
View Dependent Stochastic Sampling for Efficient 
Rendering of Point Sampled Surfaces 

 
Sushil Bhakar   Liang Luo S.P. Mudur 

 

Department of Computer Science, Concordia University 
1455 De Maisonneuve Blvd. West 

Montreal, H3G 1M8 Canada 

sushi_bh@cs.concordia.ca liang_lu@cs.concordia.ca mudur@cs.concordia.ca 

 

ABSTRACT 
In this paper we present a new technique for rendering very large datasets representing point-sampled surfaces. 
Rendering efficiency is considerably improved by using stochastic sampling that is controlled using various object 
and view dependent image space properties. Most of the current rendering algorithms simplify the model in a 
preprocessing step before rendering. This simplification primarily results in a smaller subset of sampled points. 
Hence these algorithms suffer from the problem of under-sampling when the screen space resolution becomes greater 
than the sampling rate inherent in the simplified representation. Our algorithm avoids this problem by accessing the 
original point data set at all times and dynamically selecting points to display at rendering time. As a side benefit our 
preprocessing is much simpler and preprocessing time is also considerably reduced, albeit at the cost of increased 
disk and memory usage. We also include an algorithm to correctly estimate properly oriented normals, which are 
essential during rendering. 

Keywords: point sampled surfaces, feature based rendering, visualization, stochastic sampling, normal estimation 

 

1. Introduction 
Recent advances in 3D scanning technology has 

enabled the creation of huge point cloud models with 
millions of points[3]. Point sampled surfaces could also 
be produced as the result of scientific computations 
simulating complex physical phenomena, primarily to 
benefit from some of the advantages that such 
representations provide further down the processing 
pipeline [4,5,6]. This is slowly leading to a significant 
shift towards using sampled representation of surfaces in 
the form of points throughout the graphics pipeline [1,2]. 
Major challenges in this type of representation are the 
handling of large amount of data produced and its 
interactive rendering. In order to take advantage of 
today's highly optimized polygon rendering hardware, 
many algorithms convert this set of points into an 
intermediate representation [7,8,9,10,11]. But these 
representations suffer from high per primitive cost in 
terms of processing time and memory requirements. An 
alternative paradigm has been advocated by Levoy and 
others [12, 13], wherein less effort is spent towards 
individual primitives due to large redundancy and noise 
being present in the sampled representation. Our 
technique is similar in spirit but differs considerably in 
the details. 

A major issue that needs to be addressed due to very 
high sampling density is that, in the process of rendering 
these models, many points project onto a single pixel. 
Hence a major preprocessing task that has been the focus 
of work with such models is that of creating a simplified 
version of the original sampled set.  This can be stated as 
follows: Given the original sampled set S and its 
simplified version S’, for any process, say P, we would 
like to find that S’ which minimizes the error[P(S), 
P(S’)], for a given constraint, such as |S’| <= a given 
number or error[P(S), P(S’)] < a given ε [15].  Since the 

focus of this paper is rendering, this would translate to 
saying error[rendered_picture(S),rendered_picture(S’)] 
should be minimized. All current simplification methods 
take the approach that most processing tasks are 
determined by the underlying surface geometry and 
hence these methods concentrate on minimizing the 
following error metric:  

error[surface_geometry(S), surface_geometry(S’)].   
 
Simplification methods may choose either to ensure that 
S’ is a proper subset of S or may choose to compute an 
approximate S’ that only minimizes the prescribed error 
metric. These simplification methods can be broadly 
classified into three categories as follows:  



1. Set Partitioning – S is partitioned into subsets {S1, 
S2, …, Sn} such that each subset can be represented 
by a single sample point according to the desired 
error metric [2,16,17]. 

2. Point Pair Collapsing – Point pairs in S are 
successively considered and if possible collapsed 
into a single point, according to the desired metric 
[1,18,19].  

3. Resampling – New sampling positions are 
computed, say according to local geometric 
characteristic such as curvature [14], or say by 
moving particles on the surface of the original set S 
simulating inter-particle repelling forces [20]. 

