
Visual Hull Rendering with Multi-view Stereo
Refinement

Yang Liu1

yngliu@ucdavis.edu

George Chen2

george-qian.chen@st.com

Nelson Max1

max2@llnl.gov

Christian Hofsetz1

chofsetz@ucdavis.edu

Peter McGuinness2

peter.mcguinness@st.com

1
Center for Image Processing and Integrated Computing

2343 Academic Surge
University of California, Davis

1 Shields Ave.
Davis, CA 95616

2AST La Jolla Lab STMicroelectronics
4690 Executive Dr.

San Diego, CA 92121

ABSTRACT

We present a system for rendering novel viewpoints from a set of calibrated and silhouette-segmented images
using the visual hull together with multi-view stereo. The visual hull predicted from the object silhouettes is
used to restrict the search range of the multi-view stereo. This reduces redundant computation and the
possibility of incorrect matches. Unlike previous visual hull approaches, we do not need to recover a polyhedral
model. Instead, the visual hull is implicitly described by the silhouette images and synthesized using their
projections onto a set of planes. This representation allows an efficient implementation on current pixel-shader
graphics cards, yielding frames at interactive rates. We also introduce a library of image filters to improve
rendering results along edges and silhouette profiles.

Keywords
Visual Hull, Multi-View Stereo, Fragment Shader

1. INTRODUCTION
Given a set of calibrated and silhouette-segmented
images, the visual hull [Laur94a, Mat01a, Mat00a] is
the maximal solid volume that is consistent with each
silhouette. The visual hull is given by the
intersection of the input silhouette cones. The
resulting intersection volume is a conservative bound
on the object’s shape. As more images become
available, the visual hull will converge to a volume
that is tighter than the object’s convex hull, but this
volume will not necessarily converge to the true
geometry. This is due to the potential presence of
concave regions on the object that are difficult, if not
impossible, to detect using only silhouettes. Despite
this shortcoming, the visual hull is still a good first
approximation to the actual object geometry.

Multi-view stereo reconstruction algorithms, in
contrast to shape-from-silhouette methods, are able
to recover these concave regions (as long as
sufficient texture information is present) but typically
fail to accurately recover geometry along the
silhouette profiles. However, multi-view stereo can
take advantage of the visual hull to avoid
unnecessary computations for locations outside of
the object volume (this can potentially reduce the
possibility of incorrect matches), which can help to
recover the object profile. The stereo, which relies
on image texture, can also recover concave regions
that are invisible to the visual hull. The two methods
are thus complementary.

Li, et al. proposed a method [Li03a] to recover the
full polyhedral visual hull model by computing
constructive solid geometry (CSG) intersections in
graphics hardware. The acquired model was then
used to restrict the per-pixel epipolar search range for
multi-view stereo reconstruction. However, this
approach requires significant computational effort to
process dynamic scenes; recovering the polyhedral
model at interactive rates, despite hardware
acceleration, is still prohibitively expensive.
Furthermore, a significant portion of the algorithm
was implemented outside of the graphics card.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972

WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

Since we are interested only in rendering the visual
hull, it may not be necessary to recover the
polyhedral model. Li later explored this idea and
presented a multi-pass technique [Li03b] for real-
time rendering of visual hulls using hardware stencil
buffers. In this approach, Li eschewed a polyhedral
visual hull for a view-dependent depth map
representation, which was then projectively texture
mapped using the appropriate set of input images for
image synthesis. However, the results demonstrate
that the visual hull approximation to the geometry is
not sufficient for rendering convincing images.
Blurring and ghosting artifacts were present in the
images since the visual hull failed to accurately
represent the object geometry. As expected, the
artifacts were especially noticeable for concave
elements of the object surface.

Yang, et al. [Yan00a, Yan02a] introduced a multi-
pass approach to stereo reconstruction that was
implemented using programmable graphics
hardware. The results are superior to those of the
visual hull, but there are still observable artifacts
present in the images, especially along the object
edge profiles, which could have been removed by
considering the visual hull. Furthermore, his
implementation on earlier graphics hardware
required expensive buffer “read-backs” from the
texture memory to perform the matching score
aggregation, which further penalized the frame rate.

