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ABSTRACT

The shape of a NURBS curve or patch is defined by the location of its control points, the weights
associated with these points, and the parameter intervals, also called the knot vector. Most of the
curve and patch design methods assume that the knot vector is constant and the user is allowed to
modify only the control points and the weights. The possibility of controlling the shape through
the change of the knot vector has shown up recently, but it turned out that this approach is
less intuitive than either the control vertex or the weight modification. This paper attacks this
problem by setting these knot values automatically, taking into account some goodness measures
of the shape. In order to find the global optimum, simulated annealing is selected as the basic
mechanism of the optimization. The paper reviews the basics of NURBS and simulated annealing,
discusses our approach of setting the knot vector and concludes with the experience gained with

this algorithm.
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1 INTRODUCTION

NURBS curves and surfaces allow to model a
dozen of well-known basic objects (e.g. circle, el-
lipse and conic segments, sphere, etc.) and also
to describe free form objects. NURBS stands for
Non-Uniform Rational B-Spline. NURBS curves
are parametric splines, whose main components
are the 2D or 3D control points (or control ver-
tices, or CVs for short), the weights of these
points, and a knot vector limiting the effect of
the control vertices onto a given segment of the
curve. Control points can be imagined as small
magnets, whose attacking force is proportional to
their weight, but is also a function of the actual
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parameter. The knot vector consists of a non-
decreasing sequence of parameter values, which
defines for which parameter range a particular
control vertex can influence the curve.

If the weights of all control vertices are sim-
ilar, the NURBS becomes a NUBS (Non-

Uniform B-Spline). The basis functions of NUBS

(ng?fdex, rever(t)) can be defined by the Cox-

deBoor recursion formula:
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where t; is an element of the knot vector and k
is the level of NUBS. Since it can happen that



subsequent knot values are identical, the recur-
sion formula can result in 0/0, which should be
replaced by 1 in the implementation.

Note that if the number of control vertices is n,
then the number of weights is also n, but the num-
ber of knot values is n + K — 1, where K is the
level of the curve. In the active range of the pa-
rameter domain, the NUBS basis functions sum
up to 1. Thus a mechanical analogy can be given
to NUBS. Masses of B;(t) are placed at the con-
trol points, and the center of mass is the curve
point for this parameter.

When we associate an additional scaling of these
masses, called the weights and denoted by w;, we
can define the NURBS curve. Using the same
center of mass analogy, the point on the NURBS
curve for a given parameter t is obtained as:
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where 7; is an element of the array of control
points (n is the number of elements). Here we
talk about NURBS, thus the weights of CVs can
be less or greater than 1.

In case of NURBS surfaces we have two-
dimensional arrays of CVs (7;) and weights (w;;),
whose size is m - n. The basis functions of the
surface is the product of two curve basis func-
tions B%\f,gLBS(u) and B}\’IEJBS(’U), where k, and k,
are the levels, u and v are the parameters of the
patch in the two dimensions. The surface points
can be calculated by the following formula:
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In order to draw a NURBS curve (or patch), it is
tessellated then the resulting line strip (or mesh)
is rasterized. The tessellation process requires the
calculation of curve (or surface) points for a series
of parameter values.

2 SHAPE CONTROL

The most obvious way of setting the shape of
a NURBS curve is to place the control points,
since the curve will approximate these control
points. Changing the weights, we can make cer-
tain control points more important than the oth-
ers. The curve will get closer to these more im-
portant points, while approximating others less
accurately. If there are more control points than
the degree of the curve, then only a subset of the
control points affect the curve for a given param-
eter value. The set of these active control points
change at certain parameter values, called knots.
If the spline contains quadratic, or higher degree
polynomials, then the curve only approximates
the control points, and the knot vector also af-
fects the shape.

The control points are responsible for the global
shape control, since they have large scale effects.
The modification of the weights has less influence,
because the curve will always be in the convex
hull of the active control points. Changing the
knot value also has a similar limited effect, thus it
can only be used to fine tune the curve. However,
the dependence of the shape on the knot vector
is much less intuitive than on the control vertices
or on the weights. This is why most of the design
methods do not allow the user to alter the knot
vector directly, and set it to a default value.

For example a fourth level NURBS curve (whose
basis function’s degree is three) with six CVs has
usually the following knot vector:

{0,0,0,0,1,2,3,3,3,3}.

In this case there are multiple knot values at the
beginning and at the end of the curve, making
the curve go through the first and the last control
vertices.

