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ABSTRACT 

The problem of segmenting color video sequences is addressed. Boundary motion and occlusion relations ex-

pressed by labeling rules are argued to be of key importance for segmentation. Interframe motion of object(s) 

and background is approximated by a similarity or affine transforms. The computation proceeds in several steps: 

(1) color gradient edges are fuzzy-clustered according to their motion; (2) boundaries of regions formed by a 

color segmenter are assigned weights and labeled according to their motion; (3) un-ambiguously moving regions 

and “conflict” regions are identified by a label relaxation procedure; (4) ambiguities and conflicts are resolved 

by multiframe analysis. 
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1. INTRODUCTION 
Segmenting frames into coherently moving regions is 

an important issue in video sequence analysis. There 

are two main sources of motion information: (1) the 

behavior of boundaries and (2) thе local color and 

intensity changes between frames (optic flow). In 

many situations, the behavior of boundaries is suffi-

cient for object separation, which is readily exempli-

fied by flat-color animations. Natural images may 

also have low-texture and almost constant color re-

gions, where optic flow data may not be trusted. 

In this paper, we formulate and develop an original 

“semantic” approach to video segmentation (splitting 

frames into moving objects and the background) 

based on the analysis of boundary motion and occlu-

sion relations among boundaries. It is semantic in the 

sense that a physically meaningful entity – the oc-

cluding boundary – plays a central part. Our research 

was instigated by the challenge posed by cartoon 

animations to optic flow-based methods. The distinc-

tive feature of our approach is that it heavily relies on 

color segmentation to turn any frame into a cartoon. 

We assume that differently moving objects (and the 

background) belong to different depth layers and 

there are no instances of mutual occlusion. 

First, a fuzzy clustering algorithm is applied to reli-

able edge points to obtain their tentative partitioning 

into motion groups (in terms of fuzzy membership 

coefficients) and calculate motion parameters for 

each group. Next, region boundaries produced by the 

color segmenter are assigned motion labels. Each 

label comes with a weight that shows how well this 

boundary is aligned with a similar boundary in the 

next frame by the motion found for the given cluster. 

These weights are thresholded and the surviving la-

bels are fed into a label relaxation procedure. This 

procedure takes into account occlusion relations be-

tween regions and their boundaries and is applied to 

classify frame's regions either as unambiguously be-

longing to a single motion (depth) layer or ambigu-

ous. The output of boundary motion analysis is com-

plemented by the analysis of how well internal re-

gion pixels are recalculated by the obtained motions. 

Finally, the two labelings are fused and fed into a 

multiframe region tracking algorithm, which also 

exploits the occlusion data. 

A similar approach to the motion segmentation prob-

lem was presented in [Smi00a] and [Smi00b]. How-
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ever, as will be clear, the method we use to solve this 

problem differs in many important respects. Some 

important details, omitted here for brevity, can be 

found on our website: 

http://www.topazk.ru/ssl/index.htm. 

2. CALCULATION OF MOTION 
Our motion calculation procedure was described 

elsewhere [Akh02a], and so only the key points will 

be briefly outlined. First, an original color segmenter 

(developed by P. and D. Nikolaevs) is applied to 

each pair of consecutive video frames. The segmen-

tations in each frame are represented as adjacency 

graphs with regions as nodes and their boundaries as 

edges. We refer to points on these boundaries as 

boundary points. The chains of pixels extracted by 

an edge detector (based on ideas outlined in 

[Can86a], [Sap96a], and [Zen86]).will be called edge 

segments  

Because edge segments are easier to rate in terms of 

strength and localization than boundary segments, 

the former are used in fuzzy-clustering [Bez81a] by 

motion, yielding several (2-3, typically) linear trans-

forms Tc that describe the motion in a scene. Then 

we calculate the residual dci for each ith boundary 

segment as a mean distance between its boundary 

points shifted by cth linear transform Tc and the cor-

responding boundary points in the next frame. The 

smaller dci the better association between the ith 

boundary segment and the cth motion cluster. 