We present in this paper a new multi-pass plane-
sweep rendering method that takes advantage of the
visual hull and multi-view stereo reconstruction
together to synthesize images from new viewpoints.
The approach we describe here is, in spirit, an
integration of the two previous techniques reported
by Li and Yang, with additional image filters to
improve the rendering quality. We outline some of
our principal contributions:

• We use the visual hull implied from the image
silhouettes to restrict the search range for each
pixel in the multi-view stereo. This allows us to
avoid unnecessary computations and reduce
potential false matches.

• Our method uses a library of template shapes to
identify correspondences along surface
discontinuities at the visual hull profiles. Our
results demonstrate how the templates improve
the rendering results in the presence of these
discontinuities.

• The hardware implementation does not require
any “read-backs” from texture memory. All
rendering operations are performed within the
graphics card and intermediate rendering states
are written to texture memory via off-screen
buffers.

The remainder of this paper is organized as follows.
We overview our rendering system in the next
section and present our algorithm in section 3 and
discuss details of its hardware implementation in
section 4. We present results in section 5, and
conclude with ideas for future work.

2. RENDERING SYSTEM
Our system consists of 6 calibrated DragonFly
Firewire cameras observing a dynamic environment.
We define a spline path through the 6 cameras and
reconstruct images using the closest 4 cameras for
each given virtual intermediate viewpoint. Images
from this set of four cameras are then acquired and
processed by fragment programs on an ATI Radeon
9800 graphics card. These fragment programs
implement the visual hull and multi-view stereo
reconstruction, which we describe later.

The fragment programs are invoked in the graphics
hardware by initializing a set of sweeping planes.
Each of these planes induces a mapping
transformation, which we use to transfer pixels
across images. The planes may be processed
independently and are composited into a color and
depth buffer for direct display. The rendering rate
trades off with the reconstruction quality by
adjusting the number of planes to process in the
multi-view stereo.

3. SYSTEM OVERVIEW
To synthesize an output view for each new
viewpoint, the algorithm basically steps a sample
plane parallel to the output image plane through the
scene depth range, choosing for each output pixel the
depth of the best match, as computed from the multi-
view stereo. By considering a set of sample planes
through this range, we may recover scene geometry
by selecting from each of the planes, match locations
with high color consensus. To recover a depth map
from the desired viewpoint, we intersect rays through
the set of planes and select for each depth pixel, the
location with the best matching score from the set of
plane intersections.

We proceed by first preparing a bit-mask image to
describe the segmentation of the foreground object
silhouette against the static background. The input
images along with their respective bit masks are
mapped into the virtual view by a plane-induced
transformation. We then determine locations on the
sample plane that lie within the object’s visual hull
by comparing the mapped bit-mask images; locations
outside of the visual hull are identified and discarded
from further processing.

segment silhouettes from input images

for each plane

 map input images onto plane

 compute visual hull intersection of plane

 compute color consensus and mean color

 mask color consensus image by visual hull

 aggregate match scores (using template library)

 render mean colors into color buffer and

 matching scores into Z-Buffer

end for

display color buffer

Figure 1. Outline of rendering algorithm.

For the multi-view stereo, we map the input images,
using a mapping transformation defined by each
sample plane, to compute the mean color and the
color consensus of coincident pixels (the set of pixels
that map to the same location.) We assume that the
coincident pixels on or near locations where the
sample plane intersects the object surface will have
high color consensus (low color variance), while
coincident pixels off of the surface will have low
consensus (high color variance). We use the
converse of this principle to infer matches – locations
on the plane that are good estimates to the object
geometry (i.e. plane-object intersections.) However,
the color consensus is not sufficient to identify
matches on image regions that are untextured or
contain repeated patterns. This is a weakness that is
common to most stereo algorithms that rely on color
texture to assess geometry.

We refine our initial consensus estimation by
examining a local neighborhood of pixels to
aggregate support for each matching location.
Deciding which pixels to include in this
neighborhood is critical for establishing a match.
This is especially important for matches that are
located along surface discontinuities where the local
neighborhood may have a large discrepancy in
matching scores. We address this problem by
searching through a library of template shapes to find
the correct neighborhood for each pixel.

