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ABSTRACT

The parametrization of 3-d meshes can be used in many fields of computer graphics. Mesh-texturing,
mesh-retriangulation or 3-d morphing are only few applications for which a mesh parametrization is
needed. Because, many polygonal surfaces are manifolds of genus 0 (topological equivalent to a sphere),
we can apply a mapping, in which 2-d polar coordinates of a sphere can be directly transformed onto
the 3-d coordinates of a polygonal object. In this paper we present a hierarchical mapping algorithm,
that preserves the local surface properties. Our method consists of three main-steps. First, the mesh is
simplified to a tetrahedron. Next, the tetrahedron will be transformed to a spherical surface in which the
previous simplification process will be reversed on the surface of the sphere. Hereby, in every refinement
step the new vertices are inserted and the resulting parametrization mesh is optimized to be barycentric.
Finally, the resulting barycentric mesh is used as the basis for a shape-preserving optimization process.
The efficiency of these method will be shown by using our parametrization algorithm on different 3-d
objects.
Keywords: surface parametrization, texture, meshes, multi-resolution

1 Introduction

For the rendering of polygonal surfaces, 2-d texture
maps and normal maps are commonly used. In or-
der to find a mapping from the polygonal surface to
these 2-d maps a parametrization of the 3-d object
surface is needed. The vertices of the polygonal sur-
faces have to be transformed to a corresponding pa-
rameter space, with low distortion and no foldovers.
For manifolds with borders the appropriate param-
eter space is a simple plane, while for a closed genus
0 manifold the natural parameter space is the sur-
face of a sphere.

This paper presents a new technique to create
a parametrization of genus 0 manifolds, that pre-
serves the local properties of the surface. In our
case it means that the shapes of local regions of
the original model are similar to those in param-
eter space. Due to the preserved surface proper-
ties, this parametrization can be used together with
multi-resolution models. In this case, the model and
its parametrization are simplified simultaneously to
produce an textured approximation of the original

model. Examples can be found in the last section.

2 Previous Work

Methods for parametrization of 3-d meshes have
been studied by a number of researchers. Most of
them map the surface of the mesh to a plane by
solving linear equation systems while others build a
mapping between the mesh surface and the surface
of a sphere and have to solve systems of nonlinear
equations.

Tuette [Tutte63] introduced barycentric maps
for embedding connectivity graphs. This approach
maps the boundary of a given manifold with bor-
ders to a convex polygon in 2-d space and places
each interior point in the barycentric center of its
neighbors. This means each interior point pi in pa-
rameter space is a linear combination of its equally
weighted neighbors, given by

pi =

n−1
∑

j=0

wj,i · pj



wj,i =

{

1
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, jεN(i)

0 , else
, (1)

where N(i) denotes the point indices that are con-
nected to pi through edges (Figure 1) and di the
number of indices in N(i). When we put all border

Figure 1: Vertex star for pi

points at the end (indices m to M -1, where M is
the number of vertices), this can be formulated as:
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By solving this equation system we get the posi-
tions for the interior points that match the barycen-
tric condition. Because this mapping does not pre-
serve any mesh properties except the connectivity,
there are few applications for this technique (e.g.
mesh morphing).

To produce mappings that preserve mesh prop-
erties, we have to calculate the weights wi,j in Equa-
tion 2 in another way. Floater [Floater97] intro-
duced weights that reflect the real geometry. For
this Floater maps each vertex star to a plane with
a planar projection (scales the inner angle sum to
2π and preserves inner edge lengths as shown in Fig-
ure 2). Then, the projection weights must be com-
puted for the outer points ṗjk, so that their linear
combination results in the central point ṗi. Because
there exist to many solutions, Floater shows how to
find a proper set of positive weights, which are nec-
essary in order to avoid overlappings that occurs in
the case of negative weights.

Another approach to preserve mesh properties
uses discrete harmonic maps that minimize the Di-
rechlet Energy. Pinkall and Polthier [Pinkall93] dis-
cretized the problem for the weights of Eq. 2. This
results in a angle-preserving mapping. A problem

Figure 2: Planar projection

of this technique is occurrence of negative weights,
and thus foldovers.