3. MOTION AND DEPTH LABELING 
The motions of objects and their boundaries are sup-

posed to satisfy two constraints: (1) objects with 

similar motions belong to the same depth layer; (2) in 

each layer, the interframe motion can be reasonably 

well approximated by the adopted model, e.g., the 

similarity transform. Let us also assume that the 

scene is composed of just two depth layers (an object 

and the background) and that none of color-

segmented regions includes both background and 

foregrounds pixels. The overall goal is to assign mo-

tion and depth labels to all regions in agreement with 

motions (labels) of their boundaries and with mini-

mal ambiguity. 

In what follows, we shall focus on the practically 

important case of two motions. Although we have 

investigated the case of multiple motions, the lack of 

space does not allow us to consider this case in 

depth. 

Let us assume that label 1 is always assigned to the 

dominant motion associated with the background. 

This is important for the labeling procedure. In the 

motion calculation (see [Akh02a]), the first cluster 

most often corresponds to the background motion. 

To ensure correct motion ordering, a validation pro-

cedure was developed (section 5). Label 2 is then the 

label of the foreground motion. 

The plan is to assign to each boundary a set of labels 

with weights (m, wm) rating the compatibility be-

tween the actual boundary motion and that of cluster 

m. The obtained label sets will then be purged and 

the labels will be propagated from boundaries to re-

gions. The purging (relaxation) procedure is based 

on the three following rules and their implications: 

Rule (1): the boundary of two regions is part of and 

moves together with the region closest to the viewer; 

Rule (2): all common boundaries of any two adjacent 

regions with labels mi and mj must be labeled by ei-

ther mi or mj; 

Rule (3): a region is never to be assigned a label 

other than that of its boundaries. 

Rule (1) is identical to that formulated in [Smi00a] 

and is physical by its nature. Rule (2) simply states 

that motions are uniquely associated with depth lay-

ers. Rule (3) is introduced merely to eliminate the 

otherwise irreducible ambiguity between object parts 

and holes. It can be shown that any depth assignment 

and motion labeling of regions (and, thereby, 

boundaries) consistent with these rules is physically 

realizable. Such labelings will be called legal label-

ings. 

The label relaxation can be accomplished by differ-

ent methods. In [Smi00a] and [Smi00b] the overall 

solution probability was maximized by simulated 

annealing. In our approach, the priority is to identify 

unambiguously labeled regions rather than find the 

most probable labeling solution. 

Define the normalized weight as the relative com-

patibility of the ith boundary with the cth motion 
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where the residuals dki were introduced in section 2. 

For each boundary i, only such labels c with wci > 

0.33 are retained. This threshold can be adjusted for 

better results. Unfortunately, in real videos, many 

boundaries, especially short ones, will carry both 

labels (Fig. 1). The remaining labels for each bound-

ary are entered in a list of valid labels Li. Our pur-

pose is not to find all legal (i.e., satisfying Rules (1)–

(3)) or most probable labelings, which might involve 

intractable combinatorics, but rather to produce, for 

each region, a list of labels such that every label on 

this list participates in some legal labeling. This 

problem can be solved by an efficient sequential al-

gorithm. The algorithm can be generalized to handle 

the case of more than two labels (motion clusters).. 



 
Figure 1. Left. Each calculated motion is applied 

to all region boundaries in the 1st frame. A 

boundary is assigned a label c if, when displaced 

by the cth motion, it aligns reasonably well with a 

suitable boundary in the 2nd frame. Boundaries 

uniquely marked by label 2 are shown in white 

and by label 1 in gray. Black lines are ambiguous 

boundaries carrying both labels. Right. Region 

labels derived from motion labels assigned to 

boundaries of constant-color regions. A region 

can have either one label (the same for any legal 

labeling) or two labels (depending on the labeling, 

is attributed to the object or the background). 

The regions with a unique background label 1 are 

shown in light gray. Dark gray regions belong to 

the object and have a single label 2. Black regions 

have both labels. 

The labeling algorithm involves no iterations and is 

accomplished in three steps. 

Step 1: Scan all regions and find those with at least 

one boundary such that its label list Li = {1} contains 

a single label 1, and assign it to these regions. 

Step 2: Scan all regions and find those with at least 

one boundary such that its label list Li = {2} consists 

of a single label 2. If this region shares this boundary 

with a region that got label 1 in step 1, then this re-

gion is assigned label 2. 