 
Since for all purposes, S’ is now the representation of S, 
a major concern that all these methods try to address is 
not to lose any significant property present in the original 
set S. For example, inadequate samples in S’ could result 
in holes in rendered_picture(S’), particularly for highly 
zoomed-in close-up views. This is avoided by storing a 
disk of influence on the tangent plane [2] or more 
elaborate differential geometric information [14] at each 
point. The point is then rendered either using flat shading 
optionally followed by screen–space filtering or by 
choosing a suitably approximating 3D shape or a splat in 
screen space [21]. This delicate balance between 
reducing the size of S’ and at the same time, not losing 
any significant information present in the original 
sampled set S, often results in very complex pre -
processing to be carried out on the original point set. A 
more detailed review can be found in [22] 

All point-based renderers require a correctly 
oriented normal at every point that is rendered and often 
this requires topological connectivity or continuous 
surface information. We describe a simple method of 
orienting these representative normals and then use these 
to correctly orient the normal at each of the point 
samples chosen for rendering. Sampling itself is 
controlled by the use of multiple visual cues, both object 
based and image based, which include flatness of any 
region of the model, presence of features such as an edge 
of the model in the region, pixel coverage or rendered 
image size, silhouette containment and occlude potential. 
Fewer points are rendered in flatter regions than in 
highly curved regions or in regions containing an edge. 
The number of points itself is proportional to the number 
of pixels covered in the final rendered image. Along the 
same lines, more points are rendered closer to the 
silhouette [23] and less points are rendered in regions 
that have higher occlude potential. Occlude potential is 
higher if there are a large number of points in front of 
this region along the viewing direction and this is easily 
computed using a 3D DDA on the octree nodes [24]. 

Individually each of the above visual cues has been 
successfully used in rendering and has been reported 
earlier in literature. However, together they enable 
considerable computational speed-ups in the rendering 
process while at the same time not losing any of the 
information present in the original point sampled set.  

The next section describes the details of 
computing the different visual cues for densely sampled 
surfaces using stochastic sampling. This is followed by a 
brief description of the Hierarchical octree structure and 
the rendering algorithm itself. We then show some 
examples from our implementation. We conclude by 
discussing some of the advantages and problems of using 
this rendering technique and our planned further work.  
 

2. Stochastic Computing of Visual Cues 
 

Region Flatness:  
Flatness in any region of a surface is a significant cue 
that can be used to optimize rendering. Clearly flat 
regions can be rendered with fewer samples, unless we 
wish to capture special effects like specular highlighting. 
Given a subset of point samples covering a region of the 
surface, we use the eigen value analysis of the 
covariance matrix of points described below to 
determine the local surface curvature variation 
[25,26,27]. If the number of points in this region is very 
large, then for increased computational efficiency, a 
more reasonably sized stochastically sampled subset can 
be used.  

We can construct a population of random 
vectors of the form x = [x1,x2,x3 ]t  using x,y,z 
components of point coordinates.  
The mean vector of the population is defined as m = 
E{x}, where E{arg} is the expected value of the 
argument. Covariance matrix C of the vector population 
is defined as C[x] = E{(x-m)(x-m)t}. 
We denote the 3 eigen values of this covariance matrix 

as 
210 ,, λλλ  where 210 λλλ ≤≤  

If 
210

,λλλ <<  then the region is reasonably flat. 

We decide on the flatness of a region by examining the 
above condition and examining the value of the 

expression )/( 2100 λλλλ ++ . Smaller the value of this 

expression, more stringent is the flatness criterion. Fig. 1 
shows the regions classified according to two different 
values for this expression, (0.005 and 0.001). 
 

Edge Containment:  

If a region contains an edge of the original surface, then 
we must choose a larger number of samples to render in  



 
Figure 1: Region classification using different thresholds 
for classifying flatness. 
 

that region to avoid aliasing problems. The same method 
of computing eigen values used for determining flatness 
can be used to determine the presence of an edge in the 
region. Point p can be said to be very likely belonging to 

an edge if 0210 2, λλλλ ≈≈  [26]. 

In order to estimate the presence of an edge in the region 
we check a randomly chosen subset of points for being 
classified as edge points. If none of the chosen points get 
classified as edge points, then we declare that this region 
has no edge. 
 