In [Hormann99] Hormann introduces a method
to parameterize meshes using a simplify and refine-
ment strategy. He starts to parameterize the coars-
est version of its mesh and iteratively refines it while
updating the parametrization.

The mentioned parametrization techniques un-
til here can only be used for disc-like meshes, be-
cause we always have to define a border. Parameter-
ized closed meshes cannot be defined, without par-
titioning them. Some other techniques allow us to
parameterize closed genus 0 surfaces with a sphere
surface as the parameter domain. The problem for
this mappings is that the equation systems we have
to solve are not linear. Therefore optimization algo-
rithms have to be used to approximate the solution.

Shapiro [Shapiro98] in 1998 presented a map-
ping technique that is based on a simplification (ver-
tex decimation) followed by a constrained refine-
ment (vertex insertion) of the model. During the
refinement all vertices are inserted in the mesh in a
way, that the resulting mesh remains convex. The
surface of such meshes can easily be mapped to a
sphere, which is then used as parameter space for
the original model. An advantage of this approach
is its stability. Other techniques that work with op-
timization algorithms are not deterministic at all.
There does not exists any closed genus 0 manifold
that cannot be parameterized with this technique.
But since none of the original surface properties are
preserved during the parametrization process, there
are hardly other applications for such parametriza-
tions then mesh morphing.

Another way to build parameterizations of genus
0 manifolds has been shown by Alexa [Alexa99]. He
simply projects the vertices of the model to a sphere
from an interior point and starts an relaxation pro-
cess. The relaxation iteratively places each param-



eter point in the center of its neighbor points (con-
nected through edges) and project the result to the
sphere surface. The process stops when all foldovers
have disappeared. The problem is that this tech-
nique produces only a barycentric mapping, which
does not preserve any surface properties. Further-
more the relaxation process does not always termi-
nate. Therefore, several processes must be started
with different interior initial points.

A technique to create an angle-preserving map-
ping on a spherical parameter domain was intro-
duced by Haker [Haker00]. He transfers the non-
linear mapping problem to a linear disc parame-
ter domain, solves it and projects the result to a
sphere surface by means of stereo-projection. Be-
cause stereo-projection is not conformal for discrete
mappings, he produces a mapping that is not actu-
ally angle-preserving.

In [Gotsman03] Gotsman describes some funda-
mentals of spherical parameterizations and presents
a generalization of the barycentric coordinates for
planar parametrization problems, that works in lo-
cal tangent space and can also be used in the spher-
ical case.

Praun [Praun03] introduced another hierarchi-
cal technique that works with stretch metrics and
is used for geometry images of closed meshes. The
metrics are constructed to reduce undersampling
how it normally occurs into a parameter space.

A conformal parametrization method for closed
manifolds with arbitrary genus is presented by Xi-
anfeng Gu and Shing-Tung Yau [Gu03].

3 Shape-Preserving Mapping

Our aim was to produce a parametrization that is
stable, fast, and preserves surface properties. We
decided to use shape-preserving weights, because
we can ensure that no foldovers occur and the re-
sulting parametrization will preserve the angles and
the shape of our input mesh. Such mappings will
be well suited for textured multi-resolution meshes,
since we can simultaneously simplify geometry and
parameterize with low visible distortion.

Our approach for generating an shape-preserving
parametrization of a genus 0 triangle mesh consists
of the following steps. First, the original mesh is
simplified by using an edge-collapse [Hoppe93] tech-
nique. The result of this simplification is a tetra-
hedron. This tetrahedron is mapped to the surface
of a sphere as a uniform tetrahedron. Afterwards,
the simplification process is reversed by iteratively
inserting the vertices on the surface of the sphere.

After each insertion the resulting mesh is optimized
to be barycentric. In the final step we transform the
resulting barycentric mapping to a shape-preserving
one, with a similar optimization process.

Simplification. The objective of the simplifi-
cation process is the step-by-step elimination of the
edges of a polygonal object by using the edge col-
lapse method (two child points collapse to one par-
ent point). This process terminates if a tetrahedron
is generated. The sequence of the edge collapses is
not important because we do not try to preserve any
properties while simplifying the mesh. We chose a
collapse order depending on edge lengths (shortest
edge first). The influence of different simplification
metrics on the following refinement process has not
yet been analyzed. Figure 3 shows three steps of
simplifying a cube model.

