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ABSTRACT

This paper focuses on a fast and effective model for range images segmentation and modeling. The
first phase is based on the well-known Simoncelli’s steerable pyramid, useful to distinguish image
information from noise. Gradient modulus and phase information is then exploited for achieving
edges characterizing objects. Modeling is faced through superquadrics recovery. In this case a fast
and simple procedure to estimate their free parameters is proposed. Achieved results on simple
objects show that our model is simple, fast and robust to noise.
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1 INTRODUCTION
Recovery of geometric shapes from a real world
scene represents a challenging as well as compli-
cated topic in Computer Vision. Its realization
comes from the desire of ”understanding”, or at
least, trying to catch and decode the knowledge
of a real scene. Nonetheless, it is at the same time
very complicated since it is equivalent to link low
and high level experience.

A classical way to solve this problem consists of
firstly segmenting and then modeling range im-
ages. Approaches avoiding segmentation phase
proposed in literature usually result quite compu-
tationally expensive — see for instance [Leo97a].
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On the other hand, segmentation based ap-
proaches [Hoo96a] strongly depend on a correct
edge detection. Therefore some preprocessing are
often required for achieving satisfying results.

This paper deals with a classical two phases
approach and develops the idea proposed in
[Che03a]. Simoncelli’s wavelet pyramid [Sim92a]
is performed for image segmentation while su-
perquadrics are employed for shape recovering
based on primitives [Bar81a].

We outline that both segmentation and modeling
phases have to mainly account for both fastness
and accuracy.

Multiscale edge detection is not a novelty for
range images and a lot of papers appear in lit-
erature — see [Bur98a] for a useful taxonomy. As
a matter of fact, wavelets seem to be an effec-
tive tool for this task. They are computation-
ally attractive and robust to noise, often affect-
ing this kind of images. In particular, steerable
wavelets provide a suitable object representation
filtering the input image along different orienta-
tions. This feature is strongly exploited for ob-
taining cleaner gradient modulus and phase infor-



Figure 1: Block scheme of a steerable
decomposition pyramid.

mation [Cal94a]. In fact, range images usually
suffer from annoying sampling noise due to sen-
sor accuracy, surface properties and viewing an-
gles [Pag02a, Bou02a]. The gradient modulus is
computed from soft-thresholded wavelet bands at
first scale level [Mal98a]. The variance of the noise
is estimated from residual high pass band of the
same pyramid. This way allows us to detect step

edges: discontinuities on the surface. On the con-
trary, crease edges are discontinuities of the sur-
face normal. They can be achieved by exploit-
ing phase information at third scale level, since
quite regularized. It is worth to outline that crease
edges are usually the most difficult to detect since
information is usually embedded in noise, as it will
be more clear later.

Shape recovering phase is based on superquadrics,
that have already been adopted by many re-
searchers in robotics [Bar81a, Pen86a, Scl91a,
Sol90a]. The proposed approach relies on a fast
estimation of the most parameters describing su-
perquadrics. It is performed by exploiting the ten-
sor of inertia information of range points distribu-
tion.

First results on simple images sketching mechan-
ical objects are encouraging in terms of both ac-
curacy and low computing time.

The outline of the paper is the following. Next
Section focuses on a brief description of steerable
wavelets. A detailed presentation of segmentation
phase is contained in Section 3 along with some ex-
amples. Shape modeling using superquadrics con-
stitutes the topic of Section 4. Finally conclusions
and discussions are drawn in Section 5.

Figure 2: First test range image: Cap.

2 STEERABLE WAVELETS
The Steerable Pyramid [Sim92a] is a linear multi-
scale, multi-orientation image decomposition. It
is like a two dimensional overcomplete wavelet
transform (tight frame) where the basis functions
are directional derivative operators with different
sizes and orientations. In particular, Simoncelli’s
shiftable multiscale transform makes use of basis
functions that are translations, dilations and ro-
tations of a single kernel.
The steerable pyramid performs a polar-separable
decomposition in the frequency domain. Then it
gives an independent representation of scale and
orientation which is translation invariant (i.e. the
subbands are aliasing-free) and rotation invariant

(i.e. the subbands are steerable). All these nice
properties are of great importance in applications
that involve representation of position and/or ori-
entation of image structure. In order to be clearer,
in Fig. 1 a block scheme of the pyramidal decom-
position is depicted. The image is firstly separated
into low (L0) and highpass (H0) subbands. Then
the lowpass subband is divided into a set of N ori-
ented bandpass (B(ωk), where k = 0, . . . , N − 1)
subbands and a low-pass (L1) subband. This lat-
ter is also subsampled by a factor of 2 in the x
and y directions. Finally the recursive pyramid is
achieved by performing the same scheme starting
from L1 subband. All the properties of a steer-
able pyramid are guaranteed if the filters, for a
fixed frequency band, are constructed under the
following constraints:

|L0(ω)|2 = |B(ω)|2 + |L1(ω)|2|L0(2ω)|2

and
H(ω) = 1 − |L0(ω)|2.



