified search
then works as:
1. Initialise for the first unit equally to the basic Viterbi algorithm.

2. Compute for all other units i = 2, . . . , I:

foreach k = 1, . . . , Ki

foreach l = 1, . . . , Ki−1

if C∗

i−1(l) > min
j=1,...,l−1

“
C∗

i−1(j) + JCi−1,i(k, j)
”

set JCi−1,i(k, l) = ∞

else
compute JCi−1,i(k, l)

compute TCi(k)

set C∗

i (k) and K∗

i (k)

3. Find the sequence of the best candidates equally to the basic Viterbi.

This simple condition speeds up the search approximately by
factor 4, and therefore, it has been used in ARTIC TTS [5] since
embedding the unit selection approach. Thus, in the paper it will
be referred to as baseline algorithm.

2.2. Enhanced search algorithm

In [4], the Viterbi search was modified with the aim to avoid
examining unnecessary joins, while the correct natural expecta-
tion may be to neglect the paths with very bad cumulative cost.
First of all, the authors defined beam width pruning constant
KΘ, which limits the number of candidates for each unit i to the
(globally) defined number. Moreover, two admissible stopping
criteria were embedded into the algorithm, which, similarly to
the heuristic stopping in the baseline algorithm, stop the search

in cases where no better cumulative cost can be found. Both cri-
teria expect the C∗

i being sorted in ascending order4, and work
as follows:
Admissible stopping of candidates evaluation (called ad-

missible stopping for the beam by the authors) can
stop the examining of candidates for each unit i when
Ki > KΘ, and when a candidate k > KΘ cannot reach
lower cumulative cost than the highest cumulative cost
reached among candidates k = 1, . . . , KΘ. If such
candidates are to be evaluated, they would appear under
the KΘ threshold anyway, after the cumulative costs
sorting — see Figure 2.
To determine the candidates not to be examined, the
value of minimum possible join cost among all candi-
date combinations for a particular unit join

JCmin
i−1,i = min

k,l

“
JCi−1,i(k, l)

”
k = 1, . . . , Ki−1,

l = 1, . . . , Ki

must be known. It can be pre-computed in advance for
all meaningful unit joins (e.g. for diphones [ab–bc], but
not for [ab–cd]), and its value will be 0 for unit joins
having at least one candidate combination neighbour-
ing in the corpus. Accordingly, if the value is not pre-
computed, it can simply be set to 0

Figure 2: The scheme of admissible stopping of candidates eval-
uation. Stop search if for given TCi(k) we cannot get a better
cost than the dashed line. The symbol ∗ represents the index of
the best predecessor of the candidate.

Admissible stopping of JC computing (called admissible
stopping in local minimisation by the authors) can stop
the join cost computing, with no approximation error,
when no predecessor l > 1 of a candidate k can reach
lower cumulative cost than the lowest C∗

i (k) reached
for j = 1, . . . , l − 1 so far — see Figure 3.
The idea is the same as the heuristics in the baseline al-
gorithm, although it is more sophisticated in benefiting
from C∗

i−1 sorted order and the use of JCmin
i−1,i.

The search algorithm with both search stopping criteria, as pre-
sented in [4], now looks as follows:
1. Initialise for the first unit equally to the basic Viterbi algorithm, plus

do the following

** Keep onlyKΘ best candidates **
sort C∗

1 (k)
set K1 = KΘ

4Note that the authors use term score in [4], instead of more common
cost we use in this paper. Due to the reversed relation of the terms, we
inverted the descriptions to be valid for the use cost.

175

Figure 3: The scheme of admissible stopping of JC computing.
Stop search if we cannot get a better cost than the dashed line,
while TCi(k) is constant ∀l here.

2. Compute for all other units i = 2, . . . , I:

foreach k = 1, . . . , Ki

compute TCi(k)

** Admissible stopping of candidates evaluation **
if k > KΘ and

C∗

i−1(1) + TCi(k) + JCmin
i−1,i > max

j=1,...,KΘ

“
C∗

i (j)
”

set Ki = k
next k

foreach l = 1, . . . , Ki−1

** Admissible stopping of JC computing **
if C∗

i−1(l) + JCmin
i−1,i > min

j=1,...,l−1

“
C∗

i−1(j) + JCi−1,i(k, j)
”

break
else

compute JCi−1,i(k, l)

set C∗

i (k) and K∗

i (k)

** Keep onlyKΘ best candidates **
sort C∗

i (k)
set Ki = KΘ

3. Find the sequence of the best candidates equally to the basic Viterbi.

This optimisation itself is, even with KΘ = ∞ (i.e. no prun-
ing), approximately 1.5-times faster than the baseline algo-
rithm. However, for lower resource devices or highly loaded
servers, it is still not sufficient.

