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Abstract 

This paper describes data-driven modelling of all three basic 
prosodic features – fundamental frequency, intensity and 
segmental duration – in the Czech text-to-speech system 
ARTIC.  The fundamental frequency is generated by a model 
based on concatenation of automatically acquired intonational 
patterns. Intensity of synthesised speech is modelled by 
experimentally created rules which are in conformity with 
phonetics studies. Phoneme duration modelling has not been 
previously solved in ARTIC and this paper presents the first 
solution to this problem using a CART-based approach.  

1. Introduction 

Concatenative text-to-speech (TTS) synthesis of the Czech 
language has been researched, elaborated and implemented 
already for a significant period of time. During this period 
various prosody models have been proposed, yet at least to our 
knowledge there has not been implemented and practically 
applied any complex data-driven (in the sense of automatic 
training using very large real speech databases) prosody model 
of all three basic prosodic characteristics (i.e. fundamental 
frequency (F0), intensity and segmental duration altogether). 

This paper tries to present such a prosody model 
implemented in the TTS system ARTIC, developed at the 
Department of Cybernetics, University of West Bohemia [1]. 
The model is formally based on a linguistically motivated 
structural prosody description framework, which explicitly 
separates prosodic function from its form. The fundamental 
frequency generation part of the model is based on our data-
driven intonation model previously introduced for example in 
[4], whereas intensity modelling is rule based. The most 
recent advance presented in this paper consists in 
incorporating a CART-based duration model trained on a 
large speech corpus. 
 

2. Prosody description framework 

The prosody model used in TTS system ARTIC is based on 
explicit distinction between prosodic form and function. The 
importance of such a form of linguistic stratification has 
already been frequently discussed (let us at random mention 
for instance [2]). 

2.1. Prosodic form and function 

In our conception each input sentence is represented in form 
of a prosodic structure. The prosodic structure is a result of 
parsing a sentence using a specific set of linguistically 
motivated transformation rules collectively called prosodic 
grammar. The prosodic structure of a sentence formally 
corresponds to a prosodic function while a prosodic form (i.e. 

how prosody is eventually realized by acoustic means – 
“surface” prosody) is then derived from it (i.e. the allowed 
prosodic forms depend purely on the prosodic function 
together with phonotactics restrictions, not on the text or 
sentence itself). 

In other words – the prosodic structure determines a 
parameterisation of input text and this parameterisation is 
then used in a system for prosodic form assignment (i.e. a 
classifier, knowledge base, unit selection algorithm, etc.). It is 
not a goal of this paper to fully describe the prosodic 
structures and grammar – the discussion on this topic can be 
rather found in [3]. The following paragraphs just briefly 
summarise some information necessary as a background for 
our TTS prosody model. 

2.2. Prosodic grammar 

The prosodic grammar tries to capture structuring of a 
sentence relevant for prosody functioning. Using generative-
based rules it decomposes a sentence into its immediate 
constituents (terminals and non-terminals) and mutual 
relations between these constituents formalise the prosodic 
function. The grammar (or rather its equivalent Chomsky’s 
normal form) is designed to be implemented in a stochastic 
grammar parser, which is now being developed and tested. 
We distinguish the following language units serving as the 
grammar terminal and non-terminal constituents 
(parenthesised symbols are used in the respective grammar 
rules): 

 
Prosodic sentence (PS) 

Prosodic sentence is a prosodic manifestation of a 
sentence as a syntactically consistent unit, yet it can also be 
unfinished or grammatically incorrect. 

 
Prosodic clause (PC) 

Prosodic clause is such a linear unit of a prosodic 
sentence which is delimited by pauses.  A prosodic sentence 
generally consists of more prosodic clauses. 

 
Prosodic phrase (PP) 

Prosodic phrase is such a segment of speech where a 
certain intonation scheme is realized continuously. A prosodic 
clause generally consists of more prosodic phrases. 