Pixel Coverage:  

The final image size in pixels is another important visual 
cue that is used to optimize rendering. The number of 
point samples to be selected for rendering a region of the 
object surface can be chosen in some proportion to the 
number of pixels  this region will cover in the rendered 
image. In an octree structure, the cell dimensions and the 
current viewing transformation are sufficient to give us a 
usable value for this cue. 
 

Silhouette Containment:  
In regions that include the silhouette, we mu st choose a 
larger number of samples. A region contains a silhouette 
if some of the points in the region have normals facing 
the eye point and other points have normals facing away. 
Once again we select a subset of points in the region. 
Normal computation is done again using the eigen value 
analysis described above. The correct orientation of the 
normal is computed by using the representative normal 
for that region. This is simply done by ensuring the 
normal orientation is such that its dot product with the 

representative normal is positive.  Using the chosen 
subset of points we obtain a probabilistic estimate for 
whether the region contains a silhouette or not. If all 
normals are either facing towards the eye point or are all 
facing away from the eye point, we say that this node 
does not contain any silhouette. 
 

Occlude Potential:  

Given any region, which in our case is a leaf node (cell) 
of the octree, say C, we compute its occlude potential as 
follows. Let C1, C2, .., Cn be the octree cells that are in 
front of this cell along the view direction. The view 
direction is chosen as the line joining the cell center and 
the eye point. The total number of points in the cells C1, 
C2, …, Cn is directly used as a measure of the occlude 
potential of C. A low value indicates that C is not 
occluded, while a high value indicates that C is largely 
occluded by point samples in front of it. 
 

3. Rendering Process 

3.1 Construction of octree: 

Given a soup of points S, the first step we do is to 
organize the set into an octree. The octree construction 
process is well known and straightforward. The 
bounding box for the entire set S is first computed as the 
root and then subdivision proceeds until the following 
criteria are met:  
• The number of points in a node is less than a pre-set 

number, say, max_point_budget. 

• The points in that node satisfy a given flatness 
criterion.  

With each leaf node of this octree we associate the 
following information:  
• pointers to the set of points belonging to this node. 
• count of total number of points in this node. 
• a marker indicating presence/absence of an edge; 

this is done by carrying out the edge containment 
computation described earlier. 

• a correctly oriented normal; the method for 
computing the correctly oriented normal for the 
region of the object’s surface covered in this node is 
described below.  

Fig. 2 shows an octree visualization using cubes for a 
point-sampled surface. 
 



 

3.2 Rendering by stochastic sampling: 

During rendering every leaf node is traversed and then 
the number of samples to be selected for rendering from 
the region represented by the leaf node is determined 
based on the values for the different visual cues. The 
basic structure of this algorithm is given below. We have 
described the algorithm with out giving values for a 
number of the factors used in the algorithm. For 
example, we have just said that if the silhouette is 
present then suitably increase the sample size. However, 
later in Table 1 we give the values that we have used in 
our experiments for the different factors that appear in 
this algorithm. 

 
void render_leaf_node(node) { 

//find number of points needed to render 

int Ns = find_Ns(this_node); 

 

for (i=0;i<Ns;i++) { 

//select a point (random) in this node and find its neighborhood 

current_point = node_points[random(Ns)]; 

points[] = find_neighbouring_points(); 

 

//find eigenvalues and eigenvectors. 

//eigen[0] is smallest eigenvalue. Eigenvectors contains 
corresponding eigenvectors. 

eigens[3], eigenVectors[3]  = eigen_computations(points); 

normal = eigenVector[0].normalize(); 

 

//check if normal properly oriented. 

//otherwise reverse direction 

if( dot_product(normal, rep_normal <1 ) { 

normal = -normal; 

} 

 

// find and render  an ellipse in tangent plane based on principle 
curvatures [14] 

curvatures[2] = compute_principle_curvatures(points); 

draw_ellipse(curvatures); 

} 

} 

 

//Ns is number of points needed for rendering leaf node 

int find_Ns(leaf_node) { 

//estimate initial size 

int Ns = projected_screen_area() * pixel_density; 

 

// do eigen computations for this node. 