Figure 3: Modulus of Cap computed
using steerable bands at first scale
level.

Figure 4: Phase of Cap computed us-
ing steerable bands at first scale level.

2.1 SEGMENTATION
Range images are segmented using modulus and
phase information of their oriented decomposition.
More precisely, modulus is defined as:

Mj = ((
5

∑

k=0

Bj(ωk) cos(ωk))2 +

+(

5
∑

k=0

Bj(ωk) sin(ωk))2)1/2, (1)

where ωk = {kπ/6} and j is a fixed scale level.
The corresponding phase is:

Φj = arctan

(

∑

5

k=0
(Bj(ωk) sin(ωk))

∑

5

k=0
(Bj(ωk) cos(ωk))

)

. (2)

Figure 5: High pass residual band of
the steerable decomposition.

Modulus and phase of Fig. 2 are shown respec-
tively in Figs. 3 and 4.
Image external contour lines can be easily detected
from the binarized modulus, exploiting the dark
background of the analysed images.
On the contrary, the detection of internal edges is
more complicated since often corrupted by noise;
see, for instance, the high frequency residual band
of the steerable pyramid in Fig. 5. Therefore, a
simple edge detector would also catch a lot of spu-
rious edges.
In order to cope with this problem, eq. (1) is
computed at first scale level (j = 1), after soft
thresholding wavelet bands.
The threshold is tuned computing the Gaussian
noise variance from the residual highpass band,
using a robust median estimator [Mal98a].
This simple and fast operation allows us to achieve
results shown in Fig. 6. Edges coming from this
first phase are due to quite evident discontinuities
in the surface and, then, rather noticeable in the
modulus. This is not the case for remaining edges.
In fact, these latter are due to discontinuities of
the surface normal, i.e. phase discontinuities. Un-
fortunately, this latter can result somewhat noisy,
since sensitive to irregularities often characteriz-
ing this kind of images. An example is depicted
in Fig. 7, where column no. 120 of Fig. 4 shows
that information is completely embedded in noise.
In such conditions, edges can be effectively de-
tected considering them as boundary between flat
regions — see for instance [Liu00a] for a very effec-
tive but expensive approach. Nevertheless, in our
case, steerable pyramid at the coarsest scales gives
us a quite regularized phase in a few operations. In
Fig. 8, Φ3 shows that the third scale level reaches
good noise reduction also on a quite noisy image



Figure 6: Cap segmentation composed
of external edges (achieved by edge
detection on the binarized Fig. 3) and
internal edges detected from the mod-
ulus of thresholded wavelet bands at
first scale level.

as the one under study. It is also arises that Φ3

contains the already detected edges with annoy-
ing ripples. These latter are due to the pyramidal
multi-scale algorithm. So, these artefacts are fil-
tered out through a suitable mask, accounting for
the wavelet support width — see top of Fig. 9
(Top). Hence, the desired edges are composed of
gradient maxima of the remaining information —
see bottom of Fig. 9.

Final segmentation is shown in Fig. 10. It is evi-
dent that edges coming from phase processing are
not closed. This is intrinsically due to the coarser
level of investigation. As a result, T-junctions are
unconnected. In order to close them, we have ap-
plied a simple heuristic technique. In practice,
closure points are determined starting from one
of the two extremities of a not closed edge and
accounting for its curvature. The other extrem-
ity point is processed in the same way. Although
heuristic, the adopted strategy allows us to man-
age the intrinsic difficulty of dealing with phase
information.

2.2 GEOMETRIC MODEL RE-

COVERING

Geometric modeling is based on superquadrics,
in particular super-ellipsoids. They consist of a
family of parametric shapes introduced by Gardi-
ener [Gar65a] and successively proposed by Barr
[Bar81a] as geometric model for shape represen-
tation. Superquadrics ability in modeling natural
forms was pointed out by Pentland in [Pen86a]

0 50 100 150 200 250
−4

−3

−2

−1

0

1

2

3

4

Figure 7: Column no. 120 of gradient
phase of Cap.

Figure 8: Phase of Cap at third scale
level (Φ3) of a steerable pyramid.

who also showed how their generalized implicit
functions can be used in fitting 3D point data
[Scl91a]. Each superquadric is represented by
eleven parameters: three axes, three centre coordi-
nates, three rotation angles and two form factors.
Hence, for modeling segmented range data in a
world frame of reference, these parameters are of-
ten estimated minimizing an error metric, which is
based on implicit function of superquadric surface.
Nevertheless, the minimization represents a very
hard computational task since involving all eleven
superquadric parameters [Sol90a, Wha91a].