Figure 3: Cube model simplified to tetrahedron

Refinement. First the simplification result will
be mapped onto the parameter sphere surface as
an uniform tetrahedron. The following refinement
process of this mesh is carried out by reconstruct-
ing the vertices corresponding to the reverse edge
collapsing order which has been recorded before.
First, the points are placed on the same position
as their split parent. Then the position of all ver-
tices on the sphere surface is optimized to form a
barycentric mapping. Therefore, we iteratively op-
timize the position of a single point until it is the
barycenter of the neighborhood (points connected
through one edge). The optimization sequence is
determined by the obtainable position improvement
(the point whose position can be most improved is
chosen first). The improved position is calculated
and evaluated with the same functions used in the
final optimization process, but with equal weights
for all points.

New point positions that produce overlappings
are not used during the optimization to except fold-
overs. This process ends when the possible im-
provement falls below a given threshold. We use
0.5% as a threshold value because the quality of
the barycentric mesh is not relevant for the final



parametrization. This mapping is inevitably mod-
ified by the final optimization. At the end of the
refinement process we have a barycentric mapping
of our original mesh on a sphere surface. Figure 4
shows three steps from the refinement process. The
parametrization stays barycentric after each point
insertion.

Figure 4: Refinement of cube parametrization

Shape-preserving optimization. This final step
transforms the barycentric mapping into a shape-
preserving one. 4) This means, the angle between
the edges and the ratio of the edge-lengths should
be locally preserved as well as possible. For this
reason we have to calculate weights as described in
Floater [Floater97]. These weights are used to de-
scribe the relative positions of the points to each
other in the parametrization.

In a plane, a linear combination of vectors like
pi =

∑

jεN(i) pjwj,i minimizes the weighted sum of
squared distances of all neighboring points pj to pi,
where N(i) denotes the indices of all points con-
nected to pi with an edge and wj,i is the weight of
pj relative to pi.

∑

jεN(i)

‖pj − pi‖
2wj,i → min

The global optimization target in a plane is to min-
imize by

N−1
∑

i=0





∑

jεN(i)

‖pj − pi‖
2wj,i



 → min,

where the border points are fixed. The solution for
the interior points can be found by equation 2 with
the shape preserving weight matrix.

In our approach we formulate a similar problem
for the sphere surface. For this, we have to minimize
the weighted square sum of angles to all neighboring
points in a vertex star.

ds(pi) =
∑

jεN(i)

arccos(pj · pi)
2wj,i → min

Because all points pk are located on the unit sphere,
the normalization dividend for the scalar product
is normalized. As long as the entire vertex star is
mapped to the same hemisphere, we can always find
a unique solution for the minimization problem.

The interior point pi cannot be calculated ex-
plicitly. Therefore we use an approximation algo-
rithm. To find the approximation, it is easier to
describe our respective point pi with polar coordi-
nates (αi, βi):

ds(αi, βi) =
∑

jεN(i)

arccos

(

pj ·

(

sin(αi) cos(βi)
sin(βi)

cos(αi) cos(βi)

))2

wj,i

pi must be placed within the area of its vertex
star before the iteration starts. So if it does not, we
simply place it to the gnonomic center of the ver-
tex star. After this initialization step, our method
calculates by means of Newton-iteration the dis-
placement vectors for αi and βi. The Iteration pro-
cess terminates if the correct values of αi and βi

are found. An additional problem is that βi must
be within the limits −π

2 and π
2 . By adding the

displacement we can exceed these boundaries and
would not find a solution. Therefore, we always ro-
tate the parameter sphere until βi is located on the
equator. Then we calculate the displacement, add
it to αi and βi and rotate the sphere back to its ini-
tial position. In this way, we always get the correct
minimum.

If not all parameter points of a vertex star are
positioned on the same hemisphere, the approxi-
mation algorithm can not always find the correct
solution. In such cases, we use a simpler but less
exact method to compute the position of pi which
is described in the following.

We iteratively project the neighbor parameter
points pj to the tangent plane of pi via stereo pro-
jection, then we calculate the weighted sum of the
projected points and reproject it to the sphere sur-
face. The result is a coarse approximation for each
iteration step. This method is always used to find a
starting position for the optimization. If all points
are found on the same hemisphere, the optimiza-
tion continues with Newton’s method. Because, we
consider only meshes with a relatively high amount
of vertices, all vertices are finally optimized with
Newton’s method.