Step 3: All regions not labeled in the two preceding 

steps are assigned both labels. 

This algorithm can be proved to solve the stated 

problem whenever a legal labeling exists. The proof 

(omitted for brevity) is based on the following three 

statements 

1. A region given a single label after Steps 1 and 2 

cannot carry any other label in any legal labeling. 

2. If, on Step 2, some region gets label 2 but on Step 

1 it was already given label 1, then no legal labeling 

exists. 

3. Every label assigned to a region in Step 3 serves as 

this region's label in at least one legal labeling. 

Recall that label 1 corresponds to the background 

and label 2 to the occluding object. If so, Rule (1) 

implies that, in a legal labeling, a boundary label 

must equal the larger label of the two adjacent re-

gions. 

In our implementation of the algorithm, if any con-

flict region (labeled 1 in Step 1 and 2 in Step 2) is 

found, the process does not terminate and both labels 

are assigned to this region. This is justified because 

the boundary motion may have been inaccurately 

computed, especially for short boundaries, and the 

threshold for label selection in (1) may be not right. 

Despite the absence of a legal labeling, this method 

was found to often lead to reasonable results. It 

should be noted that the number of conflict regions 

can be used as a test of correct depth ordering, i.e., 

that layer 2 indeed occludes layer 1. Fig.1 shows an 

example of an initial boundary labeling and the re-

sulting region labeling. 

4. REGION MOTION ANALYSIS 
It often happens that some regions get both labels 

{1,2}. The ambiguity is generally caused by (a) local 

similarity of different motions, (b) faults of the color 

segmenter; and (c) the presence of short boundaries 

whose motion is hard to reliably determine. This am-

biguity can be effectively resolved in video se-

quences with sufficient texture by applying the ob-

tained motions to the inner pixels of regions in the 

original (unsegmented) image. In this section we 

consider region-based analysis in the case of just two 

motions. 

Let region R be assigned both labels on the preceding 

step, and consider three successive frames of a se-

quence. It can be claimed that nearly all points of the 

middle frame will be visible in one of the adjacent 

frames. An occlusion-tolerant interframe difference 

with respect to the motion Tc can be defined as 
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where c is the motion label, Ct(p) is the color of a 

pixel p in frame Ft, and ║.║ is the norm in the color 

space. For region R and motion c, one can define an 

occlusion-tolerant measure of interframe color dif-

ference 

( )( , ) median ( , )
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∈
=

p
p . (3)

Our plan is to generate region-based motion labels 

for the selected region R based on Dmed. The weights 

are calculated similarly to those in the boundary label 

assignment (1) 
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Here, wcR is a measure of compatibility between the 

motion of region R and the cth motion group. For 

each ambiguous region R, only those labels c are 

retained for which wcR exceeds a predefined thresh-



old (0.43, in our experiments). A region gets both 

labels, if both values Dmed in (4) are smaller than a 

fixed multiple of the noise level. 

The labels produced by this region-based procedure 

are fused with those yielded by the boundary motion 

analysis using a straightforward logic: defined + de-

fined = defined; defined + ambiguous = defined; de-

fined + contradiction = ambiguous and fed as input 

to the multiframe tracking algorithm. 

5. RECOVERING LAYER ORDERING 
Given two motions T1, T2, and two successive 

frames Ft, Ft+1, we now describe how to determine 

which motion is a foreground one (occluding), and 

which motion is a background (occluded) one. 

In the first method, both orderings variants were 

tried: regions undergoing motion T1 occlude those 

undergoing motion T2 and vice versa. The correct 

ordering was found as that leading to a legal labeling 

with the highest possible threshold on the weights wci 

in (1). In general, the larger threshold, the less uncer-

tainty of label assignment. This method was imple-

mented and tested along with some modifications but 

turned out to be not very stable. 

The second method directly weighs layer orderings. 

