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Abstract

We present a fully automatic scheme for the registration of MR images. The registration is carried out as a combi-

nation of an affine and an elastic transformation. The affine part is generated by means of an affine Principal Com-

ponents Analysis (PCA), which is an extension of the standard rigid PCA. We use the affine PCA as a preparatory

step to guarantee maximum spatial similarity for the subsequent elastic transformation. The elastic transformation

itself is based on a displacement vector field generated by means of Monte Carlo methods. Contrary to other Monte

Carlo methods that define feature boundaries based on the grey-value transition of adjacent pixels, we make use of

more accurate feature boundaries segmented by means of statistical feature extraction methods. We also present

a validation method for verifying the segmentation results for simulated MR images. Although discussed in the

context of medical imaging, our approach can also be applied as a general-purpose registration method in other

fields of image processing. We conclude this paper with a discussion of the results obtained.
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1 Introduction

Medical imaging plays a major role in the modern

medical diagnostic. The recent improvements of the

image acquisition techniques has caused a tremendous

increase of raw digital image data, making it impera-

tive to provide humans with tools for the fully auto-

matic handling and evaluation of the data.

Since different imaging tasks require different ac-

quisition techniques, it is common for medical imag-

ing to deal with images of the same object that were

derived from different sources. Similarly, the images

may differ in acquisition time or viewpoint. Rather

than viewing two images of the same object side by
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side, it is often preferred to superimpose them such

that features1 common to both images match. This

task of transforming one image such that it can be su-

perimposed by another image is known as image reg-

istration. For background readings on image registra-

tion, reference is given to the surveys by van den Elsen

et al. [vdEPV93] and Hajnal et al. [HHJ01].

In order to simplify the registration task a feature

extraction step can be applied as a preprocessing. Fea-

ture extraction also is a widely studied topic in image

processing; see [MST94] for a survey and introduc-

tion.

More formally, the image registration process deals

with two images A and B. Image B denotes the target

image and image A is the original image that should

be transformed into B. An image can be regarded as

a function that assigns each member of the image do-

main one value out of a fixed set of shades of grey (or

colors). Typically, the domain will consist of pixels

placed on a regular grid in two or three dimensions,

1In terms of medical image processing, “feature” means tissue

type like bone, grey or white matter.
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Figure 1: Flowchart of the registration process.

with integer coordinates.

The task of image registration is to find a transfor-

mation T such that T (A) is as similar as possible to im-

age B, where similarity is measured by a fitness func-

tion f . Diverse fitness functions can be used; a simple

way to establish a fitness function is to count the num-

ber of pixels of B for which the color does not match

the color of the corresponding pixel in T (A). Thus, a

transformation T is the better the smaller f (T (A),B)
is. In a more mathematical notation, the registration

process can be formulated as the following optimiza-

tion problem2:

Tmin = argminT∈T
{ f (T (A) ,B)} ,

where T denotes a class of transformations on the

common image domain of A and B. Typical classes

T of transformations are rigid transformations, affine

transformations, projective transformations and elastic

transformations; see Foley et al. [FDF96] for an intro-

duction to geometric transformations.

2 Overview

The main steps of a typical registration process are

shown in the flowchart depicted in Figure 1. In this

section we review how those steps are realized within

our registration system.

2As usual, the operator argmin is defined as follows with re-

spect to a function f and domain Ω of arguments to f : we have

argminω∈Ω = ω′ if f (ω′) ≤ f (ω′′) for all ω′′ ∈ Ω.

Preprocessing: Depending on the type of image to

be handled, it may be necessary to enhance the

quality of the image by means of standard image

processing techniques. Well-known preprocess-

ing techniques include Gaussian filtering or me-

dian filtering for improving noisy images, edge

enhancement, and adapting the image resolution.

Feature Extraction: The segmentation step is essen-

tial for our method because the knowledge of the

feature boundaries makes the calculation of the

transformation faster and more accurate. A large

number of segmentation algorithms is known.

However, several of these algorithms need ad-

ditional user interaction. (E.g., a seed point is

needed for region growing [AB94], and a start

contour for snakes or ballons [MT00].) We apply

statistical methods to guarantee a fully automatic

segmentation process. We use the Maximum

Likelihood Classifier for low-noise images and

the Maximum a-posteriori Algorithm for noisy

images [YK95]. Based on MR images gener-

ated by an MRI simulator [KEP99]3, we devel-

oped a validation method for both segmentation

algorithms.