// eigenvalues are stored in increasing magnitute. 

eigens[3] = perform_eigen_analysis(leaf_node); 

eigens = normalize(eigens); 

 

//adjust Ns based on min_eigenvalue for flatness. 

// K=constant to adjust rendering speed vs quality 

double flatness = K* eigen[0];  

Ns = Ns* (flatness);   

 

//check for edge and update Ns 

if(eigen[0] = eigen[1] && eigen[2] = 2* eigen[0]) { 

 

 
Figure 2: Octtree(Bottom) for point sampled surface (top). 
  



//edge present; 

Ns = Ns * edge_factor(); 

} 

 

//check for silhouette and update Ns 

 double silhouette_factor = perform_silhouette_analysis(); 

Ns = Ns*silhouette_factor; 

} 

 

 //check how occluded is the node via 3D DDA [28] 

occ_nodes[] = find_set_of_nodes_in_front(); 

double sum = 0; 

for each occ_node { 

sum = numpoints_node(); 

} 

//normalize sum and update Ns 

sum = sum/total_points(); 

Ns = Ns * sum * K1; 

Return Ns; 

} 

 

 

void find_rep_normals(leaf_nodes[]) { 

//first find a cell for which we always know the orientation. 

// our first cell is the one with max z cooridinate 

start_node = find_leaf_max_z(); 

 

normal_dir = {0,0,1}; 

// call recursive function to correct nodes starting with this 
//node 

correct_neighboring_nodes(startnode, normal_dir); 

} 

 

//recursive function to correct orientations. 

void correct_neighboring_nodes(node, prev_rep_normal){ 

// if no more neighbors return. 

if(node  == null) 

return; 

 

//see if rep_normal correctly oriented, otherwise reverse 
//direction 

rep_normal = unoriented_normal(node); 

If(dot_product(rep_normal, prev_rep_normal) < 1) { 

rep_normal = -rep_normal; 

}  

//recursively correct neighbors of this node 

correct_neighboring_nodes(, rep_normal); 

} 

 

4. Some Implementation Details and Results 

4.1 Implementation Heuristics 

The implementation of the preprocessing task and the 
rendering algorithm as described above is rather 
straightforward. There are a number of factors that have 
to be heuristically determined. These include the various 
ratios and factors mentioned earlier that decide on 
whether a node is flat or curved, whether a point can be 
classified as edge or not, the factor for the nominal 
number of points to be rendered, etc. In our present 
implementation we have experimented with different 
values. Table 1 contains the values, which seem to give 
us good results in all of the cases we have experimented 
with.  
 
4.2 Efficiency Improvements  

Our rendering process depends very heavily on 
computing eigen values and eigen vectors of a point set. 
We have come up with an efficient method to carry out 
these eigen value computations. There are 2 key 
observations: 
 
1) In our case we need to perform eigen value analysis 

on 3x3 matrix only. Since cubic equations can be 

 

 
Figure 3a: Un-oriented normals (red facing inwards) 
Figure 3b: Results after normal orientation. (top images 
show picture shaded using normals as computed using eigen 
value analysis). Bottom shows images rendered after 

orientation correction.  



solved explicitly, this makes this calculation linear 
in time with respect to the number of points.  

2) The other key observation is that this 3x3 matrix is 
symmetric in nature. Hence the complexity of cubic 
equation is less than the full general form of cubic 
equation. Pauly et al have used the Newton-Rapson 
method to solve this cubic equation [29]. They have 
said that it needs on the average less than 3 or 4 
iterations.  In our case, we have taken advantage of 
the special structure of cubic equation, which 
guarantees us that roots are always real.              

 
Property 

 

Criterion/formulae 

Flatness     f = 005.0)/( 2100 ≤λ+λ+λλ  

Edge point 
classification 

0210 2, λλλλ ≈≈  

Nominal 
number of 
samples in a 
flat region – Ns 

Let Np be the point count of the 
points in that leaf node; Let W be the 
estimate of the number of pixels 
covered by this leaf node in screen 
space taking into account current 
viewing parameters. Then    
         Ns = min(W/4, Np). 

