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University of West Bohemia in Pilsen,Faculty of Applied Sciences,
Department of Cybernetics, Univerzitnı́ 22, 306 14 Pilsen

machlica@kky.zcu.cz, zzajic@kky.zcu.cz, muller@kky.zcu.cz

Abstract
This paper investigates the combination of discriminativeadap-
tation techniques. The discriminative Maximum A-Posteriori
(DMAP) adaptation and discriminative feature Maximum Like-
lihood Linear Regression (DfMLLR) are examined. Since each
of the methods is proposed for distinct amount of adaptation
data it is useful to combine them in order to preserve the sys-
tems performance in situations with varying amount of adapta-
tion data. Generally, DfMLLR and DMAP are executed subse-
quently (DMAP preceded by DfMLLR) demanding to approach
the data twice. Since both methods address the data through the
same statistics an one-pass-combination was proposed in order
to decrease the time consumption. The one-pass-combination
utilizes the advantage of DfMLLR method to transform directly
the feature vectors. However, instead of feature vectors the
statistics are transformed, what allows to use already computed
statistics for the DMAP pass without the need to process the
data once again. All the approaches are compared also to their
non-discriminative alternatives.
Index Terms: MAP, fMLLR, DMAP, DfMLLR, MMI, adapta-
tion, speech recognition, combination

1. Introduction
In the field of speech recognition adaptation techniques took
an important role significantly increasing the systems perfor-
mance and robustness. Standard adaptation methods are based
on Maximum Likelihood Estimation (MLE) procedure. In or-
der to facilitate MLE of model parameters several assumptions
are introduced, which the real data do not fulfill. Still, MLE
models behave well, and were successfully applied in praxis.
In the past few years, new approaches trying to improve stan-
dard MLE methods were presented. One of the most significant
approaches is the discriminative training, which in contrast to
MLE tries to handle also overlaps between distinct parts (dis-
tributions) of MLE models. Loosely speaking, the MLE crite-
rion is adjusted in order to involve and prevent situations when
probability distributions of distinct sources (e.g. speech data
of different phones) coincide in greater or lesser extent. Further
description of discriminative criteria may be found in Section 2.

This paper will focus on well-known MLE adaptation tech-
niques and their discriminative alternatives. Since the function-
ality of individual adaptation techniques was already verified
[1] the paper aims to examine the behavior of their combination.
Two adaptation methods were chosen according to their com-
plementarity, Discriminative Maximum A-Posteriory (DMAP)
adaptation and Discriminative feature Maximum Likelihood
Linear Regression (DfMLLR) adaptation. DfMLLR was pro-
posed to handle the problem with lower amount of adaptation
data, whereas DMAP dominates in situations when lots of data
are available. However, as described in Section 6, DMAP used

in combination with DfMLLR (DfMLLR succeeded by DMAP)
may be interpreted as a refinement stage of adaptation. Such a
combination significantly improves the systems accuracy, but
demands to process the input data twice. Thus, a method avoid-
ing the need of the second pass was proposed in Section 6. To
enlighten the procedure description of important parts of MAP
and DfMLLR will be given in Sections 4 and 5, respectively.
The performance of the system enhanced with adaptation tech-
niques including their combination and analysis of obtained re-
sults can be found in Section 7.3.

2. Discriminative adaptation techniques
Standard adaptation methods are mostly based on Maximum
Likelihood Estimation (MLE) used in large extent in order to
estimate HMM parameters. In MLE the following criterion is
maximized

FMLE(λ) = p(O|Wref , λ), (1)

whereO = {o1, o2, . . . , oT } represents the sequence of
T feature vectors related to one speaker,Wref is the cor-
responding correct transcription, andλ denotes the set of
model parameters. Focus will be laid on HMMs with
output probabilities of states represented by GMMs, where
λj = {ωjm, µjm, Cjm}

Mj

m=1 is the set of GMM parameters in
the j − th state, whereMj is the number of mixtures,ωjm,
µjm andCjm are weight, mean and variance of them − th

mixture, respectively. In the scope of this paper only diagonal
matrices withσ2

jm = diag(Cjm) are assumed.
MLE criterion takes into account only correct transcrip-

tions, on the other hand discriminative criteria consider in ad-
dition incorrect hypotheses. The discriminative trainingcrite-
rion was developed in order to increase the posterior probability
of model states corresponding to their adaptation data and de-
crease probability of confusion data (data incorrectly assigned
to HMM states) at the same time. One of the possibilities is to
utilize the Maximum Mutual Information (MMI) criterion [2]:

FMMI(λ) =
p(O|Wref , λ)P (Wref)
∑

W p(O|W, λ)P (W )
, (2)

whereWref is a transcription corresponding to the observation
O andW is a transcription with all possible hypothesis.