Calculate Transformation: Determining the trans-

formation is the key step of a registration pro-

cess. In our approach the transformation sought

consists of two transformations applied consec-

utively. We use the first (affine) transformation

to align the images in order to guarantee a max-

imum spatial similarity. This affine transforma-

tion is carried out by means of an affine PCA

method, which is an extension of the rigid PCA

described in [ABKC90]. The second (elastic)

transformation is carried out by means of a dis-

placement vector field. The calculation of the dis-

placement vectors is done by Monte Carlo Warp-

ing [PSO+00].

Transform Image: Once these two partial transfor-

mations have been determined, the actual image

registration is done by applying both partial trans-

formations consecutively.

In the following section we give a short overview

of the two segmentation methods studied and present

details of the validation developed for the segmenta-

tion step. Section 4 starts with a short introduction to

the specific type of elastic transformation that we use.

The calculation of the two parts of the transformation

(affine and elastic) is explained in Section 4.2 and Sec-

tion 4.3. The results in Section 5, based on both, ar-

tificial test images and genuine medical MR images,

show the power of our approach.

3McGill University’s BrainWeb: Simulated Brain Database

(SBD); URL: http://www.bic.mni.mcgill.ca/brainweb/.



This paper is accompanied by color images avail-

able on the WWW: point your browser to the URL

given in [HWW03].

3 Feature Extraction and Valida-

tion

3.1 Feature Extraction

For the feature extraction step we use two different

statistical classification methods: (a) The Maximum

Likelihood Classifier (ML Classifier) and (b) the Max-

imum a-posteriori Segmentation Algorithm (MAP Al-

gorithm) [YK95].

3.1.1 ML Classifier

An ML Classifier operates on the basis of the assump-

tion that the grey values of the MR image were pro-

duced by a statistical process with a given probability

distribution, where each feature ω ∈ Ω has its own dis-

tribution. In the simplest case, a Gaussian distribution

can be used.
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Figure 2: Schematic procedure of the ML Classifier

The main scheme of an ML Classifier is depicted

in Figure 2. For each feature ω ∈ Ω and every pixel

p in the MR image, the probability that p belongs to

ω, denoted by p(p | ω), is calculated and the feature

with the highest a-priori probability is assigned to p in

the segmented image. (This image is also known as

feature image.)

3.1.2 MAP Algorithm

One drawback of an ML Classifier is that it does not

care about the color of neighboring pixels. Therefore,

noisy MR images tend to be segmented into noisy fea-

ture images. A MAP Algorithm handles this problem

by introducing a Markov field or Gibbs field [Li01]

into the segmentation method.
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Figure 3: Schematic procedure of the MAP Algorithm
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Figure 4: A-posteriori validation of a segmented im-

age.

Figure 3 shows the iterative strategy of a MAP Al-

gorithm. For every pixel p in the MR image one con-

siders a neighborhood N(p) of p. The function f uses

the feature ω′ computed during the previous iteration

to calculate the current feature ω. Function f reflects

the assumption that the pixels of N(p) are more likely

to belong to the same feature than to other features.

This assumption is modeled by a Gibbs field with

Gibbs potential β. The iteration terminates once con-

secutive feature images differ only in at most a given

number of pixels.

3.2 Validation

The ML Classifier needs to choose only one parame-

ter: the number of features k. In the MAP Algorithm

the additional Gibbs potential β has to be chosen. Se-

lecting a good parameter value is non-trivial for either

algorithm. This subsection explains how we select ap-

propriate parameters.

For the validation of the segmentation results we

use simulated MR images. The MR images were gen-

erated from an anatomical model. This allows us to

perform a pixel-by-pixel comparison between our seg-

mentation result and the anatomical model. We take

the number of incorrectly segmented pixels as a mea-

sure for the segmentation quality.

Figure 4 shows the flowchart for an a-posteriori vali-



dation. Transformation T1 generates the simulated MR

image from an anatomical model. This is done by the

MRI simulator. Transformation T2 stands for the fea-

ture extraction process and transformation T3 is nec-

essary to adapt the number of segmented features k of

the segmented image to the number of tissues K of the

anatomical model.