 
Prosodeme (P0), (Px) 

Prosodeme is an abstract unit established in a certain 
communication function within the language system. We have 
postulated that any single prosodic phrase consists of two 
prosodemes: so called “null prosodeme” and “functionally 
involved prosodeme” (where (Px) stands for a type of the 
prosodeme chosen from the list shown below), depending on 
the communication function the speaker intends the sentence 



to have. In the present research we distinguish the following 
prosodemes (for the Czech language; other languages may 
need some modifications): 

 
• P0 – null prosodeme 

• P1 – prosodeme terminating satisfactorily (a reply is not 
expected) 

o P1-1 unmarked 

o P1-2 marked directive 

o P1-3 marked expressive 

o P1-4 specific 

• P2 – prosodeme terminating unsatisfactorily (a reply is 
expected) 

o P2-1 unmarked (supplementary, “wh-questions”) 

o P2-2 marked declaratory (“yes/no questions”) 

o P2-3 marked disjunctive (questions with disjunctive 
“or”) 

o P2-4 specific 

• P3 – prosodeme nonterminating 

o P3-1 unmarked 

o P3-2 marked bound (involved in a function 
primarily held by P1 or P2) 

o P3-3 specific 

 
Prosodic word (PW) 

Prosodic word (sometimes also called phonemic word) is 
a group of words subordinated to one word accent (stress). 
Languages with a non-fixed stress position would need a 
stress position indicator too. 

 
Semantic accent (SA) 

By this term we call such a prosodic word attribute, which 
indicates the word is emphasised (using acoustic means) by a 
speaker. 

 
There are two more terminal symbols used (“$” and “#”) 

standing for pauses differing in their placement (inter- and 
intra-sentential). The terminal symbol (wi) stands for a 
concrete prosodic word from a lexicon and ∅ means an empty 
terminal symbol. Note that Px is only an “abbreviation” for 
each prosodeme (i.e. P1-1, etc.). The rules should be 
understood this way: “(PC) → (PP) {1+} # {1}” means that 
the symbol (PC) (prosodic clause) generates one or more (PP) 
symbols (prosodic phrases) followed by one # symbol 
(pause). 
 

(PS) → (PC) {1+} $ {1} 

(PC) → (PP) {1+} # {1} 

(PP) → (P0) {1} (Px) {1} 

(P0) → ∅ 

(P0) → (PW) {1+} 

(Px) → (PW) {1} 

(Px) → (SA) (PW) {1+} 

(PW) → wi {1} 

Figures 1 and 2 show two possible prosodic structures of 
the Czech sentence: “It is not a singular transformation of a 
long vowel into a diphthong.” However, the second variant 
bears a semantic accent on the word “singular” so as to bring 
forward the contrastive focus as the opposite of e.g. 
“frequent”. 

 
Figure 1: Czech sentence prosodic structure in a neutral 

form. 

 

 
Figure 2: Czech sentence prosodic structure with a 

semantic accent. 

It is not a simple task to infer the full prosodic structure 
from the surface form of a sentence. This can be done using a 
probabilistic grammar parser similar to a parser used for 
syntax analysis – on one hand the prosodic parser is simpler 
due to far less complex grammar, but on the other hand the 
relations among prosodic constituents are not as clear and 
straightforward as among syntactic constituents (in case of 
prosody many phenomena are facultative, singular or even 
random). Hence the goal of the prosodic parser is not to create 
couple of “definitely correct” prosodic structures of a given 
sentence; rather it should delimit a class of prosodic structures 
acceptable in a given context. 

Because of such peculiarities we have not yet 
implemented fully working automatically trained parser into 
ARTIC and the task of prosodic structure parsing is carried 
out by a set of heuristic rules. These rules are obviously far 



from performing optimally (for example they are very 
inaccurate in prosodic phrase detection and semantic accents 
have to be omitted at all) but they are treated as a temporary 
solution. 

3. F0 modelling 

It is beyond the scope of this paper to fully describe the data-
driven model of F0 implemented in ARTIC – more 
information on this (including the model evaluation) can be 
found in [4]. However, the basic idea is in conformity with 
the aforementioned considerations about duality of prosodic 
form and function. 

From the formal point of view all information about 
prosodic function of each word is encoded in the prosodic 
structure itself and hence the position of the word within the 
structure. Therefore the prosodic form realised by means of 
F0 behaviour depends purely on positions of the prosodic 
words within the prosodic structure of a given sentence. 

