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ABSTRACT 

We present a system for rendering novel viewpoints from a set of calibrated and silhouette-segmented images 
using the visual hull together with multi-view stereo.  The visual hull predicted from the object silhouettes is 
used to restrict the search range of the multi-view stereo.  This reduces redundant computation and the 
possibility of incorrect matches.  Unlike previous visual hull approaches, we do not need to recover a polyhedral 
model.  Instead, the visual hull is implicitly described by the silhouette images and synthesized using their 
projections onto a set of planes.  This representation allows an efficient implementation on current pixel-shader 
graphics cards, yielding frames at interactive rates.  We also introduce a library of image filters to improve 
rendering results along edges and silhouette profiles. 
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1. INTRODUCTION 
Given a set of calibrated and silhouette-segmented 
images, the visual hull [Laur94a, Mat01a, Mat00a] is 
the maximal solid volume that is consistent with each 
silhouette.  The visual hull is given by the 
intersection of the input silhouette cones.  The 
resulting intersection volume is a conservative bound 
on the object’s shape. As more images become 
available, the visual hull will converge to a volume 
that is tighter than the object’s convex hull, but this 
volume will not necessarily converge to the true 
geometry.  This is due to the potential presence of 
concave regions on the object that are difficult, if not 
impossible, to detect using only silhouettes.  Despite 
this shortcoming, the visual hull is still a good first 
approximation to the actual object geometry. 

Multi-view stereo reconstruction algorithms, in 
contrast to shape-from-silhouette methods, are able 
to recover these concave regions (as long as 
sufficient texture information is present) but typically 
fail to accurately recover geometry along the 
silhouette profiles.  However, multi-view stereo can 
take advantage of the visual hull to avoid 
unnecessary computations for locations outside of 
the object volume (this can potentially reduce the 
possibility of incorrect matches), which can help to 
recover the object profile.  The stereo, which relies 
on image texture, can also recover concave regions 
that are invisible to the visual hull.  The two methods 
are thus complementary. 

Li, et al. proposed a method [Li03a] to recover the 
full polyhedral visual hull model by computing 
constructive solid geometry (CSG) intersections in 
graphics hardware.  The acquired model was then 
used to restrict the per-pixel epipolar search range for 
multi-view stereo reconstruction.  However, this 
approach requires significant computational effort to 
process dynamic scenes; recovering the polyhedral 
model at interactive rates, despite hardware 
acceleration, is still prohibitively expensive.  
Furthermore, a significant portion of the algorithm 
was implemented outside of the graphics card. 
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Since we are interested only in rendering the visual 
hull, it may not be necessary to recover the 
polyhedral model.  Li later explored this idea and 
presented a multi-pass technique [Li03b] for real-
time rendering of visual hulls using hardware stencil 
buffers.  In this approach, Li eschewed a polyhedral 
visual hull for a view-dependent depth map 
representation, which was then projectively texture 
mapped using the appropriate set of input images for 
image synthesis.  However, the results demonstrate 
that the visual hull approximation to the geometry is 
not sufficient for rendering convincing images.  
Blurring and ghosting artifacts were present in the 
images since the visual hull failed to accurately 
represent the object geometry.  As expected, the 
artifacts were especially noticeable for concave 
elements of the object surface. 

Yang, et al. [Yan00a, Yan02a] introduced a multi-
pass approach to stereo reconstruction that was 
implemented using programmable graphics 
hardware.  The results are superior to those of the 
visual hull, but there are still observable artifacts 
present in the images, especially along the object 
edge profiles, which could have been removed by 
considering the visual hull.  Furthermore, his 
implementation on earlier graphics hardware 
required expensive buffer “read-backs” from the 
texture memory to perform the matching score 
aggregation, which further penalized the frame rate. 

We present in this paper a new multi-pass plane-
sweep rendering method that takes advantage of the 
visual hull and multi-view stereo reconstruction 
together to synthesize images from new viewpoints.  
The approach we describe here is, in spirit, an 
integration of the two previous techniques reported 
by Li and Yang, with additional image filters to 
improve the rendering quality.  We outline some of 
our principal contributions: 

• We use the visual hull implied from the image 
silhouettes to restrict the search range for each 
pixel in the multi-view stereo.  This allows us to 
avoid unnecessary computations and reduce 
potential false matches.  