The transformation T3 has to be chosen in a way that

the number of incorrectly segmented pixels is mini-

mized. This can be done by following the Maximum

Likelihood principle [MST94], for j ∈ {0, ...,k−1}:

T3 ( j) := argmaxi∈{0,...,K−1} {p( j | i)} ,

where p( j | i) denotes the probability that some pixel

p in the feature image is segmented to feature j if the

same pixel in the anatomical model belongs to feature

i. With

p( j | i) =
p( j∩ i)

p(i)

we get

T3 ( j) := argmaxi∈{0,...,K−1}

{

p( j∩ i)

p(i)

}

,

where p( j∩ i) denotes the probability that tissue i of

the anatomical model is segmented as the feature j by

the segmentation algorithm. For T3 we do not have to

calculate the probabilities p( j∩ i) and p(i) explicitly.

It is sufficient to calculate the absolute frequency ma-

trix H with K rows and k columns. The single values

hi, j of H specify how often the tissue i is segmented to

the feature j (for the same coordinates). Since

hi, j ∝ p( j∩ i) ,

and
k−1

∑
j=0

hi, j ∝ p(i) ,

we obtain

T3 ( j) := argmaxi∈{0,...,K−1}

{

hi, j

∑k−1
j=0 hi, j

}

.

3.2.1 Validation of the ML Clusterer

For the ML Clusterer we want to optimize the number

of segmented features k. Therefore we have to vary

k. For each k we determine T3 and then we count the

number of incorrectly segmented pixels. Experiments

showed that for the MR images used a value of k = 6

leads to a minimum of incorrectly segmented pixels,

for a wide range of noise levels ranging from 3% to

9%. (Experiments with other MR data sets of human

heads convinced us that picking a value out of the in-

terval 4–7 is a good choice for k for most data sets.)

3.2.2 Validation of the MAP Algorithm

The validation of the MAP Algorithm is not done di-

rectly on the anatomical model respectively on the seg-

mented feature image. We first calculate the variance

image of the anatomical model and the segmented fea-

ture image and then we compare these variance images

with the help of mutual information (MI). The calcu-

lation of the variance images ”amplifies” the noise of

a noisy segmentation.

For calculating the variance image we use the N26

neighborhood of a pixel p. (Recall that MR images

constitute three-dimensional data sets.) The mean

value and variance are computed using standard for-

mulas; we only have to make sure that the variance

image is independent of the feature numbering. The

mutual information between two images is calculated

by means of the absolute frequency matrix H which

we used for the calculation of the transformation T3.

We tuned the Gibbs potential β based on the infor-

mation on the mutual information between (the vari-

ance images of) the anatomical model and the seg-

mented feature image. The number of segmented fea-

tures k was set to 6. The value of β depends on the

quality of the images. We ended up using β := 0.01

for clear images (3% noise) and β := 0.05 for noisy

images with 9% noise. (If an MR scanner does not

provide information on the noise of the images gener-

ated then an estimate of the noise can be computed as

explained in [SdDV+98].)

4 Registration

The primary purpose of the registration is to compen-

sate or minimize geometric distortions between two or

more images. This task can be handled by computing

and executing different kinds of transformations.

4.1 Transformations

We used elastic transformations [Boo92] for the

Monte Carlo Warping described in Section 4.3. Elas-

tic transformations offer the highest amount of flex-

ibility. In the most general case it is possible that

every pixel is transformed in its own very specific

way. Therefore elastic transformations can not be rep-

resented by a standard 4 × 4 homogeneous matrix.

Common representations include linear combinations

of basis functions (e.g., thin plate splines by Book-

stein [Boo92]), fluid continuum models (based on the

Navier-Stokes equation) [CRM96], and an optical flow

model [HS81].

Since Monte Carlo Warping yields displacement

vectors, we used a displacement vector field V to en-



code an elastic transformation:

V := {(pi,qi) : 0 ≤ i < M} ,

where pi denotes the start point and qi denotes the end

point of the i-th vector vi. To transform a single point

p, the contributions of all displacement vectors have

to be summed. The weight (extent) of the contribution

of one displacement vector vi depends on the distance

between the point p and the start point pi of vi. The

distance is usually rated linearly, quadratically or ex-

ponentially by a distance weighting function wi for the

i-th displacement vector. The example in the following

equation uses the city-block distance with exponential

rating: The distance weighting function wi of a sin-

gle point p = (x,y,z) and a start point pi = (xi,yi,zi) is

given by

wi (p) = e−‖p−pi‖1 = e−(|x−xi|+|y−yi|+|z−zi|).