2.3. Pre-pruning after target cost evaluation

By the analysis of the optimised selection behaviour, using the
corpus and phrase set described in Section 3, we have found
that even for JCmin set, the majority of candidates are still
searched for k > KΘ in admissible stopping of candidates eval-
uation before the loop is left. More specifically, it is 99.8% for
KΘ = 400 and 99.7% for KΘ = 200, where 100% is the to-
tal number of candidates searched to synthesise all the phrases:P

phrases
P

i
Ki. The reason is simple — the corpus size and its

rich diphone coverage.
To further enhance the selection speed, we, therefore, have

to employ one additional pruning constraining the maximum
number of candidates examined in each step i well before KΘ

search stopping is applied. This pre-pruning is controlled by
constant KT increased by K% percent of unit candidates, i.e.
K%(n) = n ∗ (K%/100). For meaningful pruning configura-
tions, it is feasible to ensure:

KΘ < KT + max
i

“
K%(Ki)

”

while setting KT = ∞ switches the pre-pruning entirely off. In
this way, the upper limit of the candidates number searched after
KΘ threshold can be defined while still keeping the candidates
cardinality for each unit into account.

The pre-pruning is thus embedded into the optimised
Viterbi search from the previous section as follows:
1. Initialise equally to the optimised algorithm from Section 2.2.

2. Compute for all other units i = 2, . . . , I:

foreach k = 1, . . . , Ki

compute TCi(k)

** Keep onlyKT + K%(Ki) best candidates **
sort TCi(k)
set Ki = min(KT + K%(Ki), Ki)

3. Continue by step 2 in the optimised algorithm from Section 2.2, us-
ing the already computed TCi values.

4. Find the sequence of the best candidates equally to the basic Viterbi.

3. Selection speed–up evaluation
All the experiments described further were carried out with
our speech corpus consisting of 12, 277 recorded sentences
with 17 hours and 49 minutes in duration excluding pauses [6].
As the constants KT , K% and KΘ provide extreme flexibility
in configuration, we need some cue points from which the
impact of search configuration on the speed can be extrapo-
lated. Therefore, we analysed various constant combinations
uniformly spread through the configuration space5, from which
we have selected 4 configuration scenarios for further analysis:
conservative KT =600, K% =10, KΘ =500

optimal 400, 10, 400
aggressive 200, 10, 100
extreme 100, 10, 50

To measure the speed of the basic, baseline, and the op-
timised search, we have selected 40 phrases at random and
logged the number of join cost computations for each individual
search – the measure of speed–up by the comparison of join cost
computation numbers excludes the dependency on actual hard-
ware load (and its changes), and allows running several experi-
ments in parallel. To synthesise the 40 phrases, 1821 candidates
(1772 unique) were joined, while the number of candidates for
each unit in the sequence was 1027 on average. This is a signif-
icantly larger test set, as well as significantly larger corpus, by
means of which the results are collected, than that presented in
[4]; the results of all the algorithms are summarised in Table 1.

Table 1: The comparison of speed–up for all the examined
search versions, measured on the number of join cost compu-
tations. For the basic version of search, the JC count was
6, 042, 290, 874 and TC count was 3, 286, 727.

KT , K%, KΘ JC count To baseline To basic
baseline 1,443,475,302 – 0.24

∞, 0, ∞ 947,574,039 1.5 6.4
600, 10, 500 249,342,268 5.8 24.2
400, 10, 400 172,804,926 8.4 35.0
200, 10, 100 54,478,568 26.5 111.0
100, 10, 50 24,717,692 58.4 244.5

5The details are not very interesting as regards this paper, as basi-
cally any constant combinations with reasonable values spread could be
chosen, displaying the same tendencies.

176

Let us note that all numbers were collected with JCmin pre-
computed. However, it does not have any significant impact on
the results, as presented at the beginning of Section 2.3.

4. The impact on synthetic speech quality
The evaluation through listening tests is necessary for a reliable
conclusion about the impact of various pruning configurations
on the synthetic speech, as it can be assumed that the fewer units
remain in the selection process, the lower the speech quality will
be. The important issue is the choice of sentences for the test,
as carrying out the test on a small number of randomly selected
sentences cannot in general ensure the validity of results.

Therefore, for the baseline algorithm and for all the prun-
ing configurations described in Section 3, we have synthe-
sised more than 500, 000 sentences, containing 965, 905 unique
phrases, and the unit candidates chosen for each synthesised
phrase have been logged. Then we have matched the phrases
from the optimised Viterbi search to its baseline version, and
excluded all the phrases consisting of the equal candidate se-
quences (each candidate was unambiguously identified by its
name and position in the speech corpus). The number of re-
maining phrases is shown in Table 2.