• Our method uses a library of template shapes to 
identify correspondences along surface 
discontinuities at the visual hull profiles.  Our 
results demonstrate how the templates improve 
the rendering results in the presence of these 
discontinuities. 

• The hardware implementation does not require 
any “read-backs” from texture memory.  All 
rendering operations are performed within the 
graphics card and intermediate rendering states 
are written to texture memory via off-screen 
buffers. 

The remainder of this paper is organized as follows.  
We overview our rendering system in the next 
section and present our algorithm in section 3 and 
discuss details of its hardware implementation in 
section 4.  We present results in section 5, and 
conclude with ideas for future work.  

2. RENDERING SYSTEM 
Our system consists of 6 calibrated DragonFly 
Firewire cameras observing a dynamic environment.  
We define a spline path through the 6 cameras and 
reconstruct images using the closest 4 cameras for 
each given virtual intermediate viewpoint.  Images 
from this set of four cameras are then acquired and 
processed by fragment programs on an ATI Radeon 
9800 graphics card.  These fragment programs 
implement the visual hull and multi-view stereo 
reconstruction, which we describe later. 

The fragment programs are invoked in the graphics 
hardware by initializing a set of sweeping planes.  
Each of these planes induces a mapping 
transformation, which we use to transfer pixels 
across images.  The planes may be processed 
independently and are composited into a color and 
depth buffer for direct display.  The rendering rate 
trades off with the reconstruction quality by 
adjusting the number of planes to process in the 
multi-view stereo. 

3. SYSTEM OVERVIEW 
To synthesize an output view for each new 
viewpoint, the algorithm basically steps a sample 
plane parallel to the output image plane through the 
scene depth range, choosing for each output pixel the 
depth of the best match, as computed from the multi-
view stereo.  By considering a set of sample planes 
through this range, we may recover scene geometry 
by selecting from each of the planes, match locations 
with high color consensus.  To recover a depth map 
from the desired viewpoint, we intersect rays through 
the set of planes and select for each depth pixel, the 
location with the best matching score from the set of 
plane intersections. 

We proceed by first preparing a bit-mask image to 
describe the segmentation of the foreground object 
silhouette against the static background.  The input 
images along with their respective bit masks are 
mapped into the virtual view by a plane-induced 
transformation.  We then determine locations on the 
sample plane that lie within the object’s visual hull 
by comparing the mapped bit-mask images; locations 
outside of the visual hull are identified and discarded 
from further processing. 

 



segment silhouettes from input images 

for each plane 

    map input  images onto plane 

    compute visual hull intersection of plane 

    compute color consensus and mean color 

    mask color consensus image by visual hull 

    aggregate match scores (using template library) 

    render mean colors into color buffer and  

        matching scores into Z-Buffer 

end for 

display color buffer 

Figure 1. Outline of rendering algorithm. 

For the multi-view stereo, we map the input images, 
using a mapping transformation defined by each 
sample plane, to compute the mean color and the 
color consensus of coincident pixels (the set of pixels 
that map to the same location.)  We assume that the 
coincident pixels on or near locations where the 
sample plane intersects the object surface will have 
high color consensus (low color variance), while 
coincident pixels off of the surface will have low 
consensus (high color variance).  We use the 
converse of this principle to infer matches – locations 
on the plane that are good estimates to the object 
geometry (i.e. plane-object intersections.)  However, 
the color consensus is not sufficient to identify 
matches on image regions that are untextured or 
contain repeated patterns.  This is a weakness that is 
common to most stereo algorithms that rely on color 
texture to assess geometry. 

We refine our initial consensus estimation by 
examining a local neighborhood of pixels to 
aggregate support for each matching location.  
Deciding which pixels to include in this 
neighborhood is critical for establishing a match.  
This is especially important for matches that are 
located along surface discontinuities where the local 
neighborhood may have a large discrepancy in 
matching scores.  We address this problem by 
searching through a library of template shapes to find 
the correct neighborhood for each pixel. 