However, setting the knot vector in such way re-
duces the freedom of the designer, who would like
to take advantage of the additional shape control
of the knot vector modification. In [JHO1], for ex-
ample, it was proven that modifying a single, or a
few knot values can be given an elegant geomet-
ric interpretation. However, when many, or all
values are controlled simultaneously, this easy to
understand behavior disappears. Thus we believe
that the additional control mechanism given by
the knot values can be exploited only by numeric
techniques, which require just indirect input from
the user. For example, the user can set general
criteria what he expects from the curve, and a nu-
meric algorithm finds the appropriate knot values



automatically. Since the dependence of the shape
properties on the large dimensional knot vector is
non linear and is usually not even available in a
simple algebraic form, we have to use an optimiza-
tion procedure that can cope with this problem.
Particularly, this optimization can have many lo-
cal minima, from which the optimization is ex-
pected to select the global minimum.

The effect and the appropriate definition of the
knot vector have already been considered by sev-
eral researchers. The parametrization problem
has been studied extensively in [Hos98, SKH9S].
Authors usually treated the placement of the knot
vector not as an optimization problem, but as
a geometric one [JHO1, Pie89, FS90]. The op-
timization aspect has show up in [LGM93], and
[MRV95, RMV97, RA03, GB03| proposed genetic
algorithms for the solution. Our approach also at-
tacks the parametrization by optimization but we
apply simulated annealing.

In the next section, we review the possible good-
ness measures that can be selected as an optimiza-
tion goal function, then in section 4, the simulated
annealing algorithm is presented, finally we detail
our algorithm to find the knot values with simu-
lated annealing.

3 NURBS QUALITY METRICS

In order to set the knot vector in an “optimal
way”’, we need a quality or goodness measure that
can rank different curves or patches. In this sec-
tion we define two possible criteria for curves and
patches respectively, the curvature integral and
the distance from a specified point. On the other
hand, we should emphasize that the optimization
procedure works with other quality measures as
well (e.g. length [|dr(t)/dt| dt, approximated
length [ |di(t)/dt|* dt, approximated total cur-
vature [ |d?7(t)/dt?|? dt, the elastic energy, etc.
[GBO03]).

3.1 Curvature integral

The total curvature is the integral of the curva-
ture[Wei03] along the NURBS curve, which can
be computed as

tend
P = / \dal dt
tsta'r‘t

where d« is the angular deviation of two infinitely
small neighboring pieces of the curve around ¢

(see Figure 1), and the integration domain is the
union of the intervals where the basis functions
sum up to 1. Using multiple knots at the be-
ginning and at the end, and placing other knots
uniformly at unit distances, we set tsqr+ = 0 and
tenda = N — K + 1. The curvature value ® de-
scribes how wavy the curve is. In curve design
we usually intend to minimize the oscillation of
the curve, thus the curvature integral should be
minimized.

Figure 1: Angular deviation (d«) of two in-
finitely small consecutive pieces of a tessel-
lated curve

The curvature integral can be approximated by a
discrete sum if the NURBS curve is tessellated:
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and Gi jqst and G neqt are the tangent unit vectors
of the curve before and after the tessellated point
(at the actual t):
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Working with the normal vectors, we can calcu-
late a curvature integral for a NURBS patch. Let
us examine the change of the normal vector as we
move infinitesimally along the two isoparametric
curves of the patch. Suppose that the normal
vector is rotated by do if parameter u is modified
by du, and by df when parameter v is increased
by dv. Notice that we cannot multiply these an-
gles, because the flatness of either direction would
set the whole integral to zero (see Figure 2). To
avoid this, we average them to characterize the



curvature of a parametric surface:
terd |do + |dp|

Vend
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v Ustart
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Note that this formula is just an approximation of
the surface curvatures usually used in mathemat-
ics. The most popular surface curvature in dif-
ferential geometry is the mean curvature[Wei03],
which is the average of the principal curvatures,
i.e. the minimum and the maximum of normal
curvatures. This means that our approximation
gives back the mean curvature if the tangent di-
rections of isoparametric lines are the principal
directions (i.e. the directions where the normal
curvatures are minimum and maximum). The
reason of not using the mean curvature is that
our ¥ measure (equation 1) is much simpler to
compute, but also characterizes the bumpiness of
the surface, thus will result in similar optimal con-
figuration as if we used the integrand of the mean
curvature.
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Figure 2: A NURBS patch with one dimen-
sional flatness. (The small sticks on the sur-
face are the normal vectors of the facets.)
Along parameter u we have zero curvature.