With this technique we are able to optimize a
single vertex star on the sphere surface, but our
objective is the solution of the global problem

N−1
∑

i=0





∑

jεN(i)

arccos(pj · pi)
2wj,i



 → min. (3)



This can be achieved by using a ”Gauss-Seidel-
like” method. In order to find the minimum in eq. 3,
we iteratively select a single parameter point. Af-
ter this step we compute its optimal placement by
Newton-iteration until we obtain a satisfactory so-
lution. The sequence of local optimizations steps
depends on the obtainable improvement.

Therefore, we divide the local sum of the weigh-
ted square distances before and after an optimiza-

tion step ds(pi), ds(p∗

i ). If
ds(p∗

i
)

ds(pi)
< 1 a local im-

provement is obtained and we can choose

min

{

ds(p∗

i )

ds(pi)

}

as the next parameter point to position.
After applying a local optimization we recalcu-

late the possible improvements in the neighborhood
and optimize the next parameter point. This al-
gorithm terminates, when the local improvement is
below a given threshold (for example, 0.995 for 0.5%
improvement), or when no improvement occurs for
the next n iterations. In figure 5 we show a barycen-
tric mapping (left) in contrast to a shape-preserving
mapping (right).

Figure 5: Parametrizations

4 Results

The described techniques have been implemented
in C++ and been tested with several 3-d meshes,
which where all genus 0 manifolds. We measured
the time for the following parametrization steps:
simplification step t1, refinement t2 and final op-
timization step t3.

Model Triangles t1 t2 t3 Minimum

cube5 300 63 1234 1500 15.39

lollypop 134 31 484 532 15.5

cross 280 62 985 1265 13.81

Table 1: Low resolution results

All steps are measured in ms. For the evaluation

of the quality of the algorithm, we have used three
low resolution models, which are shown in figure 6.

Figure 6: Low resolution models

All meshes have been textured with cube mapping
(figure 7). The cube surface is projected to the pa-
rameter sphere surface from the common center of
both objects.

Figure 7: Cube texture

Figure 8 shows the parametrization and the tex-
tured meshes for the low resolution models. Table 1
contains the measured data for the test models. All
tests have been executed on a Pentium 4 machine
with 2 GHz and 1 GByte of Ram.

Figure 8: Textured low resolution models



As can be seen, the texture is mapped relatively
smooth without any overlapping.

In figure 9 we show three high resolution models
with more than 10k triangles. The Dragon and the
model of the Stanford-Bunny are quite uniformly
triangulated. That means the size and shape of the
triangles do not differ much all over the surface.
The triangulation of the Bull looks very irregular,
because the sizes of the triangles are very variable
over the whole surface.

Figure 9: High resolution models

Table 2 shows the results for the textured versions
of the high resolution models (fig. 10).

Model Triangles t1 t2 t3 Minimum

Dragon 108586 42093 279390 245094 15.67
Bull 12396 3688 38797 64312 11.11

Bunny 16234 5156 62562 90469 15.48

Table 2: High resolution results

The texture is mapped very smooth. So we can ap-
ply it to simplified versions of the models, too.

In figures 11 to 13 we show simplified versions of
the high resolution models. The number of trian-
gles was decreased to 2325(Bull), 20460 (Dragon)
and 3045(Bunny). Combined with normal-mapping
we are now able to reach high simplification ratios
with low visual effects. The problem of high un-
dersampling (e.g. bunny ears) can be avoided with
some kind of multi-resolution textures.

Figure 10: Textured high resolution models

5 Conclusion

In this paper a shape preserving parametrization
technique was presented. This technique maps the
surface of an genus 0 manifold to a sphere surface.
For this purpose we introduce a method to find a ap-
proximated solution for the nonlinear equation sys-
tem on the sphere surface. Furthermore, we showed
that due to the preservation of angles, the result-
ing parameter space can be shared by miscellaneous
triangulated versions of the same model.
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Figure 11: Textured low resolution bunny

Figure 12: Textured low resolution bull

Figure 13: Textured low resolution dragon