First, let us introduce the notation. Let C and N be 

the sets of points in the current, Ft, and the next 

frame, Ft+1, respectively., and let  T1, T2 be the calcu-

lated global motions in the scene. Denote by C1 and 

C2 the sets of points in the current frame having a 

match in the next frame under the respective motion: 

2 1{ : ( ( )) ( )}
k k

C C I I= ∈ ≈p T p p , k = 1, 2, where I1, 

I2 are the intensity (or colors) values at points of the 

current and the next frames, respectively. The points 

in the current frame that are not visible in the next 

frame make up the set 1 2\ ( )
C

H C C C= ∪ . The 

points of HC that do move out of the frame will un-

ambiguously belong to the background and will be 

occluded in frame Ft+1. Denote by 1 1 1( )N C= T  and 

2 2 2( )N C= T  the images of sets C1 and C2 in the next 

frame and their complement be 1 2\ ( )
N

H N N N= ∪ . 

Therefore, HN is the set of points invisible in the cur-

rent frame and visible on the next one. 

Let p ∈ HC. If T1(p) ∈ N2 then the image of point p 

by the 1st motion could be occluded by a point un-

dergoing the 2nd motion. Analogously, if T2(p) ∈ N1 

then the image of point p by the 2nd motion could be 

occluded by a point undergoing the 1st motion. Fig.2 

illustrates the situation. 

The correct layer ordering could be inferred from the 

analysis of what happens with points of HC and HN. 

We count the number m1 of points p ∈ HC such that 

the difference 1

1 2 1 2 1
( ( ( ))) ( ( ))I I

− −T T p T p  is small 

(i.e. T1(p) ∈N2) and the number m2 of points for 

which the difference 1

1 1 2 2 2
( ( ( ))) ( ( ))I I

− −T T p T p  is 

small (i.e. T2(p) ∈N1). If m1 > m2, then the 2nd motion 

is the foreground (occluding) one and vice versa. To 

increase the number of points participating in the 

analysis, we interchange frames Ft, Ft+1 and consider 

the reversed motions, i.e. points p ∈ HN  are used and 

those T1
–1(p) ∈C2 and T2

–1(p) ∈C1 are tested. Natu-

rally, only the points that remain inside the frame 

under both motions are counted. 

 
Figure 2. The case of two motions. Background 

point P in the first frame is occluded in the next 

frame. Analyzing the relations of P with points A, 

B, T2(P), and T1(P), we can conclude which mo-

tion of the two is the foreground (occluding) one.   

When does the second method work? The overbal-

ance in favor of a particular motion results from the 

“hiding” background points (p ∈ HC) such that, e.g., 

T1(p) ∈ N2, but T2(p) ∉ N1. The latter means that 

T2(p) ∈ HN, because T2(p) ∉ N2 since p ∈ HC. In the 

given example, the outcome of the method is deter-

mined by those points of the current frame Ft that are 

“hidden” by the 1st motion and mapped on the set of 

newly opened points in the next frame Ft+1 by the 2nd 

motion. 

We omit for brevity the description of fairly straight-

forward statistical tests used to evaluate the differ-

ences and classify points belonging to the sets C1, C2, 

N1, or N2.  

It is no surprise that, when the motions are small or 

almost similar, or the object boundary is noisy and 

there is little color contrast between the object and 

the background, the second method might not pro-

duce a conclusive layer ordering. Better results can 

be obtained by a combination of both described 

methods. As an alternate, we are currently investigat-

ing a multiframe ordering validation technique, but 

this is a topic of a separate paper. 

6. MULTIFRAME TRACKING 
All previously described methods analyze a pair of 

successive frames for two motions. As the result, 



some regions remain ambiguous. Fortunately, it often 

happens that ambiguous regions in one frame corre-

spond to unambiguously labeled regions in other 

frames. The ambiguity of sequence segmentation 

could be greatly reduced or even eliminated by coor-

dinating the solutions over several successive frames. 

In image sequences with smooth enough motion, the 

region area does not normally change much. There-

fore, simple transformation models (Euclidian, simi-

larity, or affine) are good candidates for tracking. 

Consider a region A in frame Ft with an area SA, a 

region B in frame Ft+1 with an area SB, and a motion 

transformation Tc.. The overlapping ratio of the two 

regions A and B under the motion c is defined by  

( )min ,c

AB A B A B
S S Sη ∩= . (5)

The nesting ratio of the two regions A and B under 

the motion c is defined by 

( )max ,c

AB A B A B
S S Sρ ∩= . (6)

Definition 6.1. Regions A and B are called corre-

sponding under the cth motion, if the overlapping 

ratio exceeds some predefined threshold. 