Flatness 
adjustment 
factor 

Ns = min ((1 + f/0.005)*Ns, Np) 
At most we will choose double the 
number of nominal points. 

Silhouette/Edge 
containment 
factor 

If silhouette is present in this leaf 
node, then Ns = min (4.0* Ns, Np) 

Occlude 
potential 
adjustment 
factor 

Let C1, C2, …, Cn be the nodes in 
front of the node under consideration 
along the view direction and let Nq 
be the total number of points in these 
potentially occluding nodes. Then 
occlude potential is calculated as  
q = min( 0.01*Nq/W, 1.0). Using f, 
Ns is adjusted as Ns = (1-f)*Ns. 

Splat 
dimensions 

If the ratios of the two principal 
curvatures is 1.0, then a circle is in 
the tangent plane is chosen with 
radius R such that R maps to 
ceil[sqrt(W/Ns)] number of pixels. If 
the ratio is less than 1.0, then the 
minor axis size is suitably scaled. 
The major axis is aligned with the 
direction of maximum principal 
curvature. 

 

Table 1: Rendering algorithm parameters. 

3) Most of the time we are only interested in finding 
whether to subdivide the cell further depending on 
whether it is nearly flat or not and then find the 
corresponding eigen vector that is used as the 
normal direction. This can be done very efficiently 
as follows:  
a) We know that sum of reciprocals of roots of 

cubic equation  =  (sum of products taking 2 

roots at a time) /  product of all 3 roots 

b) Since smallest root must have a very small 

value for the flat regions, its reciprocal is very 

large. Hence reciprocal of smallest  root 

approximately equals the sum of reciprocals of 

roots 

c) This allows us to get the smallest root without 

solving the cubic equation but by evaluating an 

expression in terms of coefficients of cubic 

equation. 

d) We verify the correctness of this as the root by 

substituting it back in the cubic equation. If this 

is not a root, then it also implies that the region 

under consideration is not flat. 

Results 

We carried out some experiments to check the 
performance of our method. Fig. 5 shows a model 
rendered at different image sizes. The larger images have 
been cropped from the right to fit into the column. In 
Table 2 we give the image size and the actual number of 
samples selected and rendered. The variation in the 
number of samples required for each case is as expected. 

We see that number of sample points rendered does not 
increase linearly with image size in pixels. This is due to 
the fact that visual cues (such as flatness criteria) help us 
in reducing the number of points needed to render. 

 

Image # in 

Fig. 5. 

Image size in 

pixels  

Number of Sample 

points rendered 

(i) 96 x 96 10247 
(ii) 160 x 160 21882 
(iii) 250 x 250 44235 
(iv) 380 x 380 76789 
(v) 500 x 500 109412 

 

 

5. Conclusions and Further work 

We have described a simple algorithm for efficient 
rendering of very dense point sampled surfaces. The 
salient features of this method are the following: 

Table 2: Number of samples varying with image size . 



• Unlike many of the earlier techniques our method 
does not require a simplified subset to be pre-
computed. 
• Instead it selects a smaller subset on an as needed 
basis using multiple visual cues. Each time the viewing 
conditions change, a new subset is selected and 
rendered. A significant gain is that the original point 
set is always available. In an extreme zoomed in 
situation, all the sample points within the visible region 
may be selected and rendered.  

 

 

Figure 5: Rendering at different image sizes 
 

• A dense region of the original surface is rendered 
using a small number of sample points. This selection 
uses multiple visual cues such as flatness of the region, 
presence of features such as an edge or silhouette and 
the potential occlusion of this region due to object 
surfaces in front of it.  
• A basic assumption that we have made is that for 
rendering a densely sampled flattish region without any 
other visually significant features we only need to 
render a few of the sample points. And further, every 
point in this region is “characteristically similar” to 
another. Since a large number of these points map onto 
the same pixel, there is nothing to choose one point 

from another. Hence we use uniform random sampling 
to select the subset of points to render. 