3.2 Distance from a specified point

The distance from a user specified point p, defined
as
min [/~ (1)

is a quality measure that can be intuitively in-
terpreted and applied by the designer. The user
specifies the point and wants the curve to pass
this point as closely as possible. In this case the
knot vector should be found to minimize this dis-
tance. When we calculate this distance for a given
knot vector, an approximation of the distance
function is evaluated. The curve is tessellated,
and the distance is estimated by the minimum
distance from the vertices of the generated line

strip or mesh. If the tessellation is not fine, the
calculation can be less accurate (see Figure 3).
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Figure 3: Distance (d) from a specified
point (P)

4 OPTIMIZATION PROCESS: SIMU-
LATED ANNEALING

The optimization process tries to find a knot vec-
tor for which the quality of the curve or patch is
optimum. We have to take into account that this
is a large dimensional, non-linear optimization,
with many local minima and maxima. If we used
some greedy optimization method, then we would
end up in a local optimum. On the other hand,
the function to be optimized is not available in a
simple algebraic form, but we can only evaluate
it at certain points using numeric approximation.

Such hard optimization problems can be success-
fully attacked by the simulated annealing algo-
rithm, which is based on the metaphor of the cool-
ing process of a material composed by particles.
If the absolute temperature is 7', then the prob-
ability that a particle is at energy level F is pro-
portional to exp (—E/kT), where k is the Boltz-
mann constant. At the beginning of the cooling
process the temperature is high, and the parti-
cles can reach high energy states easily. When
cooling starts, the particles should find lower en-
ergy states. Since even at lower temperatures, a
particle can have higher energy with a small prob-
ability, we give the particles the chance to jump
over local minima. The particles finally find the
optimal, i.e. the lowest energy state.

Note that due to accepting higher energy states,
such an algorithm would never converge for a
given temperature. To force convergence, the
temperature should be decreased in subsequent
iteration steps.



When it comes to optimizing the knot values, the
particle states, the temperature and the Boltz-
mann constant should be translated to the actual
terms of our geometric problem. The actual state
of the particles will be the actual knot vector,
and the energy is an appropriate quality measure
of the resulting curve, e.g. the curvature inte-
gral. The initial temperature and the Boltzmann
constant should be selected to set the acceptance
probability to about 80% at the beginning of the
algorithm.

In order to vary the state randomly proportional
to exp (—E/kT), Metropolis sampling is used
[MRR*53, SK99]. Based on the actual state, it
selects a new random, tentative state in the neigh-
borhood of the actual state. The tentative state
can be imagined as a small perturbation of the
actual state. Then the algorithm compares the
energy of the tentative and the actual states. If
the tentative state has lower energy, than it is
accepted as the new next state. On the other
hand, if the tentative state has higher energy,
it might still be accepted randomly, with prob-
ability exp (—AE/kT), where AE is the energy
increase. Such sampling would asymptotically
sample a state with a probability proportional to
exp (—E/kT).

5 SHAPE CONTROL BY OPTIMIZING
THE KNOT VECTOR

In this section we put the steps of the previous
section together and discuss how the knot vector
can be optimized. We start with a NURBS curve
whose CVs and weights are known, and which has
the default knot vector (the knots are placed at
unit intervals).

In each step of the Metropolis iteration the knot
values are perturbed a little. In our implementa-
tion we allow a knot value to go at most distance
0.5 from its default setting, thus the order of knot
values can never change.

Before we get the elements in random order and
start perturbing them, we measure the specified
NURBS property defined in section 3, and con-
sider it as the energy of the actual curve. After
perturbing the elements we compare the actual
value of the energy with the original one. If this
energy is lower, we keep this new knot vector.
If the new energy is higher, i.e. new property is
worse than the original one, then we keep the new
configuration only with a calculated probability.
We can formalize this decision in a very simple

way: let us generate a pseudo-random number
between 0 and 1. If this value is less then the
calculated probability, we are lucky and keep the
new settings. Otherwise we throw them away.