There are no theoretical grounds for the choice of the 

threshold, mentioned in the above definition, apart 

from experimental observations. It can be as high as 

0.8, if one wishes to preclude wrong correspondence, 

or as low as 0.1, if a procedure is available to detect 

and undo wrong matches. The splitting algorithm 

(see below) might be useful for automatic threshold-

ing. 

For simplicity, in this section we again consider the 

case of two motions, and assume that objects labeled 

by 2 occlude objects labeled by 1. As previously de-

scribed, all possible occlusion orders are tested and 

the best one is adopted. The following rule reconciles 

labels in successive frames. If, under motion 2, a 

region A marked by 2 in frame Ft corresponds to a 

region B in frame Ft+1, then B cannot be labeled by 1 

(provided we have sufficient confidence in this cor-

respondence relation, despite the fact that the color 

segmentation could be unstable). Indeed, since mo-

tion 2 is the foreground one, background cannot oc-

clude an object undergoing this motion. Based on 

this rule, the region labels can be modified: 

(1) If the label list of a region A consists of a single 

label 1 and A corresponds under motion 2 to a region 

B having two labels, and B does not correspond to 

any other region labeled by 2 alone, then label 2 can 

be removed from the B's label list. 

(2) If the label list of a region A consists of a single 

label 2 and A corresponds under motion 2 to a region 

B having two labels, and B does not correspond to 

any other region labeled by 1 alone, then label 1 can 

be dropped from the B's label list. 

 

 
Figure 3. Regions can be combined into a collec-

tion by tracing over multiple frames. An object 

occurring in three successive frames is shown. Its 

regions can be combined either in the single col-

lection (top diagram) or in the two separate col-

lections (bottom diagram) depending on the 

threshold. 

To extend region tracing from just a couple of frames 

and regions to the entire video sequence and groups 

of ambiguous regions, we need the notion of a col-

lection of regions: 

Definition 6.2. A collection C is a set of regions in 

several frames such that any two its regions A∈C and 

B∈C can be connected by a chain of regions belong-

ing to C such that any two adjacent regions in this 

chain are in correspondence under the foreground 

motion. 

The adjacency in Definition 6.2 does not imply geo-

metrical proximity but a correspondence between 

regions of successive frames. Fig.3 explains the con-

cept of a collection. Suppose that a moving fore-

ground object consists of four regions A, B, C and D 

in the frame Ft. In the next two frames, Ft+1 and Ft+2, 

the object is randomly split into differently shaped 

regions because color segmentation instability. If the 

overlapping ratio threshold (5) is small enough, then 

all regions could be combined into a single collec-

tion, Fig.3, top diagram. If the threshold is large 

enough, then we obtain two separate collections {At, 

Bt, (A+B)t+1, At+2}, {Ct, Dt, (C+D)t+1, Ct+2}, Fig.3, 

bottom diagram. 

Definition 6.3. A collection is called exhaustive, if 

no new region can be included without violating the 

collection definition. 

We generate all possible exhaustive collections of 

corresponding regions, and it can be readily seen that 

each region in each frame will participates in one and 

only one collection (indeed, all regions in a collec-

tion correspond under the foreground motion, so, if 

any region participates in several collections, then 

the collections could be united). If, apart from am-

biguous regions, a collection also happens to include 

a region with a definite label, then all the regions of 

the collection will get this label. In this way, a defi-



nite label can be propagated through the video se-

quence. The larger the collection, the higher the 

chances are that at least one unambiguously marked 

region will get into it. This is the reason to keep the 

overlapping ratio threshold (5) as small as possible. 

In collections, labels are propagated from definite 

regions to ambiguous ones, but profuse collections 

may contain regions with inconsistent labels. Such 

collections must be divided into smaller ones. Fol-

lowing algorithm splits all inconsistent collections. 

1. Get an inconsistent collection that contains regions 

with definite label 1 and definite label 2. 

2. Create the list Lc of all pairs of corresponding re-

gions sorted in the ascending order by their nesting 

ratios (6). Pick up the pair with the least nesting ratio 

(current correspondence). 