• Continuing on the same line of thinking, we also 
assume that in a densely sampled region, the presence 
of any significant feature can be probabilistically 
determined by examining a smaller sample of the total 
set of points in the region. Accordingly in our 
algorithm we decide on the presence/absence of a 
feature using stochastic techniques rather than a totally 
deterministic approach that is used by all other 
algorithms. In all our experiments we have not found 
this causing any major problem. Yet, there is the 
situation, however low its probability may be, that we 
could miss a feature and accordingly create not such an 
accurate rendering of the surface. We could adopt a 
multi-scale approach [29,30], do a larger number of 
samples and increase the confidence of our 
computations.   
• At every sample point that is rendered a correctly 
oriented normal is needed. For this, most other 
algorithms depend on having access to the underlying 
continuous surface either in the form of a polygon 
mesh or piecewise algebraic geometry representations 
such as quadric or spline surface patches. Our approach 
makes a significant departure from this. We do not 
need any underlying continuous surface representation. 
We also do not require that the normal orientation be 
computed at every sample point of the original set. We 
have described a method, which associates a 
representative normal with each flattish region, and a 
method of correctly orienting this representative 
normal. Using this representative normal for the 
region, the correctly oriented normal at any point in 
that region can be computed. For a 2-manifold surface 
this method will give correct results as long as the 
surface has been adequately sampled. In an irregularly 
sampled surface, there could be regions, where this 
may not give us the correct approach. We give an 
example. The surface is such that it almost folds into 
itself and touches itself; the touching point is nearer to 
this point than other points that are topologically nearer 
to this point. As a result when basing our decisions 
only on spatial proximity of the points we may 
associate an incorrect orientation for the normal at one 
of these touching places. In such a situation, 
knowledge of the underlying surface connectivity is 
essential. However, this problem is not specific to our 
approach. Any approach that has to determine the 
underlying surface connectivity – say triangulating the 
sample points or fitting a surface, would also need this 
knowledge to be externally supplied to it. Otherwise 
the underlying surface could be created with inaccurate 
topological connectivity.  

 
 

 



While the overall results seem quite good, there are a 
number of aspects that we would be considering for 
further improvement. We briefly discuss these below. 
• Presently we use simple heuristics to determine the 

number of samples that represent a region. An 
adaptive approach to determine the sample size must 
be investigated, one in which the error is minimized.  

• Since we use the octree nodes our sampling is more 
of a stratified nature. Importance sampling, 
associating importance to different subsets of the 
original sample is another approach that may help 
considerably improve yield better results.  

• Presently we traverse all the leaf nodes of the octree 
and determine the sample points to render. This is 
single resolution rendering. The hierarchical 
structure already present should help to devise a 
multi-resolution rendering algorithm.  

• We also intend to investigate the development of an 
out of core rendering technique [31] with the octree 
structure maintained in persistent storage, and 
neighboring nodes loaded into main memory on an 
as needed basis.  

• Since our method is probabilistic, it is important to 
estimate the error in the rendered image. This would 
require clearly defining a metric for measuring error 
in rendered images.   

Acknowledgements 

We gratefully acknowledge NSERC support through a 
discovery grant and also a research tools and instruments 
grant provided to the third author. The models used in 
our experiments were downloaded from the following 
sites: http://www.cyberware.com/samples/ and 
http://www.cc.gatech.edu/projects/large_models/ 
 

References 

[1] Alexa,M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., 
Silva, T., “ Point Set Surfaces”, Proc. IEEE Visualization 01. 

[2] Pfister, H., Zwicker,M., van Baar, J., Gross,M., “Surfels: 
Surface Elements as Rendering Primitives.”, SIGGRAPH 2000. 

 [3] Levoy M et al.  The Digital Michelangelo Project: 3D 
Scanning of Large Statues ”, Proc.  SIGGRAPH 2000  

[4] Gross, M., “ Graphics in Medicine: From Visualization to 
Surgery.”, ACM Computer Graphics , Vol. 32, 1998, pp 53-56 

 [5] Hubeli, A., Gross, M., “Fairing of Non-Manifolds for 
Visualization.”, Proc. IEEE Visualization 00, 2000. 

 [6] Peikert, R., Roth, M., “The Parallel Vectors Operator - A 
Vector Field Visualization Primitive.”, IEEE Visualization ‘99. 