We prepare output images by rendering each plane, 
writing its depth and matching scores into the 
respective color and Z buffers.  For direct view 
synthesis, we substitute the depth with the mean 
color.  We can also directly display the color 
consensus score to visualize the confidence of our 
matches.  The minimum & maximum depths and 
number of planes control respectively the search  
range and sampling resolution of the multi-view 
stereo.  We present an outline of the algorithm in 
Figure 1. 

 

Figure 2. H is a homography induced by plane 

Π and camera projection matrices P1 and P2.  

We use H to map pixels u1 and u2 between the 

two camera views. 

4. HARDWARE IMPLEMENTATION 
We implement our rendering algorithm on the ATI 
Radeon 9800 Pro, taking advantage of its  
programmable pixel shader units through judicious 
use of fragment programs [Frag03].  Each program 
execution requires a separate rendering pass.  The 
resulting image from each intermediate pass is  
rendered off-screen into a texture buffer and then 
bound as texture input to a fragment program for the 
next rendering pass.  By storing the intermediate 
results inside of the texture memory, we avoid 
expensive transactions across the system bus. 

Our algorithm processes a set of sample planes that 
sweeps out a bounding volume of the object.  Each 
plane requires several rendering passes to fully 
process.  For each plane, we compute the average 
color and matching score over all locations on the 
plane. The planes are independent of each other and 
may be processed concurrently and independently, 
but currently, the hardware pipeline restricts us to a 
sequential processing order. 

In this section, we describe how we implement each 
stage of our algorithm in graphics hardware.  The 
silhouette segmentation is performed once for each 
set of input images.  All other processing stages, such 
as the plane-mapping, visual hull/color consensus, 
and aggregation steps are performed separately for 
each new output view, and each sample plane. 

Silhouette Segmentation 
We prepare the input images by first segmenting 
them to find the object silhouettes using standard 
background subtraction.  We sample an initial image, 
without the object to be segmented and denote this 
the “background image.” Each subsequent image is 
then subtracted against the background image.  We 
use a threshold to identify the foreground pixels and 
encode the result as a bit-mask image.  If the 
foreground object contains colors similar color to the 
background then the bit-mask image may contain  
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Figure 3: (a) Two silhouette bit-masks are projectively mapped onto a plane.  The intersection of the 

silhouette projections (shown in gray) is a cross-section of the visual hull.  Additional silhouette bit-

masks from new viewpoints will further constrain the intersection region and the visual hull. (b) When 

the cross-sections are collected together, the visual hull volume is discretized to the set of planes.  We 

can display the visual hull by directly rendering the cross-sections from each plane. 

holes.  We can correct this problem using median or 
morphological filters (such as the closing operator) to 
remove the holes.  The final bit-masks are stored into 
the alpha channel of each respective input image.  
We perform this segmentation for all of the acquired 
images. 

Plane-Mapping 
We use plane-to-plane mappings – or homographies 
– to facilitate the transfer of pixels between images.  
Each homography is linear in projective space and 
may be described by a 4x4 matrix: 
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(u1, v1) and (u2, v2) are pixel locations in the two 
images, and H is a homography defined between 
them (Figure 2), induced by the plane Π.  It can be 
constructed from the camera projection matrices P1 
and P2 for two cameras and the equation of plane Π 
as follows: 
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where, for i = {1,2}, iP  is a 4 x 4 matrix created 

from Pi by inserting the plane coefficients ( )iiii dcba  (transformed to view i’s 

coordinate frame) into the third row of the matrix.  
For our system, we use planes that are parallel to the 
virtual image plane.  We rely on these 
transformations to map pixels to the virtual 
viewpoint (P1) from an input image (P2).  

We set up a homography in OpenGL by initializing a 
plane that occupies the entire viewing region.  The 
texture matrices are then set with the appropriate 
homography coefficients and we load each texture 
unit with its respective input image.  As the plane is 
rasterized, the input images are projectively textured 
onto it.    Each screen pixel now contains the set of 
coincident input pixels and bit-masks.  The 
coincident input pixels may be used to determine 
how well they match at that location.  Similarly, the 
coincident bit masks may be used to decide if that 
location is within the object visual hull. 