The position of a prosodic word (“position” not in the 
exact meaning – rather we would use it in the sense of mutual 
configuration between prosodic words and their parent 
prosodic constituents) is described by a set of features (we 
refer to it as description array – DA) which include for 
instance: index of the prosodic word within its neighbours 
with the same parent node, type of its parent node and its 
index (and this recursively up to the root node), and also 
various quantitative features concerning syllabic, stress and 
phoneme structure of the word. More details on DA can be 
found in [4]. 

The relation between prosodic function (formulated 
through DA) and its form is represented by a function in the 
mathematical sense, which we refer to as realization function 
(because it realizes the function through the form). The 
realization function is created from a suitable speech corpus 
(ideally the same one used for a particular speech segment 
database creation) with transcribed utterances, prosodic 
structure tags (i.e. the transcribed sentences are prosodically 
parsed) and F0 contours (e.g. acquired by electroglottograph 
measuring). Speech must be segmented at least on the level of 
prosodic words (i.e. time intervals of prosodic words must be 
known). 

The F0 contours are segmented according to the prosodic 
words – this way the F0 contour of each prosodic word token 
is acquired (let us call such a segment a sub-contour). The 
corpus used in ARTIC consists of 5,000 sentences involving 
55,655 sub-contours which are then clustered into so called 
cadences (abstract intonational patterns – as will be described 
further in the text). 

3.1. Realization function 

The realization function is defined as 
 

R: DA → I × pot(C) 
 

where I = { i1, …, i l} is a set of initial conditions, C = {c1, …, 
cm} is a set of cadences and pot(C) is a power set of C. 
A cadence is an intonational pattern which fits into an interval 
of a single prosodic word. The set C can also be called a 
cadence inventory. Initial conditions say where on the 
frequency scale a cadence chosen for a prosodic word starts. 

Fujisaki shows [5] that F0 can be modelled in a 
logarithmic space as a sum of outputs of two linear systems. 

In the linear space this summation corresponds to a 
multiplication of values, therefore each sub-contour (as a 
segment of a whole F0 trajectory) acquired from the corpus 
can be decomposed into two components: (a) the initial F0 
value of the sub-contour; (b) the rest of the sub-contour 
relatively to the initial value (in its multiples).  

The realization function also consists of two components. 
The first one is constructed from the corpus by linking each 
DA occurring in the corpus with the initial F0 value of the 
respective sub-contour occurring with this DA in the corpus. 
Since a particular DA is often assigned to several prosodic 
word tokens in the corpus, there are usually more possible 
initial value links. In such cases the first sub-contour with a 
given DA occurring in the corpus (supposing indeed arbitrary, 
yet constant sentence numbering) is considered – this ensures 
the synthesised prosodemes to be intonationally “consistent” 
as for the prosodic word initial conditions because the initial 
F0 values of the prosodic words within a particular 
synthesised prosodeme are all selected from the same 
sentence (otherwise it could happen that each initial condition 
in the synthesised prosodeme is selected from a different 
sentence, although with the same DA). 

The set C = {c1, …, cm} (the cadence inventory) is created 
by a clustering algorithm based on repeated bisections and 
cosine similarity function, applied on all F0 sub-contours 
from the corpus. Prior to this, the sub-contours are 
represented by vectors with the dimension x (i.e. by 
approximating each sub-contour with x equidistant points 
relatively to its initial value – this ensures sub-contour 
normalisation over time intervals and F0 values). The 
elements of C (i.e. cadences) are constructed as either 
centroids of the clusters, or there is one (or more) vector 
chosen from each cluster as its representative (using various 
methods, such as elimination of outliers according to 
Mahalanobis distance). 

We have experimented with various values of m (the 
number of cadences) ranging from 3 to 200. Good results are 
achieved for example with the number of clusters m=30. In 
this case the smallest cluster consists of 911 vectors (sub-
contours) and the largest of 3571. The cadence inventory is 
created from the cluster centroids.  