Another criteria are e.g. Maximum Mutual Information
Frame Discrimination (MMI-FD) [3] or Minimum Phone Er-
ror (MPE) [4]. The main problem consists in the optimization
process, where mainly weak-sense auxiliary function is used
[5]. Regrettably, it does not guarantee the convergence of the
discriminative criterion. In order to adjust the stabilityof dis-
criminative criteria a smoothing term is involved, which will be
introduced in sequel.



3. Adaptation Statistics
Adaptation techniques do not access the data directly, but only
through accumulated statistics, which is the first step preceding
the adaptation process. These statistics are

γjm(t) =
ωjmp(ot|jm)

∑M

m=1 ωjmp(ot|jm)
(3)

standing for them − th mixtures’ posterior of thej − th state
of the HMM,

cjm =
T

∑

t=1

γjm(t) (4)

representing the soft count of mixturem,

εjm(o) =
T

∑

t=1

γjm(t)ot , (5)

εjm(oo
T) =

T
∑

t=1

γjm(t)oto
T
t (6)

denoting the sum of the first and the second moment of features
aligned to mixturem in thej-th state of the HMM.

For MMI approach, also denominator statisticsγden
jm (t),

cden
jm , εden

jm (o) andεden
jm (ooT) for confusable states must be ac-

cumulated. These are computed in the sense of the denominator
in the equation (2).

4. Discriminative Maximum A-posteriori
Probability (DMAP) Adaptation

Standard (non-discriminative) MAP is based on the Bayes
method for estimation of the acoustic model parameters. MAP
demands a huge amount of data, because each of the HMM pa-
rameters is adapted separately. In order to demonstrate thedif-
ferences between MAP and DMAP, adaptation of GMM means
will be described, remaining formulas can be found in [6], [7]
for MAP, DMAP, respectively. In the case of MAP adaptation
means are adapted according to formula

µ̄jm =
εjm(o) + τjmµjm

cjm + τjm

, (7)

whereτjm is an empirically determined parameter, which con-
trols the balance between old and new parameters.

DMAP adaptation, according to MMI criterion, uses dis-
criminative statistics mentioned in Section 3, i.e. discrimi-
native statistics are subtracted from MLE statistics to replace
them, cjm := cjm − cden

jm , εjm(o) := εjm(o) − εden
jm (o)

andεjm(ooT) := εjm(ooT) − εden
jm (ooT), and an additional

smoothing termDjm = f · cden
m with a weighting factorf is

introduced. Means are now adapted according to formula

µ̄jm =
εjm(o) − fεden

jm (o) + τjmµjm

cjm − Djm + τjm

, (8)

As can be seen from equations (7), (8) the only difference be-
tween MAP and DMAP consists in shifting of correctly accu-
mulated statistics (data correctly assigned to HMM states)away
from denominator statistics (data assigned to incorrect HMM
states). This will be the same for the fMLLR vs DfMLLR case.

5. Discriminative Feature Maximum
Likelihood Linear Regression (DfMLLR)

DfMLLR technique belongs to the category of Discriminative
Linear Transformations (DLTs), another DLT based method
is Discriminative Maximum Likelihood Linear Regression
(MLLR-DLT). These are the discriminative extensions of Lin-
ear Transformations (LTs). Similar model components are clus-
tered into clustersKn, n = 1, . . . , N in order to lower the
number of adapted parameters [10]. Thus, in contrast to MAP
(resp. DMAP) lower amount of adaptation data suffices. fM-
LLR transforms directly featuresot according to

ōt = A(n)ot + b(n) = W(n)ξ(t) , (9)

where
W(n) = [A(n), b(n)], (10)

W(n) represents the transformation matrix corresponding to the
n − th clusterKn andξ(t) = [oT

t , 1]
T stands for the extended

feature vector.
The estimation formulas for rows ofW(n) are given as

w(n)i = G
−1
(n)i

(

v(n)i

α(n)
+ k(n)i

)