Visual Hull 
After the input bit-mask images are projected (and 
resampled using nearest neighbor interpolation) onto 
the plane, we use them to determine locations on that 
plane that are within the visual hull by computing the 
logical AND (i.e. intersection) for each set of 
coincident bit masks.  Thus, if at least one camera 
does not see a location, then that location is labeled 
as outside of the visual hull.  The result of this 
operation is a binary image, which describes the 
intersection of the plane with the visual hull deduced 
from the object silhouettes.  We illustrate this idea 
for a pair of 2D cameras in Figure 3a.  This step does 
not require its own rendering pass; we combine it 
together with the color consensus computation into a 
single fragment program.  The full visual hull can be  
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Figure 4: The matching score image is typically 

noisy.  We use a template window to consider the 

local pixel neighborhood to support each match and 

remove the noise.  The template shown in (a) lies 

across a surface discontinuity.  Even though the pixel 

is on the object surface and should be correctly 

matched, its neighborhood contains pixels that are 

off of the surface whose high scores will inflate the 

aggregated matching score.  The template shown in 

(b) has a pixel neighborhood that does not contain 

any discontinuities and will not be misled by nearby 

false matches. 

recovered in this manner by sweeping the plane 
through an initial bounding volume of the object 
such that the visual hull is discretized to a set of 
planes (Figure 3b).  We can directly render the visual 
hull in this representation by directly rendering the 
planes. 

Color Consensus 
We use the color consensus of coincident input 
pixels to estimate the likelihood of a match, that is, 
each pixel is a projection of the same location – a 
correspondence.  We compute the statistical variance 
of the color to measure the color consensus for a set 
of pixels.  For a set of pixel colors, { }Nici ,...,2,1| ∈ , (N = 4, in our case), the 

variance (cvar) is given by the following 
computations: 
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A low color variance score indicates high consensus.  
Since the images are 24-bit RGB color quantities, we 
compute per pixel, the variance score for each of the 
color channels separately and then average them 
together into a single matching score.  This score is 
an initial estimate of the location’s match likelihood.  
We also record the mean color c  at each pixel 
location.  The mean color is propagated through the 
other rendering stages to the synthesis stage.  We 
indicate locations that are outside of the visual hull 

by assigning them the highest (worst) possible 
matching score and a default background color.  The 
output of this stage is an image where the RGB 
channels contain the average color c , and the alpha 
channel stores cvar as the initial matching scores. 

Template Library 
Since pixel color is not unique, establishing 
correspondences using only pixel color is not robust 
and may lead to many false matches.   Matching 
locations where the coincident pixels are not in 
correspondence may be incorrectly assigned 
favorable matching scores based entirely on their 
color consensus.  These false matches manifest as 
noise in the matching score image.  The focus of this 
section is our technique for removing and reducing 
the incorrect matches. 

 We address this problem by examining the local 
pixel neighborhood around each location to find 
support for the match.  We assume that the matching 
score function over the image varies continuously 
and that pixels in the local neighborhood should have 
similar matching scores (i.e. the local neighborhood 
of an incorrect match should contain many 
identifiably incorrect matches).  We compute the 
mean matching scores of the neighboring pixels and 
use this average as the aggregated matching score for 
each location.  We implement this step as an image 
convolution of the initial matching score image with 
a with a filter from the template library.  This filter 
describes the pixel neighborhood and each of their 
respective pixel weights. 

Choosing a good template filter is important for 
establishing correct matches.  The traditional square 
template centered about the pixel position fails to 
find correct support when the pixel is located close to 
a surface discontinuity (Figure 4a).  The square 
template assumes that the matching scores in this 
neighborhood vary smoothly, which is inconsistent 
with the surface discontinuity.  Consequently, the 
neighborhood will contain bad pixel matches that are 
off of the object surface.  They contribute high 
individual matching scores that will artificially 
increase the aggregated matching score.  However, 
we may instead look for a different pixel 
neighborhood that does not include any 
discontinuities.  A template with better neighborhood 
support is shown in Figure 4b. Some authors 
[Ols02a,Berg01a] have suggested using robust 
statistics to adapt the shape of the template in 
establishing local support for each pixel.  Our 
rendering system instead applies a library of template 
window shapes to estimate the correct support.  This 
method is more suitable for implementation on 
graphics hardware.  The library consists of standard 
square template windows with different orientations.  



