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ABSTRACT 

Design of an anisotropic diffusion-based filter that performs Bayesian classification for automatic selection of a 

proper weight for fairing polygon meshes is proposed. The data analysis based on Bayesian classification is 

adopted to determine the decision boundary for separating potential edge and non-edge vertices in the curvature 

space. The adaptive diffusion filter is governed by a double-degenerate anisotropic equation that determines how 

each polygon vertex is moved along its normal direction in the curvature space iteratively until a steady state is 

reached. The determination of how much a polygon vertex should be moved depends on whether it is a potential 

edge or a non-edge vertex. At each fairing step, conceptually, a bi-directional curvature map whose boundary 

line while couched by the weight value can be plotted to understand the type of a vertex. Experimental results 

show that the proposed diffusion-based approach could effectively smooth out noises while retaining useful data 

to a very good degree. 
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1. INTRODUCTION 
When one tries to acquire a 3D object model by a 

3D laser scanner, the scanned object shape is, usually, 

represented in the form of triangular polygon meshes. 

However, such sampled points are always inherited 

with noises and the resultant polygon surface looks 

faceted due to the existence of noises. A technique 

that can remove noise while retaining polygon sur-

face is always preferable. Such a technique falls into 

the category of special filter design, in which a de-

graded polygon shape is smoothed by gradually fair-

ing out noise iteratively. 

The information that can be obtained from a 

scanned 3D object model includes the position of a 

vertex, the passing tangent planes, and the curvatures 

of surfaces that are formed by tangent planes. A 

noisy vertex causes signification of local facet effects 

and thus produces low quality surfaces. It is well 

known that the filter design based upon a constrained 

optimization technique is able to generate satisfac-

tory surface with high quality. In this paper, we let 

the smoothing of the data of a scanned object gov-

erned by a thin shell heat equation. In the smoothing 

process, each vertex is considered as a point tempera-

ture and the curvature of a vertex is considered as the 

energy associated with it. Therefore, the filter design 

problem is converted into an optimization problem. 

In the optimization process, the proposed algorithm 

tries to locate a new position for each vertex so that 

the associated energy can be minimized. Because 

different vertex types have different curvature values, 

they will be governed by the heat equation with dif-

ferent heat transfer rates. 

In the literature, the most similar existing ap-

proach is the discrete fairing technique proposed by 

Kobbelt et al. [Kob98]. In that work, they applied a 

so-called umbrella algorithm together with a thin 

plate energy function to derive a recursive equation 

for designing their filter. However, they used a fixed 

weight value for relocating each vertex during the 

iterative process. It is well know that the polygon 

smoothing process based on the filter design concept 
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relies heavily on the local fine structure as well as the 

noise that associated with the given 3-D polygon 

model. Without considering the vertex type and dif-

ferent weights for different vertices, the designed 

smoothing algorithm may produce some unwanted 

facets in the final output results. 

In this paper, we propose a method for polygon 

smoothing using a filter design approach. The pro-

posed scheme is able to perform intelligent data 

analysis and to classify each vertex as either a feature 

vertex or a non-feature vertex. This classification 

result can be used as the basis for selecting appropri-

ate weight for each vertex at a fairing step. To differ-

entiate our method with others, we call the filter de-

sign based on our proposed method the adaptive dif-

fusion filter design. The experimental results show 

that the proposed adaptive diffusion filter can im-

prove the resultant surface quality significantly as 

compared to some previous polygon filter designs. 

2. FILTER DESIGN USING DIFFU-

SION EQUATIONS: A SURVEY 
In an isotropic diffusion-based method, the de-

sign of a low pass or a band pass filter is to use a 

diffusion-style partial differential equation to control 

the process of event operation. The isotropic diffu-

sion equation that will fit in the polygon mesh fairing 

process can be defined as follows: 

M
t

M 2∇=∂
∂ , (1) 

where 2∇  is a Laplacian operator and M represents a 

given polygon mesh model. An analytic solution for 

equation (1) can be expressed as a form of a linear 

invariant Gaussian kernel convoluted with M 

[Tau96]. However, an analytic method that can be 

used to solve equation (1) in 3D space is rather com-

plicated. Therefore, it is usually solved by a finite 

difference approach using the following iterative 

equation: 

ttt MMM 21 ∇+=+ λ , (2) 

where λ  is a user-defined constant. For speeding up 

the process described in Equation (2), an umbrella 

operator is adopted to linearly approximate the 

Laplacian operator. In [Tau96], an umbrella operator 

proposed by Taubin is defined as follows: 
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where )( ixN  indicates the neighboring vertices of 
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contained in )( ixN . 

+

2∇

ˠt ˠt+1

λ

 

Figure 1. The Laplacian filter. 