, (11)

wherev(n)i is thei-th row vector of cofactors of matrixA(n),
α(n) can be found as a solution of a quadratic function defined
in [8],

k(n)i =
∑

m∈Kn

µmiεm(ξ)

σ2
mi

, (12)

G(n)i =
∑

m∈Kn

εm(ξξT)

σ2
mi

, (13)

and

εm(ξ) =
[

ε
T
m(o), cm

]T
, (14)

εm(ξξ
T) =

[

εm(ooT) εm(o)
εT

m(o) cm

]

. (15)

Equation (11) is the solution of minimization problem with
auxiliary function given in [8]. MatricesA(n) andb(n) are es-
timated iteratively, thus they have to be initialized (e.g.ran-
domly).

The discriminative approach (DfMLLR) uses discrimina-
tive auxiliary function specified in [4]. The computation differs
only in estimation of auxiliary matricesG(n)i andk(n)i, where
discriminative statistics are subtracted from MLE ones in order
to replace them (in analogy with Section 4). Hence, auxiliary
matrices are computed according to

k(n)i =
∑

m∈Kn

µmi

σ2
mi

(εm(ξ) − Dm[µm, 1]T), (16)

G(n)i =
∑

m∈Kn

1

σ2
mi

(εm(ξξ
T) − DmZm), (17)

where

Zm =

[

Σm + µmµT
m µT

m

µm 1

]

, (18)

Dm = f.c
den
m (19)

is the smoothing term, andf is a weighting factor.
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Figure 1: Two-pass-combination of DfMLLR and DMAP adap-
tation.

6. Combination of DMAP and DfMLLR
Several efforts in combination of non-discriminative fMLLR
and MAP methods were already examined in [11]. These two
techniques are well suited for combination, mainly in orderfM-
LLR succeeded by MAP.

The motivation can be stated as follows. Imagine a data
stream continuously submitting feature vectors to the system.
After a short while, when only a few vectors (several secondsof
speech) were introduced, the fMLLR adaptation is performed.
The feature vectors are continually submitted to the system.
Hence, subsequently accumulated statistics should be morepre-
cise. After another while, when the amount of data has rea-
sonably increased, fMLLR is applied again, and so on. This
process continues till enough data were accumulated for MAP
adaptation to be effective. Now, rather than apply the fMLLR
adaptation MAP is utilized instead (MAP works well when lots
of data are available).

Let us consider another situation when both adaptations are
performed subsequently utilizing the same amount of data. The
fMLLR pass shifts the whole model in the direction of acoustic
space formed by adaptation data at once (even if lower amount
of data is present). Thus, the data statistics for MAP pass be-
come more precise. The statistics should now more properly
describe the part of the acoustic space where the input data
live. The next step, MAP adaptation, can be viewed as a re-
finement pass correcting parameters of mixtures (in relation to
the amount of data aligned to these mixtures) utilizing morerel-
evant (more properly aligned - fMLLR) statistics.

These are very natural behaviors of a combination of adap-
tation techniques. However, in order to perform both passesthe
time consumption increases significantly since the data statis-
tics defined in Section 3 have to be accumulated twice (one per
each pass). Note that experiments will be focused on the lat-
ter case (both adaptations performed subsequently utilizing the
same amount of data).

Problem of time consumption is even more evident in case
of discriminative methods where in addition the denominator
statisticsγden

jm (t), cden
jm , εden

jm (o), εden
jm (ooT) have to be accu-

mulated. The two-pass procedure is as follows (a more detailed
schema can be found in Figure 1):

1 : SI → stats1 for SI
DfMLLR
=⇒ SDDfMLLR

2 : SDDfMLLR → stats2 for SDDfMLLR
DMAP
=⇒ SDDfMLLR+DMAP ,

(20)
where SI denotes the Speaker Independent model.
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Figure 2: One-pass-combination of DfMLLR and DMAP adap-
tation.