[7] Amenta, N., Bern, M., Kamvysselis, M., “A New Voronoi-
Based Surface Reconstruction Algorithm.”,SIGGRAPH 1998 

[8] Floater, M., Reimers, M., “Meshless parameterization and 
surface reconstruction.”, CAGD  18, 2001, pp 77-92 

[9] Giessen, J., John, M., “ Surface reconstruction based on a 
dynamical system.”, Proc. EUROGRAPHICS ’02, 2002. 

[10] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., 
Stuetzle, W., “ Surface reconstruction from unorganized 
points.”, Proc. SIGGRAPH 92, 1992 

[11] Taubin, G., “ A Signal Processing Approach to Fair 
Surface Design.”,Proc. SIGGRAPH 95, 1995 

[12] Rusinkiewicz S., Levoy M., “QSplat: A Multiresolution 
Point Rendering System for Large Meshes”,SIGGRAPH, 2000. 

[13] Pauly, M ., Gross, M., “ Spectral Processing of Point-
Sampled Geometry”, Proc. SIGGRAPH 01, 2001 

[14] Kalaih A. and Varshney A., “Modelling and Rendering 
Points with Local geometry”, IEEE Trans. On Visualization 
and Computer Graphics, 2002, pp 101-129. 

[15] Cignoni, P., Rocchini, C., Scopigno, R., “ Metro: 
Measuring error on simplified surfaces.”, Computer Graphics 

Forum, 17(2), 1998, pp 167-174 

[16] Brodsky, D., Watson, B., “Model simplification through 
refinement.”, Proc.  of Graphics Interface 2000, 2000 

[17] Shaffer, E., Garland, M., “ Efficient Adaptive Simplifi-   
cation of Massive Meshes.”,Proc. IEEE Visualization 01, 2001 

[18] Garland, M., Heckbert, P., “ Surface simplification using 
quadric error metrics.”,  Proc. SIGGRAPH 97, 1997 

[19] Hoppe, H., “ Progressive Meshes.”,  SIGGRAPH 96, 1996 

[20] Witkin, A., Heckbert, P., “ Using Particles To Sample and 
Control Implicit Surfaces.”,  Proc. SIGGRAPH 94, 1994 

[21] Zwicker, M., Pfister, H., van Baar, J., Gross, M., “ Surface 
Splatting.”, Proc. SIGGRAPH 01, 2001 

[22] Pauly M., Gross M., Kobbelt L., “ Efficient Simplification 
of Point-Sampled Surfaces”, Proc. IEEE Visualization 2002. 

[23] Sander P. V., Gu X., Gortler S. J., Hoppe H., Snyder J., 
"Silhouette Clipping.", Proc. SIGGRAPH 2000, pp. 327-334.  

[24] Schaufler G., Dorsey J., Decoret X., and Sillion  F. X., 
“Conservative Volumetric Visibility with Occluder Fusion”,   
Proc. SIGGRAPH 2000. 

[25] Jolliffe, I. Principle Component Analysis . Springer-
Verlag, 1986 

[26]. Gumhold, S., Wang, X., McLeod, R., “ Feature Extraction 
from Point Clouds.”, Proc. 10th Int. Meshing Roundtable, 2001 

[27] Hubeli, A., Gross, M., “ Multiresolution Feature 
Extraction from  Unstructured Meshes.”, Proc.  IEEE 

Visusualization 01, 2001 

[28] J. Revelles, C. Ureña, M. Lastra, “An Efficient Parametric 
Algorithm for Octree Traversal”, Journal of WSCG, vol 8, no. 
2, pp. 212-219,  ISSN 1213-6972 

[29] Pauly M., Keiser R., Gross M., “Multi-Scale Feature 
Extraction on Point-Sampled Models ”, Proc. Eurographics 

2003, to appear,  2003. 

 [30] Lindeberg, T., “ Feature Detection with Automatic Scale 
Selection.”, Int. Journal of Computer Vision, vol. 30, no. 2, pp 
77-116, 1998 

[31] Varadhan G., Manocha D., "Out-of-Core Rendering of 
Massive Geometric Environments", Proc. IEEE Visualization 

2002 