We say a cadence belongs to a particular DA provided 
that the sub-contour occurring in the corpus with this DA is 
an element of the cluster represented by the given cadence. 
The second component of the realization function is 
constructed from the corpus by linking each DA occurring in 
the corpus with the set of all cadences belonging to this DA. 
Thus if we have a prosodic word wj, then 

 
R(DA(wj)) = <i j, Cj> 

 
where i j ∈ I is the assigned initial condition and Cj ⊆ C, Cj = 
{ cj,1, cj,2, …, cj,lj} is a set of the assigned cadences. Now let 
the synthesised sentence S be given as: 
 

S:   w1 w2 … wp 
 
The resulting generated F0 contour of the sentence S is 

then constructed from the initial conditions and cadences 
given by the realization function for each prosodic word w1, 
… wp – the initial conditions are F0 values at the beginnings 
of the prosodic words and the cadences actually fill the gaps 
between neighbouring initial conditions by F0 values 



calculated as multiples of the initial conditions. As it can be 
seen from the definition of the realization function, the set of 
several suitable cadences is given for each prosodic word – 
only one of them must be chosen at a time. This is done by a 
criterion function, minimised over all combinations of 
proposed cadencies. One of the choices for the criterion 
function is for example a sum of differences of F0 values on 
the boundaries of the prosodic words – to avoid or at least 
minimise F0 discontinuities in junctures where one cadence 
ends and the next one (based on a different initial condition) 
starts. This process of cadence concatenation is described 
together with the criterion function in more detail in [4]. 

3.2. Prosodic homonymy 

One can easily see no corpus can offer all possible DAs 
and therefore it is impossible to construct the realization 
function ideally. Hence the crucial importance for the 
realization function has the relation of indistinguishableness 
[4]. Two description arrays are in the relation of 
indistinguishableness provided that their different deep 
prosodic-semantic functions can be realized by the same 
functor (i.e. same surface prosodic means) – two different 
DAs are homonymous in terms of their surface realization and 
thus mutually interchangeable. Informally: the realization 
function is defined also for those possible DAs not occurring 
in the corpus; namely if a set of appropriate cadences is to be 
determined for a DA not occurring in the corpus, another DA 
which occurs in the corpus and is homonymous according to 
the aforementioned relation, is taken instead and the set of 
cadences and initial conditions is determined for the new DA. 

A question is how to determine the relation of 
indistinguishableness. The best method is probably an 
automatic analysis of heldout corpus data – this presupposes 
that the heldout data include DAs not occurring in the training 
data (i.e. factually unobserved) and the relation of 
indistinguishableness can be determined by a feasible 
generalisation of the mutual relation between the training and 
heldout data. This generalisation can be formalised for 
instance by a specific DA space metrics which allows to find 
a homonymous DA in terms of the minimum vector distance. 

However, research in this field has not been successfully 
finished yet and thus our TTS system ARTIC must now settle 
for a workaround in the form of performing a number of 
limited perturbations of the least significant (heuristically and 
experimentally determined) components of an unobserved DA 
(e.g. exact length of a prosodic word in phonemes, exact 
number of prosodic clauses in a sentence, etc.) which 
eventually transform the unobserved DA into such a DA that 
occurs in the corpus and is very likely to be still 
homonymous. 

 

4. Intensity modelling 

It has been often discussed in Czech phonetics literature that 
intensity (or loudness – as a psychological correlate of 
intensity) is of far less importance than fundamental 
frequency with respect to suprasegmental features of speech, 
therefore our prosody model pays significantly less attention 
to it. 

Moreover, we have undertaken theoretical considerations 
of modelling intensity analogically to fundamental frequency, 
i.e. by “intensity cadencies”. However, since intensity is much 

more interconnected with segmental qualities of speech, the 
application of such a model is not as straightforward as in the 
case of fundamental frequency (intensity can be treated as sort 
of a distinguishing feature of a phoneme, unlike F0 which is 
basically present at voiced phonemes and not present at 
unvoiced phonemes). 

Considering the aforementioned, our prosody model 
currently incorporates only a simple rule for intensity 
modelling. Czech phonetics studies usually mention some 
increase of intensity (or perceived loudness) on stressed 
syllables. We have experimentally revealed that linear 
increase of speech signal amplitude by 1.3 on stressed 
syllables is well assessed by listeners evaluating the resulting 
synthesised speech. This is in conformity with [6] stating that 
stressed syllables usually feature increase of intensity level by 
1 – 3 dB. 

5. Segmental duration modelling 

All previous versions of our prosody model did not comprise 
any explicit duration modelling techniques and have been 
using only average lengths of phonemes from segmented 
speech corpus. However, in our recent research we have 
incorporated and implemented a Classification and 
Regression Tree (CART) approach for segmental duration 
modelling, mainly because of possibility of its straightforward 
application and rich experience of other research teams. Our 
experiments are similar to [7], [8] but there is one important 
difference – we do not use only one regression tree for all 
phonemes, rather we have trained an independent tree for 
each phoneme (experiments with a single universal tree have 
reached worse  score for us). 