Due to constraints on hardware resources, we use basic 7x7 square templates with the rotations  
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Figure 5. Results: (a) background image of input viewpoint (b) image from input viewpoint (c) segmented 

silhouette bit-mask (d) image from new viewpoint using multi-view stereo (e) image from new viewpoint 

rendered using multi-view stereo & visual hull (f) depth image  

discretized to 0o, 22.5o, 45o, and 67.5o.  Inspired by 
Kanade’s sliding window technique [Oku91a], our 
library also includes copies of these four basic 
templates shifted with different pixel centers over the 
space of 7x7 integer shift vectors.  Our library 
consists of 196 (7x7x4) unique shifts and 
orientations of the square template.  The templates 
are applied to our initial matching score image and at 
each pixel we record the best matching score among 
the set of templates.  To avoid wasteful computation, 
the templates in the library are only applied to pixels 
that are inside of the visual hull; all other pixels are 
discarded from further processing.   

We apply each template in the library to the 
matching score image in two stages:  First, we 
aggregate the matching scores over the four basic 
template windows.  This separable convolution is 
implemented in two rendering passes.    The 
matching score image is sampled bilinearly by the 
texture hardware for each template rotation.  The 
aggregated scores for the four basic rotated templates 
are stored into the respective RGBA color channels.   
In the second stage, each template window is shifted 
to find a better matching score; we choose the best 
matching score among the shifted templates for each 
pixel.  This step is implemented as a separable two-
pass image convolution by a MIN filter on each color 
channel independently.  We apply this filter over the 
neighborhoods of each of the four basic template 
shapes.  Again, the graphics hardware samples the 

aggregated matching score image bilinearly over 
each rotated template window.  Finally, the best 
matching score from the four template shapes for 
each pixel is chosen (minimum score among the 
RGBA channels) 

Image Synthesis 
Each plane associates an image that contains the 
mean color and aggregated matching score for each 
pixel.  These images are rendered into the Z-Buffer 
as they are computed, using the matching score as 
depth.  At each location, the Z-Buffer selects the 
pixel with the lowest matching score among the set 
of planes.  We directly display each color pixel and 
update the Z-Buffer as each plane is rendered.  To 
meet interactive frame rate requirements, we use a 
minimum set of planes for rendering and update the 
results by incrementally inserting more planes as 
additional processing time become available. 

5. RESULTS 
Our test scene consists of an actor against a blue 
curtain to simplify the foreground segmentation.  We 
use 6 DragonFly FireWire cameras calibrated with 
in-house software that relies on feature detection and 
matching.  The scene was sampled using four nearby 
cameras.  Each camera records an initial image of the 
background and subtracts this against all subsequent 
image frames to automatically determine the actor’s 
silhouette (Figure 5c).  We use the input image 



frames to render the scene from a new viewpoint (d).  
Note the ghosting and blur artifacts around the 
actor’s profile.  We can use the silhouettes to 
constrain the multi-view matching with the visual 
hull and effectively remove artifacts along the 
silhouette profile (Figure 5e).  Our rendering system 
achieves a rendering rate of 15 fps at an image 
resolution of 320 x 240, discretizing the scene to 20 
planes.  The planes share the same orientations; the 
normals are perpendicular to the viewing direction, 
and the plane positions are distributed in equal steps 
in inverse depth as measured from the viewpoint. 

We compare our template library against the standard 
7x7 template, and Kanade’s sliding window in 
Figure 6.  We can see that the template library is 
more effective at recovering the depth of 
discontinuities along the silhouette profiles.  
Furthermore, by comparing the depth maps, we can 
see that the depth recovered by the square window is 
noisy along the profiles, and that the sliding window 
tends to produce “blocky” depth maps.  The images 
produced by the template library filters shows 
significant improvement over the previous two 
techniques. 

We give additional results in Figure 7.  The input 
images were taken from a digital camera.  The 
camera pose for each image was recovered using the 
in-house calibration software.  The silhouette 
segmentation was computed by hand using Adobe 
Photoshop to remove the back walls.   