Equation (2) can be expressed as an isotropic fil-

ter as shown in Figure 1. It is basically a Gaussian 

diffusion filter which contains two main components: 

the Laplacian operator 2∇  and the weighting con-

stant λ . The Laplacian operator is used for calculat-

ing the normal difference between a vertex and its 

neighboring vertices. The value of the weighting 

constant determines the degree of diffusion. A filter 

can be called an isotropic diffusion filter if the de-

fined weight is maintained constant in the whole 

process; otherwise, we call it an anisotropic one. 

Taubin [Tau96] found that a Gaussian-type diffu-

sion process can suppress noise very effectively but 

also create a model-shrinking problem. In order to 

solve the model-shrinking problem, he designed a 

mutually compensated diffusion filter called Taubin 

diffusion filter as shown in Figure 2. The process of 

a Taubin filter can be defined by the following itera-

tive procedure: 
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Figure 2. The Taubin diffusion filter. 

Figure 2 illustrates how a Taubin filter works. In 

Figure 2, λ  and µ  are two preset constants with one 

positive and the other negative. The λ  filter is a 

Gaussian diffusion filter which enforces the diffusion 

direction to make the model shrink a little bit. The µ  

filter, on the other hand, is a Gaussian diffusion filter 

which enforces the diffusion direction to make the 

model expand a little bit. With a proper selection of λ  and µ , the Taubin diffusion filter can function 

efficiently to remove noises while retaining the origi-

nal mesh data as much as possible. 

In order to achieve better convergence result, 

Desbrun et al. [Des99] proposed an implicit integra-

tion filter design approach. The iterative equations of 

their approach are as follows: 

121 ++ ∇+= ttt MMM λ  or tt MM =∇− +12 )1( λ .(5) 
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Figure 3. The implicit filter. 

Figure 3 illustrates how Desbrun et al.’s approach 

functions. Equation (5) is basically a representation 

of implicit system equations. Under these circum-

stances, if one would like to derive 
1+tM  from 

tM , 

a numerical method using sparse matrix inversion or 

pre-conditional bi-conjugate gradient is required to 

solve the equations. It is known that the above men-

tioned numerical methods will eventually bring to a 

stable solution, but they are time-consuming. 

Desbrun et al. [Des99] pointed out that the um-

brella operator is inappropriate in dealing with non-

symmetric polygon mesh. This is because the vertex 

of a non-symmetric polygon mesh will shift away 

from its original position when encountering a diffu-

sion operation. Therefore, they proposed to use a 

mean curvature flow operator to replace an umbrella 

operator. The mean curvature flow operator is de-

fined as follows: 

iiHic nx κ=∇ )(2
,  (6) 

where 2

c∇  is the mean curvature flow operator, 
ix  is 

the vertex subjected to the mean curvature flow op-

eration, 
iHκ  is the mean curvature on the vertex 

ix , 

and 
in  is the unit normal vector on 

ix . Usually, the 

vertex 
ix  of a straight plane will stay steady when 

encountering a mean curvature flow operation. As a 

consequence, Equation (5) can be rewritten as: 

tt
c MM =∇− +12 )1( λ , (7) 

and the filter design of the implicit curvature flow 

system can be modified and shown in Figure 4. 
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Figure 4. The implicit curvature flow system. 

The filters using Gaussian diffusion, Taubin dif-

fusion, mean curvature flow diffusion, or their com-

binations are classified as isotropic diffusion-type 

filters. The factor λ  remains constant in an isotropic 

diffusion operation, regardless of diffusion direction. 

An isotropic diffusion operation can eliminate noise 

very effectively but also smooth out useful data. In 

[Des99], Desbrun et al. proposed to execute filter 

design based on anisotropic diffusion. An anisotropic 

filter uses a function of two principal curvatures, 1κ  

and 2κ , as the weights for each diffusion direction. 

The operation of an anisotropic filter can be repre-

sented graphically as shown in Figure 5, and the 

equation that describes this operation is as follows: 

t
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Figure 5. An anisotropic filter. 

where ),( 21 κκw  is an anisotropic diffusion weight-

ing function. With the proper design of ),( 21 κκw  in 

accordance with diffusion directions, the designed 

anisotropic filter can effectively remove the noise 

and at the same time preserve the shape of corners 

and edges. 