This leads to an equation for an elastic transforma-

tion T for a point p. Consider {pi : 0 ≤ i ≤ M−1},

which is a set of M reference points (“landmarks”) of

the original image, and {qi : 0 ≤ i ≤ M−1}, which is

the corresponding set of points for the reference im-

age. Then T (p) is obtained as

T (p) := p+
∑M−1

i=0 wi (p)(qi −pi)

∑M−1
i=0 wi (p)

.

This kind of transformation is also called warping.

4.2 PCA Method

The goal of a Principal Component Analysis

[ABKC90] is to reduce the dimensions of a set

P = {p1,p2, ...,pn} of n vectors pi ∈ R
d such that

more representative samples are obtained. The PCA

method, which is also known as discrete Karhunen-

Loeve transformation, replaces those n vectors with

m−dimensional vectors, the so-called principal com-

ponents, where m ≤ d. For that purpose an or-

thogonal transformation of the d−dimensional vec-

tors on an m−dimensional hyperplane is applied. This

transformation is equivalent to solving the eigenvalue

problem. As a result the principal components are

the eigenvectors of the covariance matrix of the vec-

tors, while the corresponding eigenvalues represent the

variances in the directions of the principal axes. Fig-

ure 5 illustrates the concept just discussed.

For an application to our imaging problem, the PCA

method can be described as follows:

1. Extract the nA feature vectors PA =
{p1,p2, . . . ,pnA

}, describing a feature in image A

and the nB feature vectors PB = {p1,p2, . . . ,pnB
},

describing the same feature in image B and

compute the centers of gravity S (PA) and S (PB)
of both corresponding features.

(a)

(b) (c)

e 1
e 2
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x 2

x 2
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Figure 5: Principal Component Analysis. Sub image

(a) shows a binary object in 2D. In sub image (b) the

Principal Axes of the object are added and in (c) the

object is aligned by means of the PCA method.

2. Carry out the PCA method for the feature consid-

ered in both images and compute a transforma-

tion for each of them.

3. Concatenate these two transformations to obtain

the final transformation.

Generally the type of the resulting transformation is

rigid (rPCA). We stretch the image along the principal

axes by comparing the eigenvalues of both transfor-

mations. This stretching extends the rigid PCA to an

affine PCA (aPCA), thus rendering the PCA method

a better preprocessing step for the Monte Carlo Warp-

ing.

4.3 Monte Carlo Warping

We use displacement vector fields (described in Sec-

tion 4.1) to model an accurate spatial correspondence

between three dimensional medical data volumes. The

method we describe in this section mostly follows the

work of Pielot [PSO+00]. As mentioned in the previ-

ous subsection, displacement vector fields are encoded

relative to a set of reference points (“landmarks”). As

explained in the sequel, the selection of the reference

points is based on Monte Carlo techniques (random

walk) to find suitable points in the anatomical struc-

ture.

We start with superimposing a regular three-

dimensional grid on both images. Every cell of the

grid is treated as an individual sub-volume of the im-

age. Inside every cell we employ a random walk to

search for reference points. A reference point is found

and added to a cell if the random walk detects a feature

boundary. After the feature extraction a feature bound-

ary is defined easily according to the feature difference



of two adjacent points. If no reference point was found

after a user-defined maximum amount of steps4 of the

random walk, this cell is declared to contain no refer-

ence point.

All reference points of a cell are represented by their

arithmetic mean. If the corresponding cells in both

images contain at least one reference point, a displace-

ment vector can be built, and it is added to the dis-

placement vector field. (The mean value of the refer-

ence points of the original image is the start point of

the displacement vector.)

Recall that we adjust the images with the affine PCA

method (see Section 4.2) prior to warping in order to

guarantee maximum spatial similarity. We call this

combined method PMC Warping (PCA Monte Carlo

Warping).

4.4 Validation

To validate the result of the registration process suit-

able quality criteria are needed. In practice, the qual-

ity of a registration will often be checked visually by a

user. To take the human out of the loop we need a qual-

ity measure which can be determined automatically by

the computer. The measures we used are mutual infor-

mation (MI), normalized mutual information (NMI),

and cross correlation (CC). For all three measures the

corresponding fitness function of the overlapping por-

tion of the transformed original image T (A) and the

target image B has to be calculated. (It is obvious that

only the overlapping portion of T (A) and B can be

used for the evaluation of the fitness function.)