3. Remove the current correspondence, and see what 

happens: 

    (a) The collection failed to break apart and still 

contains the same regions; then get the next corre-

spondence in the list Lc to remove and goto step 3; 

   (b) The collection was broken into two parts such 

that all regions in the first part are marked by both 

labels. The removal of this link did not eliminate the 

inconsistency in the second sub-collection and failed 

to reduce the ambiguity in the first one. Then restore 

the connection, get the next correspondence in the 

list Lc to remove and goto step 3; 

    (c) The collection was broken into two parts but 

any or both sub-collections remain(s) inconsistent. 

Then, for the inconsistent sub-collection(s), recur-

sively repeat this algorithm from the start; 

    (d) Assign the definite labels to all regions of 

newly created sub-collections. Break from the loop. 

It is clear now why the two coefficients (5) and (6) 

were introduced. The overlapping ratio characterizes 

the degree of matching between the smaller region of 

a pair and the one it corresponds to, whereas the 

nesting ratio evaluates the degree of matching be-

tween the larger region and the second member of 

the pair. For example, if a large region in the current 

frame breaks into n smaller parts in the next frame, 

then the overlapping ratios of all the corresponding 

pairs will be close to 1. But small regions will proba-

bly find false matches, producing inconsistent collec-

tions; hence some links must be broken. It is not sur-

prising that we use the overlapping ratio to construct 

collections and the nesting ratio to divide inconsis-

tent ones. 

7. RESULTS AND DISCUSSION 
The approach described in this paper is unique (or 

not very common) in its concurrent and equally im-

portant use of the boundary and region motion data. 

The first component – the computation of region 

motion from boundary motion – allows it to easily 

handle images with low-texture regions and cartoon 

animations, which are intractable for optic-flow-

based segmentation algorithms. At the same time, 

ambiguous, but sufficiently textured, regions will be 

assigned to the obtained global motion and depth 

layer by the second, region-based, component. 

The combined segmentation results are illustrated in 

Fig.1 for the case of two frames and in Figs.4–6 for 

multiframe sequences. One can see how different 

segmentation mechanisms complement each other. 

The motivation and the problem formulation under-

lying our approach and also the rough partition of the 

problem into separate blocks (boundary motion 

analysis, clustering, labeling, label relaxation, and 

multiframe tracking) turned out to be similar to those 

in [Smi00a] and [Smi00b]. Like the authors of these 

papers, we believe that occlusions need not be re-

garded as an interfering factor and should, instead, be 

relied upon in image and sequence segmentation. 

There are some minor distinctions between our ap-

proach to motion grouping and that described in 

[Smi00a] and  [Smi00b]. For example, we use the 

fuzzy-clustering algorithm to find edge motions 

[Akh02a] while Smith et al. use the EM algorithm. 

The former, in our opinion, is more mathematically 

transparent and allows simpler introduction of a new 

motion cluster (group). We also would like to draw 

attention to the original and very effective occlu-

sion-tolerant method to test the applicability of a 

given motion to internal region pixels, based on the 

analysis of three successive frames. 

Our approach to assigning regions to depth layers 

and motion groups differs essentially from that in 

[Smi00a], [Smi00b]. As previously explained, we do 

not try to find the most probable segmentation solu-

tion, particularly because the probability maximum 

can be quite flat due to the presence of many am-

biguous regions. Instead, we seek to truthfully reveal 

the degree of uncertainty inherent in the problem in 

hand and, given image data, try to reduce it by addi-

tional means. We do not seek to obtain a single solu-

tion when it does not exist in principle. Accordingly, 

we make no attempt to exploit to the outmost the 

meager distinctions that might exist in the weights of 

boundary and region labels. In our approach, a re-

gion either has a motion label in its list or not, and 

we add up boundary labels relatively liberally. 

On the other hand, a tentative comparison of motion 

clustering in [Smi00b] with our results indicates that, 

on the whole, all reasonable methods of boundary 

motion evaluation based on a parametric global 

model yield comparable results. The intrinsic short-

coming of such methods is that essentially different 



motions are hard to distinguish in certain circum-

stances. For example, pure rotation and pure transla-

tion may locally give rise to similar velocity fields. 