The evidence of an improvement in the systems perfor-
mance can be found in Table 1. In order to join both adaptation
passes into one, re-utilization of statistics computed in the first
pass was proposed. Since DfMLLR is in use rather than accu-
mulate statistics once again the already computed statistics are
transformed to match the new feature space. Assuming feature
transformation̄ot = A(n)ot + b(n) specified in Section 5 the
statistics can be transformed as

ε̄jm(o) =

∑T

t=1 γjm(t)ōt
∑T

t=1 γjm(t)
= A(n)εjm + b(n) , (21)

ε̄jm(ooT) =
∑T

t=1
γjm(t)ōtō

T
t

∑

T
t=1

γjm(t)
=

= A(n)εjm(ooT)AT
(n) + 2A(n)εjm(o)bT

(n) + b(n)b
T
(n) ,

(22)
The transformed statistics are then utilized in the second

DMAP pass (equation (8)). The only difference in one and
two-pass approach consists in the use of SI mixtures’ poste-
rior γjm(t), which remained untransformed. Thus, the one-pass
combination can be expressed as (the schema is depicted in Fig-
ure 2)

SI → stats1 for SI
DfMLLR
=⇒ SDDfMLLR →

→ transformstats1
DMAP
=⇒ SDDfMLLR+DMAP .

(23)

Hence, there is no need to see the adaptation data twice.
Even if γjm(t) remained unchanged the transformed statistic
do not suffer from apparent inaccuracies as proved the experi-
ments.

7. Experiments
7.1. Test Data

Experiments were carried out on the SpeechDat-East [12] cor-
pus, which contains telephone speech in 5 languages Czech,
Polish, Slovak, Hungarian, and Russian. For experiments only
the Czech part of SD-E was used. The acoustic HMM was
trained on 700 speakers with 50 sentences for each speaker (cca
5 sec. for sentence). For testing purposes 150 speakers were
chosen with 50 sentences for each speaker, 10 sentences (cca
50 sec.) of each speaker were used for adaptation and the rest
for testing (cca 200 sec.). The vocabulary consisted of 7000



Acc[%]
SI model 55.85

MAP 62.42
fMLLR 65.03
DMAP 64.05

DfMLLR 65.81
two-pass-combination

fMLLR+MAP 65.49
DfMLLR+DMAP 66.60

one-pass-combination
fMLLR+MAP 65.30

DfMLLR+DMAP 66.38

Table 1: Accuracy (Acc)[%] of system performance for each
type of adaptation and their combinations.

words. No OOV words were present. Triphones were mod-
eled using 3 state HMM with 8 gaussian mixtures (diagonal co-
variances) in each of the states. For the recognition a language
model based on zerograms was considered. In order to extract
the features Perceptual Linear Prediction (PLP) was utilized [9],
12 dimensional feature vectors were extracted each 10 ms uti-
lizing a 32 ms hamming window, Cepstral Mean Normalization
(CMN) was applied, and∆, ∆∆ coefficients were added.

7.2. Adaptation Settings

In previous sections four adaptation methods were introduced
with several parameters to be set. In the case of MAP and
DMAP adaptationτjm was set for each mixture component
to τ = 16, for DMAP f = 1 was set in addition. In both
methods adaptation ofωjm, µjm andCjm was assumed. In
the case of fMLLR only one global transformation matrix for
each speaker was utilized, and for DfMLLRf occuring in the
smoothing term was set to 1. One iteration of all methods was
performed.

7.3. Results

To demonstrate the influence of both passes (DfMLLR, DMAP)
only smaller amount of data was used for adaptation (cca 50
sec. - see Section 7.1). The results of experiments are shown
in Table 1. In the upper part of the table results obtained for
the baseline system using SI model and non-combined adapta-
tion methods can be found. The two-pass-combination of non-
discriminative and discriminative techniques are locatedin the
middle part of the table, and at the end results of the proposed
on-pass-combination techniques can be examined. The results
show obvious improvement of system performance when com-
bining the MAP and fMLLR approach. Additional increase in
accuracy is obtained for the discriminative alternative. The pro-
posed one-pass-combination gives very similar results to the
two-pass-combination with lower time consumption demands.

8. Conclusions
In this paper combination of discriminative adaptation tech-
niques was examined. Comparison of non-discriminative and
discriminative methods was carried out. MAP, DMAP, fMLLR,
DfMLLR techniques were investigated. In order to decrease the
time consumption of their combination an one-pass approach
was proposed, where the accumulated statistics from the DfM-
LLR pass are transformed and handed to the DMAP pass. It was

demonstrated that combination of adaptation techniques brings
significant improvements into the speech recognition task.The
discriminative techniques outperformed the non-discriminative
ones, and the one-pass-combination shows to be most effective
in the sense of time consumption preserving the systems accu-
racy (in relation to the two-pass-combination).
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