5.1. Training data 

Training data for tree construction consists of 5,000 indicative 
sentences recorded by a female voice talent (the same data 
have been used also for the acoustic unit inventory creation 
and for fundamental frequency modelling). These recordings 
have been automatically segmented by a statistical approach 
(HMM-based). Resulting inventory counts over 400,000 
phonemes where each of them has been represented by 172 
features (as it is described further). 

5.2. Phoneme features 

For the sake of the CART-based classification each phoneme 
token (i.e. occurrence of a phoneme) is represented (or 
described) by a set of 172 features which can be 
methodologically divided into five groups. Since an 
independent tree is built for each phoneme type (the word 
“type” is used here in the sense of commonly understood 
duality “token/type” – “type” is the phoneme itself and 
“token” its textual occurrence), the phoneme type itself is not 
included among the features. 

5.2.1. Basic feature groups 

These groups of features are derived from phoneme types of 
neighbouring phonemes and their categorisation into 
phoneme classes such as vowel, consonant, fricative, plosive, 
etc. 



 
Features defined by neighbour type form the first group: 
• previous_type/next_type – the type of the previous/next 

phoneme. If the phoneme stands as the first/last one in a 
sentence, the symbol "_" (underscore) is used as a value 
of this feature. 

• previous2_type/next2_type – the type of a phoneme 
which stands over one phoneme before/after. Identically 
as in the previous case the underscore symbol is used in 
case the type of the phoneme cannot be obtained. 

 
The second group is based on membership of a phoneme type 
into specified phoneme classes. The classes are distinguished 
by various articulatory and phonational criteria (e.g. vowel 
quantity, sonority, articulation place and manner, etc.). Values 
of the features are either true or false – depending on whether 
a phoneme type is or is not a member of the given class. 

5.2.2. Feature groups based on prosodic grammar 

The next feature groups describing phonemes are based on the 
prosodic grammar described in Section 2 of this paper 
(although not all grammar attributes are used). Every sentence 
is thus structured hierarchically into the constituents resulting 
from the prosodic grammar, i.e. prosodic sentence, prosodic 
clause, prosodic phrase, prosodeme, prosodic words – and in 
addition to them – syllables and phonemes. 

The constituents are hierarchically sorted from the parent 
ones down to their children. Each of them contains one or 
more child elements. For example every phoneme stands 
somewhere in a syllable and each syllable contains one or 
more phonemes; a syllable stands in a prosodic word and each 
prosodic word contains one or more syllables. 

Features in the third group have their values derived from 
the “length” of a prosodic sentence constituent in the 
phoneme token context. This length is determined for each 
constituent by the number of its child constituents (the 
number of phonemes in a syllable, syllables in a prosodic 
word, etc.). 

The fourth group consists of features which indicate the 
position of a child constituent within its parent constituent in 
the phoneme token context – from the beginning and from the 
end of the parent constituent (the numeric representation is 
used). Again, not just the position of the constituent within its 
immediate parent is used, but the positions in the whole 
parent hierarchy are taken into account as well. 

The last group of features is similar to the previous one 
with the difference that the values are not represented by 
numbers, but positions are categorised into these possibilities: 
• FIRST/LAST – the child is positioned within its parent 

as the first/last one (from beginning) 
• MIDDLE – in other cases 

 

5.3. Training process 

The duration model training has been carried out using the 
wagon CART building program, a part of the Edinburgh 
Speech Tools Library. Root mean squared error (RMSE) and 
correlation coefficient (CORRC) values, presented in the 
evaluation further in this paper, have been therefore computed 
by wagon. 

Since our segmented speech data contain more than 
400,000 phoneme tokens, there are enough occurrences of 
each phoneme type and thus we have decided to train 
individual regression tree for each phoneme type. 

The first 80 percent of sentences from the whole corpus 
have formed a training set and the rest of the data then has 
been used for testing. 

5.4. Experiments 

Several training and evaluation experiments have been carried 
out. The very first training experiments used only some of the 
features from the groups described in Section 5.2. However, 
due to poor results the feature set has then been extended to 
the final number of 172 features. 