We prepare output images by rendering each plane,
writing its depth and matching scores into the
respective color and Z buffers. For direct view
synthesis, we substitute the depth with the mean
color. We can also directly display the color
consensus score to visualize the confidence of our
matches. The minimum & maximum depths and
number of planes control respectively the search
range and sampling resolution of the multi-view
stereo. We present an outline of the algorithm in
Figure 1.

Figure 2. H is a homography induced by plane

Π and camera projection matrices P1 and P2.

We use H to map pixels u1 and u2 between the

two camera views.

4. HARDWARE IMPLEMENTATION
We implement our rendering algorithm on the ATI
Radeon 9800 Pro, taking advantage of its
programmable pixel shader units through judicious
use of fragment programs [Frag03]. Each program
execution requires a separate rendering pass. The
resulting image from each intermediate pass is
rendered off-screen into a texture buffer and then
bound as texture input to a fragment program for the
next rendering pass. By storing the intermediate
results inside of the texture memory, we avoid
expensive transactions across the system bus.

Our algorithm processes a set of sample planes that
sweeps out a bounding volume of the object. Each
plane requires several rendering passes to fully
process. For each plane, we compute the average
color and matching score over all locations on the
plane. The planes are independent of each other and
may be processed concurrently and independently,
but currently, the hardware pipeline restricts us to a
sequential processing order.

In this section, we describe how we implement each
stage of our algorithm in graphics hardware. The
silhouette segmentation is performed once for each
set of input images. All other processing stages, such
as the plane-mapping, visual hull/color consensus,
and aggregation steps are performed separately for
each new output view, and each sample plane.

Silhouette Segmentation
We prepare the input images by first segmenting
them to find the object silhouettes using standard
background subtraction. We sample an initial image,
without the object to be segmented and denote this
the “background image.” Each subsequent image is
then subtracted against the background image. We
use a threshold to identify the foreground pixels and
encode the result as a bit-mask image. If the
foreground object contains colors similar color to the
background then the bit-mask image may contain

Cone extended
by silhouette
mask

Visual hull

Object

(a) (b)

Figure 3: (a) Two silhouette bit-masks are projectively mapped onto a plane. The intersection of the

silhouette projections (shown in gray) is a cross-section of the visual hull. Additional silhouette bit-

masks from new viewpoints will further constrain the intersection region and the visual hull. (b) When

the cross-sections are collected together, the visual hull volume is discretized to the set of planes. We

can display the visual hull by directly rendering the cross-sections from each plane.

holes. We can correct this problem using median or
morphological filters (such as the closing operator) to
remove the holes. The final bit-masks are stored into
the alpha channel of each respective input image.
We perform this segmentation for all of the acquired
images.

Plane-Mapping
We use plane-to-plane mappings – or homographies
– to facilitate the transfer of pixels between images.
Each homography is linear in projective space and
may be described by a 4x4 matrix:

[]
[]

21

222

111

10

10

uu

u

u

⋅=
=
=

H

vu

vu

T

T

 (1)

(u1, v1) and (u2, v2) are pixel locations in the two
images, and H is a homography defined between
them (Figure 2), induced by the plane Π. It can be
constructed from the camera projection matrices P1
and P2 for two cameras and the equation of plane Π
as follows:

[]

1
21

32221202

31211101

30201000

32221202

31211101

30201000

−=
⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

=Π

PPH

pppp

dcba

pppp

pppp

P

pppp

pppp

pppp

P

dcba

iiii

iiii

iiii

iiii

i

iiii

iiii

iiii

i

 (2)

where, for i = {1,2}, iP is a 4 x 4 matrix created

from Pi by inserting the plane coefficients ()iiii dcba (transformed to view i’s

coordinate frame) into the third row of the matrix.
For our system, we use planes that are parallel to the
virtual image plane. We rely on these
transformations to map pixels to the virtual
viewpoint (P1) from an input image (P2).