We gradually decrease the temperature giving
smaller chance to increase the energy. If the cool-
ing speed is low, then the algorithm will need
a long time to converge. On the other hand, if
the cooling is fast, the algorithm can miss the
global minimum and end up in a local minimum.
However, the quality of the NURBS could still be
much better in this local minimum than at the
beginning of the process. The optimization pro-
cess is summarized in the following code:

Set the knot vector ¢[| to its default;
Set temperature T and Boltzmann constant k;
repeat
repeat // Metropolis
perturb ¢[] randomly to obtain tnew||;
AE — d(tnew])) — ()
P = min{1,exp (—AE/kT)};
if (random() < P) t[] = tnew[[;
until (equilibrium);
decrease T';
until (T' > Tmin);
return ¢[];

The Metropolis sampling generates samples with
the required probability only in an asymptotic
state, that is why we have to iterate until “equi-
librium”. Unfortunately, it is not easy to decide
when we reached that state. In practice, the num-
ber of Metropolis iterations equals to 5-10 times
the number of elements in the knot vector. On
the other hand, if the cooling is slow, then the
probability distribution changes slowly, thus it
is enough to iterate only once in the Metropolis
loop.

6 IMPLEMENTATION

We have implemented the presented algorithms
in C++ using OpenGL graphics support. Ex-
ample snapshots of the application are shown in
Figures 4 and 5.

Figure 4 shows the CVs of the NURBS curve as
big black triangles and the border of curve seg-
ments as smaller black rectangles. The progress
of the curve can also be seen by the trajectories of

the curve. In Figure 5 the black triangles indicate
the CVs of the patch.



Knot wector: [ 0.00, 0.00, 0.00, 0.00, 0.56, 237, 349, 351, 5.00, 5.00, 5.00 ] Curvaturs Integral: 41088
Otiginal Integral: 448.00

A

Figure 4: A snapshot of the curve optimiza-
tion program

[EANURBS-Patch 3D Yiewer =1O]x]

Figure 5: A snapshot of the surface opti-
mization application

7 RESULTS

We have made tests on four different NURBS
curves (see Figure 6) and four different NURBS
patches (see Figure 7). Table 1 shows the results.
The second column contains the original value of
curvature integrals. In the third column the im-
proved (iterated) values can be seen, and the last
column shows the number of iteration cycles.

The cooling speed and minimum temperature
T'min have been set empirically to obtain glob-
ally optimal results with very high probability.
Thus the cooling speed was low (see section 5),
the temperature was multiplied by 0.999 in each
iteration step. We have set the minimum temper-
ature to guarantee that the found solution does
not change practically (it changes only with a
very small probability). These explain why we
needed so many iteration steps (Table 1) to reach
the supposed global minimum. These iteration
numbers correspond to acceptable running times

in curve optimization, but the surface optimiza-
tion is too slow for interactive applications. For
example, on an AMD Athlon 1.4 GHz computer
the time of 1000 iteration steps to fair a 7x7 patch
using tessellation factor 5 took approximately 4
minutes. If we use fast annealing, the possibil-
ity of reaching a local minimum increases, but we
can still expect significant improvements in the
surface quality.

Name | Original | Improved | Iteration steps
Wave 408.83 352.42 12000
Heliz 841.33 833.90 10000
Gauss 280.46 267.50 11000
Clircle 344.26 333.96 13000

Table 1: Results of measuring the curvature
integral of different types of NURBS curves

Name Original | Improved | Iteration steps
Gauss 7109.1 6867.1 6000
Rugby 9480.9 9205.0 7000
Terrain | 13564.3 12799.9 5200
Cloth 5464.0 5433.7 3200

Table 2: Results of measuring the curva-
ture integral of different types of NURBS
patches

8 CONCLUSIONS AND
WORK

FUTURE

The results prove that optimizing the elements
of the knot vector of a NURBS can improve the
curve, thus this technique is feasible. The simu-
lated annealing process was found to be efficient
to solve this optimization problem. We have con-
cluded that even with higher cooling speeds, when
there is no guarantee that the global optimum
is obtained, significant fairing can be achieved
quickly.

When extending the idea to patches, we con-
cluded that this optimization is less powerful than
for curves. This can be explained by the fact
that the two dimensional parametrization leaves
smaller freedom for the knot vector to affect the
shape of the surface. On the other hand, the sim-
ulated annealing gets less effective when the di-
mension of the search domain is increased. In
the future we intend to attack this problem by
allowing the annealing process to proceed only in
a lower dimensional sub-space at a time. Accord-
ing to the first experiments, this can improve the
robustness and the speed considerably.
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Figure 6: Tested NURBS curves: Wave (top left), Helix (top right), Gauss (bottom left), Circle
(bottom right). We show the curves with grey color before the iteration process, and with black

color after the iteration process.
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