As described in the text above, an independent tree for 
each phoneme type is used, therefore the phoneme duration 
estimator is built as a composition of all individual regression 
trees where the root (i.e. first) questions is about the phoneme 
type. After that the algorithm continues in a standard way. 

In one of the training experiments the features based on 
phoneme classes were excluded. However, this way we have 
reached too high values of RMSE and CORRC (see Table 1) 
and thus the approach had to be improved. The next couple of 
experiments were characterised by leaving out the features 
based on the position and then also on the categorised 
position because of our hypothesis these features are strongly 
correlated. The results of these two experiments were very 
similar and – most importantly – worse than without 
excluding any features. 

The next step consisted in adding the features based on 
neighbour phoneme type and because this way we have 
achieved better results, we have expanded the feature set to 
the full form described hereinbefore. The results achieved by 
such classifier and feature configurations eventually reached 
the applicable level and are comparable to results presented 
by other reports [9], [10], [11]. 

Since our speech corpus segmentation is based on a 
statistical approach (HMM) and not conducted by human 
experts, it sometimes can happen that segment boundaries are 
placed relatively far from the position where they should be. 
To prevent these errors from negatively influencing segmental 
duration estimation we have tried to eliminate them from the 
training data by excluding phoneme tokens with statistically 
improbable duration. We have experimentally set this 
statistical relevance so that only phoneme tokens with 
duration between 5 and 95 percent fractile (computed for each 
phoneme type independently) have been included into the 
training data (sort of a “fractile pruning”). This way we have 
achieved the best results in terms of the values of RMSE and 
CORRC. 

We have also performed calculation of RMSE and 
CORRC for a “dummy” duration estimator previously used in 
our system which gives each phoneme token the length equal 
to the average length of the respective phoneme type 
computed from the training data (i.e. actually no estimator 
because each occurrence of a certain phoneme type has the 
same length). The results of this experiment are quite 
important and illustrative since they give an idea of the 
theoretically lowest acceptable classifier performance. They 
are presented in the Table 1 as well. 



5.5. Evaluation 

The first aspect of evaluation of the phoneme duration 
estimator is mathematical (or rather quantitative). RMSE and 
correlation coefficient values of the previously described 
approaches are presented in the following table. 
 

Approach RMSE CORRC 
“dummy” estimator 24,47 0,85 

excl. neighbour token classes 28,39 0,77 
all features 22,56 0,75 

all features – fractile pruning 18,89 0,92 

Table 1: Duration model performance assessment 

In comparison with results reported by other studies based 
on CART (see the Table 2), our experiments have come out 
slightly better (as for RMSE and CORRC). One cannot judge 
(concerning current research and evaluation methodology and 
techniques) whether this is a language or even speaker 
dependent phenomenon, or our set of features performs really 
better (the influence of the language is indubitable – e.g. more 
conservative duration behaviour in the Czech language in 
comparison with English). However, our model is still not in 
its final version and we will continue to analyse the results in 
more detail. 
 

Language [source] RMSE CORRC 
German [9] 22,71 0,83 

English [10] (voice lja) 21,00 0,78 
English [10] (voice rjs) 20,00 0,80 
English [10] (voice erm) 24,00 0,82 

Korean [11] 26,48 0,73 
Czech [7] 20,30 0,79 

Czech – this paper 18,89 0,92 

Table 2: Results comparison with other studies 

The second, for our work actually more important aspect 
of the evaluation is overall quality of produced synthetic 
speech. We have not yet carried out formal inter-subjective 
listening tests which quantitatively represent perceptional 
difference between the baseline “dummy” estimator and the 
evaluated one. However, according to informal judgement 
based on listening to synthesised sentences our CART 
estimator with all features and fractile pruning performs same 
or better than the baseline technique. 

6. Conclusion 

The research concerning F0 modelling is currently focusing 
mainly on the issues connected with prosodic homonymy. We 
have been able to prove that the current version of synthesised 
intonation is very well assessed and we expect that further 
improvement of prosodic structure parsing brings in more 
naturalness, especially in the field of semantic coherence of 
the synthetic speech. The presented approach in duration 
estimation has also performed well in our case and future 
work in this area will involve mainly more precise perceptual 
evaluation and also accuracy improving. 
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