Selected sequences in the differing phrases have been then
compared candidate-by-candidate, and scored according to the
number of different candidates (relative to the number of can-
didates in the phrase) and the ratio of join points (where candi-
dates not neighbouring in the corpus are concatenated). Then,
for each pruning configuration independently, 10 + 10 phrases,
ranging from 5 to 10 words, with the worst score have been cho-
sen, resulting in 80 unique phrase-pairs for the listening test.

Such an approach is fairly unique, as it gives us the ex-
act number of cases where both approaches compared produce
equal speech which does not have to be tested then. Moreover,
regarding the differing variants, it focuses on the worst cases
(those most differing from the baseline), giving us the most pes-
simistic estimate of the evaluated system behaviour. Let us also
note that according to the restriction of listening test scale, when
the number of differing sentences is increasing, the reliability of
such a selection approaches in limit6 random sentence selection
which is still the best one in the case of no prior knowledge of
the data.

In the test, we had 20 participants without any known hear-
ing problems, who have compared all the 80 phrase-pairs, shuf-
fled by random with random AB/BA ordering, and evaluated
them on 5-point Comparison Category Rating scale:

-2 A variant sounds much better
-1 A variant sounds better
0 no preference between A and B

1 B variant sounds better
2 B variant sounds much better.

The results were then normalised to A be the baseline system
and B be one of the optimised variants.

It can be seen from Table 2 that considering the comparison
of the most differing variants of synthetic speech, the search
optimisations does not have any negative impact on its quality.
Surprisingly, it is true even for the the most “aggressive” con-
figuration (more than 58× faster), although one may object that
due to the large number of differing phrases in that case, we
cannot be sure that some other phrases would not show serious
quality deterioration. Still, such a choice is better than random

6The limit is here the case when all the sentences differ equally.

selection, and standard deviation and Figure 4 confirm that lis-
teners tend to choose the answer “no preference” most of the
time, and its nearest neighbours roughly equally, whatever the
search configuration evaluated.

Table 2: The comparison of the selected search configurations
to the baseline. The “φ score” column shows the average
listener’s CCR score and its standard deviation σ, the “diff.
phrases” shows the number and percentage of the phrases dif-
fering from the baseline in at least one unit.

KT , K%, KΘ φ score +/−σ diff. phrases
600, 10, 500 -0.036 +/−0.831 46,186 (4,8%)
400, 10, 400 -0.044 +/−0.886 75,958 (7.8%)
200, 10, 100 0.099 +/−0.842 478,434 (49.5%)
100, 10, 50 -0.068 +/−0.810 692,417 (71.7%)

−2 −1 0 1 20 %

20 %

40 %

60 %
 600, 10, 500
 400, 10, 400
 200, 10, 100
 100, 10, 50

Figure 4: The histogram of listening test scoring distribution.

5. Conclusion
The proposed Viterbi search enhancements can significantly
speed–up the the search in unit selection TTS system, with
hardly noticeable impact on the quality of synthetic speech.
This has been confirmed by the larger–scale listening test, fo-
cusing on the cases when the enhanced selection differs the
most significantly from the baseline variant, which gives us the
most pessimistic estimate of the quality.

Moreover, the search is extremely flexible in configuration,
while there are only three intuitively comprehensible coeffi-
cients, which can be easily explained even to speech synthesis
non-experts.

6. References
[1] Beutnagel, M., Mohri, M., Riley, M., “Rapid unit selection from

a large speech corpus for concatenative speech synthesis”, in Pro-
ceedings of EUROSPEECH’99, vol. 2, Budapest, Hungary, 1999,
pp. 607–610.

[2] Hamza, W., Donovan, R., “Data-driven segment preselection in
the IBM trainable speech synthesis system”, in Proceedings of
ICSLP 2002, Denver, Colorado, USA, 2002, pp. 2609–2612.

[3] Matoušek, J., Tihelka, D. and Hanzlı́ček, Z.: “Reducing footprint
of unit selection TTS system by excluding utterances from source
speech corpus”, in Proceedings of 19th Czech-German Workshop
on Speech Processing, Prague, Czech Republic, 2009, pp. 92–98.

[4] Sakai, S. Kawahara, T. Nakamura, S., “Admissible stopping in
viterbi beam search for unit selection in concatenative speech syn-
thesis”, in Proceedings of IEEE-ICASSP, Las Vegas, US, 2008,
pp. 4613–4616

[5] Matoušek, J., Tihelka, D. Romportl, J.: “Current state of Czech
text-to-speech system ARTIC”, in Text, Speech and Dialogue,
ser. Lecture Notes in Artificial Intelligence. Berlin, Heidelberg:
Springer, 2006, vol. 4188, pp. 439–446.

[6] Matoušek, J., Tihelka, D. Romportl, J.: “Building of a speech cor-
pus optimised for unit selection TTS synthesis”, in Proceedings
of LREC 2008, Marrakech, Morocco, 2008.

177