We set up a homography in OpenGL by initializing a
plane that occupies the entire viewing region. The
texture matrices are then set with the appropriate
homography coefficients and we load each texture
unit with its respective input image. As the plane is
rasterized, the input images are projectively textured
onto it. Each screen pixel now contains the set of
coincident input pixels and bit-masks. The
coincident input pixels may be used to determine
how well they match at that location. Similarly, the
coincident bit masks may be used to decide if that
location is within the object visual hull.

Visual Hull
After the input bit-mask images are projected (and
resampled using nearest neighbor interpolation) onto
the plane, we use them to determine locations on that
plane that are within the visual hull by computing the
logical AND (i.e. intersection) for each set of
coincident bit masks. Thus, if at least one camera
does not see a location, then that location is labeled
as outside of the visual hull. The result of this
operation is a binary image, which describes the
intersection of the plane with the visual hull deduced
from the object silhouettes. We illustrate this idea
for a pair of 2D cameras in Figure 3a. This step does
not require its own rendering pass; we combine it
together with the color consensus computation into a
single fragment program. The full visual hull can be

(a)

(b)

Figure 4: The matching score image is typically

noisy. We use a template window to consider the

local pixel neighborhood to support each match and

remove the noise. The template shown in (a) lies

across a surface discontinuity. Even though the pixel

is on the object surface and should be correctly

matched, its neighborhood contains pixels that are

off of the surface whose high scores will inflate the

aggregated matching score. The template shown in

(b) has a pixel neighborhood that does not contain

any discontinuities and will not be misled by nearby

false matches.

recovered in this manner by sweeping the plane
through an initial bounding volume of the object
such that the visual hull is discretized to a set of
planes (Figure 3b). We can directly render the visual
hull in this representation by directly rendering the
planes.

Color Consensus
We use the color consensus of coincident input
pixels to estimate the likelihood of a match, that is,
each pixel is a projection of the same location – a
correspondence. We compute the statistical variance
of the color to measure the color consensus for a set
of pixels. For a set of pixel colors, { }Nici ,...,2,1| ∈ , (N = 4, in our case), the

variance (cvar) is given by the following
computations:

∑
∑

−=
=

N

i

i

N

i

i

cc
N

c

c
N

c

2
var)(

1

1

 (3)

A low color variance score indicates high consensus.
Since the images are 24-bit RGB color quantities, we
compute per pixel, the variance score for each of the
color channels separately and then average them
together into a single matching score. This score is
an initial estimate of the location’s match likelihood.
We also record the mean color c at each pixel
location. The mean color is propagated through the
other rendering stages to the synthesis stage. We
indicate locations that are outside of the visual hull

by assigning them the highest (worst) possible
matching score and a default background color. The
output of this stage is an image where the RGB
channels contain the average color c , and the alpha
channel stores cvar as the initial matching scores.

Template Library
Since pixel color is not unique, establishing
correspondences using only pixel color is not robust
and may lead to many false matches. Matching
locations where the coincident pixels are not in
correspondence may be incorrectly assigned
favorable matching scores based entirely on their
color consensus. These false matches manifest as
noise in the matching score image. The focus of this
section is our technique for removing and reducing
the incorrect matches.

 We address this problem by examining the local
pixel neighborhood around each location to find
support for the match. We assume that the matching
score function over the image varies continuously
and that pixels in the local neighborhood should have
similar matching scores (i.e. the local neighborhood
of an incorrect match should contain many
identifiably incorrect matches). We compute the
mean matching scores of the neighboring pixels and
use this average as the aggregated matching score for
each location. We implement this step as an image
convolution of the initial matching score image with
a with a filter from the template library. This filter
describes the pixel neighborhood and each of their
respective pixel weights.