6. CONCLUSIONS & FUTURE WORK 
We have presented and demonstrated results on a 
rendering system that combines the strengths of 
visual hull rendering and multi-view stereo.  We 
synthesize images that contain fewer artifacts than 
either approach.  In our experiments, we rely on 
square templates to aggregate the matching score.  
We would like to investigate different template 
shapes to establish the neighborhood support.  
Furthermore, our current hardware implementation 
limits the size of the template window to 7x7.  We 
plan to incorporate multi-resolution into our system  
to accommodate stereo matching with larger template 
window sizes.  We would also like to expand the 
system to segment, track, and render multiple visual 
hulls. 

7. ACKNOWLEDGMENTS 
This work has been co-sponsored by the Advanced 
System Technology laboratory of 
STMicroelectronics and the Digital Media 
Innovation Program (DiMI) from the University of 
California. 

8. REFERENCES 
[Bak03a] Baker, S., Terence, S. and Kanade, T. 2003. 

“When Is the Shape of a Scene Unique Given Its Light-
Field: A Fundamental Theorem of 3D Vision?” IEEE 
Transaction on Pattern Analysis and Machine 
Intelligence, 25, 2, 100-109. 

[Berg01a] Berg A and Malik J, “Geometric Blur for 
Template Matching.” CVPR 2001 601-614. 

[Frag03a] ARB_fragment_program, 
http://oss.sgi.com/projects/ogl-
sample/registry/ARB/fragment_program.txt 

[Hart00a] Hartley R. and Zisserman, A. 2000. “Multiple 
View Geometry,” Cambridge University Press. 

[Kang01a] Kang, S.B., Szeliski, R. and Chai, J. 2001. 
“Handling occlusions in dense multi-view stereo,” 
Proceedings IEEE Conference on Computer Vision and 
Pattern Recognition 2002, I:156-161. 

[Laur94a] Laurentini, A. “The Visual Hull Concept for 
Silhouette Based image Understanding.” IEEE PAMI 
16.2 (1994), 150-162. 

[Li03a] Li M, Magnor M, and Seidel H,  “Hardware-
Accelerated Visual Hull Reconstruction and 
Rendering.” Graphics Interface'2003.  (2003), 

[Li03b] Li M, Magnor M, and Seidel H, “Improved 
Hardware-Accelerated Visual Hull Rendering.” Vision, 
Modeling, and Visualization 2003. 

[Mat01a] Matusik Wojciech, Buehler C, and McMillan L, 
“Polyhedral Visual Hulls for Real-Time Rendering,”  
12th Eurographics Workshop on Rendering (2001), 
115-125. 

[Mat00a] Matusik Wojciech, Buehler C, Raskar R, 
McMillan L, and Gortler S, “Image-Based Visual 
Hulls.” SIGGRAPH 2000. 

[Okut91a] Okutomi M and Kanade T, “A multi- 
baseline stereo.” CVPR 1991. 

[Ols02a] Olson C, “Maximum-Likelihood Image 
Matching.”  IEEE PAMI 24.6 (2002), 853-857. 

[Prin02a] Prince, S.J.D., Xu, K. and Cheok, A.D. 2002. 
“Augmented Reality Camera Tracking with 
Homographies,” Computer Graphics and Applications, 
22, 6, 39-45. 

[Yan02a] Yang, J.C., Matthew, E., Buehler, C. and 
McMillan, L. 2002. “A Real-Time Distributed Light 
Field Camera,” Proceedings Eurographics Workshop 
on Rendering 2002, 77-85. 

[Yan00a] Yang R, Welch G, and Bishop G, “Real-Time 
Consensus-Based Scene Reconstruction using 
Commodity Graphics Hardware.” PacificGraphics 
2000.



 

 

  

(a) 

 

 

  

(b) 

 

 

  

(c) 

Figure 6. Comparison of filters:  (a) 7x7 square template (b) sliding window (c) template library 

 

 

 

(a) 

 

 

   

(b) (c) (d) 

Figure 7: Baby dataset rendered using 20 sampling planes:  (a) 3 images from input sequence (b) 

synthesized image at novel viewpoint (c) depth map (d) final composited matching score image 

 