On the contrary, a quick and effective estimation
of most of them can be straightforwardly com-
puted via the tensor of inertia of range points dis-
tribution. We outline that sometimes this estima-
tion could require a further refinement to achieve
satisfying results.

In order to achieve a good recovery, previously
segmented image is split into its connected com-
ponents. For each of them, the centre of mass is
computed using the discrete version of the Carte-



Figure 9: Top: binary mask achieved
leaving out regions closed to external
edges of Fig. 6. Bottom: Fig. 8 after
multiplication pixel by pixel with the
above mask.

sian moment:

Cx =
m100

m000

, Cy =
m010

m000

, Cz =
m001

m000

, (3)

where m100,m010,m001 are first order moments
with respect to x, y and z axes while m000 is the
total mass.
Hence, the pseudo tensor of inertia of range points
distribution is

I =





Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz



 (4)

where

Ixx =
∑

m((y − Cy)2 + (z − Cz)
2),

Iyy =
∑

m((x − Cx)2 + (z − Cz)
2),

Izz =
∑

m((x − Cx)2 + (y − Cy)2),
Ixy = −

∑

m((x − Cx)(y − Cy)),
Ixz = −

∑

m((x − Cx)(z − Cz)),
Iyz = −

∑

m((y − Cy)(z − Cz)),

and m equals 1 if there exists a point of coordi-
nates (x, y, z), 0 vice-versa.
Previous tensor is related to a coordinate system
translated in the barycenter. Since I is hermitian,

Figure 10: Cap segmentation before
connecting T-junctions.

it can be diagonalized by a rotation matrix to ob-
tain:

Ip = R′IR =





Ix 0 0
0 Iy 0
0 0 Iz



 , (5)

where Ix, Iy, Iz are three eigenvalues of I repre-
senting principal moments of inertia.
Columns of matrix R are I eigenvectors. They
represent the components of the three principal
axes in a frame of reference whose origin lies on
the centre of mass and whose orientation is parallel
to the one of world frame of reference.
Principal axes of inertia can be mapped to the the
world frame of reference via the composition of the
translation component and the rotation matrix:

T = Ro









1 0 0 −Cx

0 1 0 −Cy

0 0 1 −Cz

0 0 0 1









, (6)

where Ro is the homogeneous version of R′.
Thus, six of eleven unknown superquadric param-
eters have been found: centre coordinates and
three rotation angles.
Superellipsoids modeling relies on assumption of
object symmetry with respect to image plane —
just a half of the object is visible. Therefore, previ-
ously computed barycentre needs to be shifted up
along z axis for compensating the non visible infor-
mation. Hence, the length of superellipsoid axes
can be easily computed intersecting range points
distribution with world frame of reference axes.
The implicit function of superellipsoid surface is

(

(
x

a1

)
2

ε2 + (
y

a2

)
2

ε2

)

ε2

ε1

+ (
z

a3

)
2

ε1 = 1, (7)



Figure 11: Top) Shaft: test range
image. Bottom) Shaft recovery us-
ing the proposed approach: two su-
perquadrics are able to model the ob-
ject

where ε1 and ε2 are surface form factors while
a1, a2, a3 define the superellipsoid size. Hence, the
remaining two form factors can be estimated min-
imizing the error metric [Wha91a]

D3 = (a1a2a3)
1/2(F ε1(x, y, z, ε1, ε2) − 1), (8)

overall range points, where F is the surface im-
plicit function written in eq. (7).

Figs. 11 and 12 depict two examples of object
modeling using the above described approach.

3 CONCLUSIONS AND DISCUS-

SIONS
In this paper a fast and effective model for range
images segmentation and modeling has been pre-
sented. The use of Simoncelli’s steerable pyramid
allows us to well distinguish image information
from noise. Therefore gradient modulus and phase
information of the analysed image are suitably ex-
ploited for its segmentation. Superquadrics are
then used for modeling segmented data. In partic-
ular, it has been shown how most of superquadric

parameters can be estimated exploiting the tensor
of inertia of range points distribution.
Experimental results show that the proposed
model is fast, simple and robust to noise.
This paper mainly focused on model effectiveness
in terms of computational time. In fact, it is based
on a few operations, even though some heuristic
steps are employed. This is due to the intrinsic dif-
ficulty in analysing this kind of data, since they are
acquired from an only one view. Hence, occlusions
unavoidably yield lack of information. However,
the direct estimation of most of free parameters
of superquadrics can be a good starting point for
the minimization of the D3 error metric function
over all eleven parameters.
Further research will be oriented to reduce re-
quired operations for object modeling and to make
the proposed framework more robust.
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