Choosing a good template filter is important for
establishing correct matches. The traditional square
template centered about the pixel position fails to
find correct support when the pixel is located close to
a surface discontinuity (Figure 4a). The square
template assumes that the matching scores in this
neighborhood vary smoothly, which is inconsistent
with the surface discontinuity. Consequently, the
neighborhood will contain bad pixel matches that are
off of the object surface. They contribute high
individual matching scores that will artificially
increase the aggregated matching score. However,
we may instead look for a different pixel
neighborhood that does not include any
discontinuities. A template with better neighborhood
support is shown in Figure 4b. Some authors
[Ols02a,Berg01a] have suggested using robust
statistics to adapt the shape of the template in
establishing local support for each pixel. Our
rendering system instead applies a library of template
window shapes to estimate the correct support. This
method is more suitable for implementation on
graphics hardware. The library consists of standard
square template windows with different orientations.

Due to constraints on hardware resources, we use basic 7x7 square templates with the rotations

(a)

(d)

(b)

(e)

(c)

(f)

Figure 5. Results: (a) background image of input viewpoint (b) image from input viewpoint (c) segmented

silhouette bit-mask (d) image from new viewpoint using multi-view stereo (e) image from new viewpoint

rendered using multi-view stereo & visual hull (f) depth image

discretized to 0o, 22.5o, 45o, and 67.5o. Inspired by
Kanade’s sliding window technique [Oku91a], our
library also includes copies of these four basic
templates shifted with different pixel centers over the
space of 7x7 integer shift vectors. Our library
consists of 196 (7x7x4) unique shifts and
orientations of the square template. The templates
are applied to our initial matching score image and at
each pixel we record the best matching score among
the set of templates. To avoid wasteful computation,
the templates in the library are only applied to pixels
that are inside of the visual hull; all other pixels are
discarded from further processing.

We apply each template in the library to the
matching score image in two stages: First, we
aggregate the matching scores over the four basic
template windows. This separable convolution is
implemented in two rendering passes. The
matching score image is sampled bilinearly by the
texture hardware for each template rotation. The
aggregated scores for the four basic rotated templates
are stored into the respective RGBA color channels.
In the second stage, each template window is shifted
to find a better matching score; we choose the best
matching score among the shifted templates for each
pixel. This step is implemented as a separable two-
pass image convolution by a MIN filter on each color
channel independently. We apply this filter over the
neighborhoods of each of the four basic template
shapes. Again, the graphics hardware samples the

aggregated matching score image bilinearly over
each rotated template window. Finally, the best
matching score from the four template shapes for
each pixel is chosen (minimum score among the
RGBA channels)

Image Synthesis
Each plane associates an image that contains the
mean color and aggregated matching score for each
pixel. These images are rendered into the Z-Buffer
as they are computed, using the matching score as
depth. At each location, the Z-Buffer selects the
pixel with the lowest matching score among the set
of planes. We directly display each color pixel and
update the Z-Buffer as each plane is rendered. To
meet interactive frame rate requirements, we use a
minimum set of planes for rendering and update the
results by incrementally inserting more planes as
additional processing time become available.

5. RESULTS
Our test scene consists of an actor against a blue
curtain to simplify the foreground segmentation. We
use 6 DragonFly FireWire cameras calibrated with
in-house software that relies on feature detection and
matching. The scene was sampled using four nearby
cameras. Each camera records an initial image of the
background and subtracts this against all subsequent
image frames to automatically determine the actor’s
silhouette (Figure 5c). We use the input image

frames to render the scene from a new viewpoint (d).
Note the ghosting and blur artifacts around the
actor’s profile. We can use the silhouettes to
constrain the multi-view matching with the visual
hull and effectively remove artifacts along the
silhouette profile (Figure 5e). Our rendering system
achieves a rendering rate of 15 fps at an image
resolution of 320 x 240, discretizing the scene to 20
planes. The planes share the same orientations; the
normals are perpendicular to the viewing direction,
and the plane positions are distributed in equal steps
in inverse depth as measured from the viewpoint.

We compare our template library against the standard
7x7 template, and Kanade’s sliding window in
Figure 6. We can see that the template library is
more effective at recovering the depth of
discontinuities along the silhouette profiles.
Furthermore, by comparing the depth maps, we can
see that the depth recovered by the square window is
noisy along the profiles, and that the sliding window
tends to produce “blocky” depth maps. The images
produced by the template library filters shows
significant improvement over the previous two
techniques.