So, even having two well-defined motion groups, we 

may fail to reliably refer a given boundary to just one 

group. Other sources of uncertainty are fairly com-

mon boundary shapes – straight lines and circle arcs, 

which can be almost equally well transformed by 

different motions. 

The algorithms we use to derive lists of admissible 

edge labels make it possible to analyze the internal 

computational structure of the problem in hand and 

split it into separate tasks. It was found that, in the 

case of two global parametric motions, the set of 

admissible labels of a region is determined solely by 

boundary label list of this and the immediately adja-

cent regions. Therefore, the label tags of other 

boundaries are not important for labeling the given 

region. This is not exactly true for the case of three 

or more motions, but even in this case, as shown by 

experiments, the “long range” interaction is fairly 

limited. The latter circumstance makes the labeling 

problem computationally tractable. The fact that the 

problem of sequence segmentation from boundary 

motion could be posed in terms of the graph labeling 

theory is very fortunate because now it can be treated 

in conjunction with the problem of finding occlusion 

boundaries in a single image by the T-junction analy-

sis. 

Normally the results are more accurate (and less am-

biguous) when a longer image sequence is processed. 

Our method of region tracking takes into account the 

obtained depth order and is based on the analysis of 

what we call multiframe region collections. As a 

quantitative measure, it uses the overlapping and 

nesting ratios, which look simplistic. Nevertheless, as 

shown by our experiments, the procedure works 

much better than could be expected.  

We are not fully satisfied by our determination of the 

occlusion order. Because we compute motions for 

each two (or three) successive frames, we have to 

associate these motions across adjacent frame pairs. 

The comparison of the number of conflict and am-

biguous regions seems to work but not as well as one 

might wish. We are currently analyzing the applica-

bility of other methods, and have some encouraging 

results, but these are not incorporated in this work. 

Our approach is intrinsically coupled with color seg-

mentation, which can generate various grades of seg-

mentation. The problem is that one never knows if 

the given segmentation level indeed separates the 

foreground from the background, i.e. there are no 

regions that significantly span both the object and the 

background. We are currently exploring the possibil-

ity to use simultaneously several segmentation levels. 

The popular expectation that the use of global para-

metric motions may eventually lead to the general 

solution of the semantic segmentation problem, in 

our opinion, is not well justified for several reasons:  

1. Semantic objects, and especially their parts, quite 

often fail to move as prescribed by a motion model. 

The use of more “flexible” models does not solve the 

problem either, because motion-based segmentation 

and object segmentation are not basically the same. 

2. Motion of large objects is very likely to mask that 

of small objects in any motion clustering procedure. 

3. Instances of self-occlusion and mutual occlusion 

limit the applicability of the layers concept and, 

therefore, labeling methods. 

A more physically sound approach, in our view, 

would be to couple the segmentation with the analy-

sis of occluding boundaries, making their detection, 

both static and dynamic, the central point of the 

method. This can be accomplished by the following 

means:  

1. Estimating local motions and occlusion rather than 

global ones and expanding the solution over a frame. 

2. Detecting occluding boundaries by analyzing the 

motion of T-junctions and optic flow discontinuities. 

3. Integrating motion-based occlusion data with oc-

clusion data derived from T-junction analysis in a 

single image (static labeling). 
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Figure 4. Region motion and order computed from boundary motion for three successive frames. Light 

gray regions are those unambiguously assigned to the background and dark gray regions are unambigu-

ous object regions. Black regions are ambiguous and, depending on the actual labeling, can be either 

background or foreground. As explained in text, conflict regions are also treated as ambiguous. 

 

 

 

 

Figure 5. Region assignment to depth layers based on applying the obtained boundary motion to region 

interior. Compare this to Fig. 4. Light gray regions are those unambiguously assigned to the background; 

dark gray regions are unambiguous object regions. Black regions remain ambiguous (none of the motions 

is much better than the other). 

 

 

 

 

Figure 6. The final multiframe segmentation obtained by the region tracking procedure that takes into 

account all segmentation results from the previous stages (Figs. 4 and 5). Light gray regions are assigned 

to the background and dark gray regions belong to the object. Black regions still remain ambiguous. 

 