5 Results

The two segmentation algorithms (ML Clusterer and

MAP Algorithm) were tested on MR images produced

by the MRI simulator, and on a variety of other MR

data, with different levels of noise. For the later use by

the Monte Carlo Warping smooth feature borders are

desired. As evidenced by our experiments, for images

with 3% noise the two segmentation algorithms pro-

duce mostly identical results. Since the ML Clusterer

is 5–6 times more efficient than the MAP algorithm, it

seems obvious to use the ML Clusterer for such data.

However, as the amount of noise goes up the segmen-

tation quality of the ML Clusterer goes down, and it

becomes necessary to use the MAP Algorithm.

The registration method was first tested on artifi-

cial data with known results. The test images were

generated to test specific properties of the registration

4If the grid contains a boundary then the probability that the ran-

dom walk does not find this edge should be minimized. The proba-

bility can be estimated as the ratio of the number of boundary pixels

over the number of overall pixels in the grid. In our implementation

we allowed a maximum of 500 steps.

process. The registration process starts with the PCA

for aligning the features. If the PCs of a feature are

not unique5, the PCA can not find a correct transfor-

mation. Fortunately, in medical images such features

rarely exists.

Figure 6 shows the power of Monte Carlo Warp-

ing for elastic transformations. However, Monte Carlo

Warping will function best only if the spatial distortion

between the features does not exceed a certain maxi-

mum. The maximum value permissible depends on

the grid size, image size and feature size. The only

parameter that can be adapted by the user is the grid

size6. Note that the grid size can not be increased arbi-

trarily, since the assignment of the feature boundaries

becomes ambiguous if more than one feature bound-

ary cross a grid cell, which in turn may lead to inap-

propriate displacement vectors. The ability of the PCA

to reduce spatial distortions among the features makes

it an optimal preprocessing step for the Monte Carlo

Warping. Therefore combining the PCA and the MC

Warping generally generates better results than the in-

dividual methods.

Sample results for a real MR image of a human

brain as target image are shown in Figure 7. The

original image was created by a global affine trans-

formation followed by a local elastic transformation

of the target image. Table 1 lists the values of differ-

ent fitness functions (MI, NMI and CC) for this sam-

ple registration task. It is easy to see that the registra-

tion results get better (higher values) as the flexibility

of the transformation increases. Fairly similar results

were obtained for other MR data sets. Due to lack of

space additional images and test results are omitted;

the reader is referred to [HWW03] for further mate-

rial.

algorithm MI NMI CC

“as is” 0.816 0.065 0.285

rPCA 1.152 0.092 0.526

aPCA 1.626 0.138 0.848

MC 0.821 0.075 0.292

PMC 1.634 0.138 0.855

Table 1: Experimental results for the registration task

shown in Figure 7.

6 Conclusion

We present a new fully automatic elastic registration

method for medical imaging which uses statistical fea-

5This is the case for squares, circles, cubes, spheres and so on.
6Since the Monte Carlo Warping is responsible for local defor-

mations only, it is sufficient to divide each image dimension into 10

to 25 parts.



Figure 6: Power of the Monte Carlo Warping for elas-

tic transformations. Sub figure (a) shows the original

image, (b) shows the target image, (c) shows the dis-

placement vector field created by the MC Warping al-

gorithm and (d) shows the transformation of the origi-

nal image.

ture extraction. In contrast to other registration meth-

ods that are also based on Monte Carlo methods we

use an explicit segmentation step for boundary de-

tection as a preprocessing for the actual registration.

The quality of the feature extraction step directly influ-

ences the quality of the registration result. To increase

the robustness of the overall method we use an affine

PCA method to guarantee maximum spatial similarity

before Monte Carlo Warping is applied.

As indicated by our experiments, the resulting PMC

Warping yields better results than the individual meth-

ods. The generation of the displacement vector field

is facilitated by the knowledge of accurate feature

boundaries, which are computed during the segmen-

tation preprocessing step.
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(a) Original image (b) Target image

(c) Segmented original image (d) Segmented target image

(e) Vector field (f) Transformed original image

Figure 7: The first row shows the grey value images with 3% noise. The second row contains the segmentation

result of the images above. Image (e) shows the displacement vector field created by the Monte Carlo Warping,

and Image (f) shows the transformed original image (a).