We give additional results in Figure 7. The input
images were taken from a digital camera. The
camera pose for each image was recovered using the
in-house calibration software. The silhouette
segmentation was computed by hand using Adobe
Photoshop to remove the back walls.

6. CONCLUSIONS & FUTURE WORK
We have presented and demonstrated results on a
rendering system that combines the strengths of
visual hull rendering and multi-view stereo. We
synthesize images that contain fewer artifacts than
either approach. In our experiments, we rely on
square templates to aggregate the matching score.
We would like to investigate different template
shapes to establish the neighborhood support.
Furthermore, our current hardware implementation
limits the size of the template window to 7x7. We
plan to incorporate multi-resolution into our system
to accommodate stereo matching with larger template
window sizes. We would also like to expand the
system to segment, track, and render multiple visual
hulls.

7. ACKNOWLEDGMENTS
This work has been co-sponsored by the Advanced
System Technology laboratory of
STMicroelectronics and the Digital Media
Innovation Program (DiMI) from the University of
California.

8. REFERENCES
[Bak03a] Baker, S., Terence, S. and Kanade, T. 2003.

“When Is the Shape of a Scene Unique Given Its Light-
Field: A Fundamental Theorem of 3D Vision?” IEEE
Transaction on Pattern Analysis and Machine
Intelligence, 25, 2, 100-109.

[Berg01a] Berg A and Malik J, “Geometric Blur for
Template Matching.” CVPR 2001 601-614.

[Frag03a] ARB_fragment_program,
http://oss.sgi.com/projects/ogl-
sample/registry/ARB/fragment_program.txt

[Hart00a] Hartley R. and Zisserman, A. 2000. “Multiple
View Geometry,” Cambridge University Press.

[Kang01a] Kang, S.B., Szeliski, R. and Chai, J. 2001.
“Handling occlusions in dense multi-view stereo,”
Proceedings IEEE Conference on Computer Vision and
Pattern Recognition 2002, I:156-161.

[Laur94a] Laurentini, A. “The Visual Hull Concept for
Silhouette Based image Understanding.” IEEE PAMI
16.2 (1994), 150-162.

[Li03a] Li M, Magnor M, and Seidel H, “Hardware-
Accelerated Visual Hull Reconstruction and
Rendering.” Graphics Interface'2003. (2003),

[Li03b] Li M, Magnor M, and Seidel H, “Improved
Hardware-Accelerated Visual Hull Rendering.” Vision,
Modeling, and Visualization 2003.

[Mat01a] Matusik Wojciech, Buehler C, and McMillan L,
“Polyhedral Visual Hulls for Real-Time Rendering,”
12th Eurographics Workshop on Rendering (2001),
115-125.

[Mat00a] Matusik Wojciech, Buehler C, Raskar R,
McMillan L, and Gortler S, “Image-Based Visual
Hulls.” SIGGRAPH 2000.

[Okut91a] Okutomi M and Kanade T, “A multi-
baseline stereo.” CVPR 1991.

[Ols02a] Olson C, “Maximum-Likelihood Image
Matching.” IEEE PAMI 24.6 (2002), 853-857.

[Prin02a] Prince, S.J.D., Xu, K. and Cheok, A.D. 2002.
“Augmented Reality Camera Tracking with
Homographies,” Computer Graphics and Applications,
22, 6, 39-45.

[Yan02a] Yang, J.C., Matthew, E., Buehler, C. and
McMillan, L. 2002. “A Real-Time Distributed Light
Field Camera,” Proceedings Eurographics Workshop
on Rendering 2002, 77-85.

[Yan00a] Yang R, Welch G, and Bishop G, “Real-Time
Consensus-Based Scene Reconstruction using
Commodity Graphics Hardware.” PacificGraphics
2000.

(a)

(b)

(c)

Figure 6. Comparison of filters: (a) 7x7 square template (b) sliding window (c) template library

(a)

(b) (c) (d)

Figure 7: Baby dataset rendered using 20 sampling planes: (a) 3 images from input sequence (b)

synthesized image at novel viewpoint (c) depth map (d) final composited matching score image