According to the filter design rule described in 

[Mey02], if the values of || 1κ  and || 2κ  of a vertex 

are both smaller than a preset threshold, then the ver-

tex is regarded as a noisy vertex. Under these cir-

cumstances, the noise associated with the vertex can 

be removed effectively by a Gaussian diffusion filter 

or an anisotropic filter if ),( 21 κκw  is set to 1. If the 

absolute values of both principal curvatures are lar-

ger than a preset threshold value, then the vertex is 

regarded as a corner vertex and it is remained intact 

by setting ),( 21 κκw  equal to 0. A vertex is consid-

ered an edge vertex if its minimum curvature is very 

small and its mean curvature very large. To deter-

mine the value of ),( 21 κκw , the following rules will 

be used: 
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In addition to the definition of 1κ  and 2κ  which has 

been made previously, Hκ  here represents the mean 

curvature of 1κ  and 2κ . 

Fleishman et al. [Fle03] extended the bilateral fil-

tering method from 2D image to 3D polygon meshes. 

Their method adopted two standard Gaussian filters, 

one is smoothing function and the other is similarity 

function. The similarity function identifies the degree 



of similarity. If a vertex has high similarity with its 

neighboring vertices, then it will be smoothed with-

out any hesitation; otherwise, it will be identified as a 

feature vertex and will not be smoothed. By tuning 

up smoothing and similarity functions, the bilateral 

filtering method will produce a feature preserving 

result for semi-regular polygon meshes. 

The underlying concept of anisotropic diffusion 

is from the heat transfer theory, where a zero weight 

corresponds to an insulator and a full weight corre-

sponds to a perfect conductor. In what follows, we 

shall propose a new anisotropic diffusion-based filter 

to execute the fairing process of 3D polygon models. 

3. FILTER DESIGN BASED ON 

ADAPTIVE ANISOTROPIC DIFFU-

SION 

In the previous section, we have surveyed a num-

ber of isotropic and anisotropic diffusion filters 

which can be applied to smooth 3D polygon meshes. 

In this paper, we propose a bi-directional curvature 

mapping function, ),( 21 κκw , based on the heat 

transfer theory. A heat transfer expression is com-

monly used in nonlinear filtering [Wei97]. Let 
1κ  be 

the maximum curvature and 
2κ  be the minimum 

curvature. Assume the relation 
21 κκ ≥  always holds. 

The weighting function ),( 21 κκw  of a bi-directional 

curvature mapping can be expressed as follows: 
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Figure 6. The bi-directional curvature map with 

T=5. 

In addition to the new weighting function, we 

also propose a double degenerate heat equation 

[Kob98] to govern the anisotropic diffusion-based 

filter. The equation showing how this operation 

works is as follows: 
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Figure 7. The double degenerate anisotropic dif-

fusion-based filter. 

Figure 7 illustrates graphically how the two de-

generate heat equations are incorporated into the 

design of the filter. An anisotropic diffusion filter 

using the bi-directional curvature mapping function 

defined in Equation (10) works well if, at each fair-

ing step, the threshold value T can be properly de-

termined. The threshold T can be used to judge the 

vertex type in the fairing process. Having the type of 

a vertex, the fairing algorithm triggers an appropriate 

process to smooth out the vertex. Therefore, the se-

lection of an appropriate T is of great importance to 

the success of a fairing process. 

To the best of our knowledge, most existing ani-

sotropic diffusion methods require user to provide a 

threshold value for a fairing process. However, this 

threshold value is data dependent (ill-posed) and 

different threshold values may result in different fair-

ing results. Therefore, an automatic threshold selec-

tion procedure that can adaptively decide an appro-

priate threshold for different mesh models is always 

preferable. In this paper, we propose a method which 

can adaptively select an appropriate threshold value 

that will fit in any given 3D polygon model. The 

method is based on Bayesian classification which is 

commonly used in the field of pattern recognition 

[Sch92]. In Section 3.1, we shall describe how to 

systematically separate the feature vertices and non-

feature vertices of a 3D polygon model. Section 3.2 

will discuss how to distinguish the edge and corner 

vertices from the set of feature vertices. The conver-

gence test described in Section 3.3 discusses how to 

stabilize our algorithms. 

3.1 Vertex Classification 
For a 3D polygon model, edge and corner verti-

ces are both classified as feature vertices [Mey02]. 

The difference between an edge vertex and a corner 

vertex can be judged by the magnitudes of their two 

principal curvatures. For an edge vertex, the magni-

tude of one of its principal curvatures is small and 

the other is quite large. For a corner vertex, the mag-

nitudes of its both principal curvatures are large. 

Therefore, if one would like to distinguish feature 

vertices from non-feature vertices, the magnitude of 

the maximum principal curvature can be used as a 

good indicator. For those non-feature vertices, the 

magnitude of their maximum principal curvature is 

small. 



For distinguishing feature vertices from non-

feature vertices, we assume that non-feature vertices 

and feature vertices of a given 3-D model are normal 

distributed along the maximum principal curvature 

axis. Let
1µ and

2µ be the mean values for the two 

classes, 1σ and 2σ be two corresponding standard 

deviations. Then, by applying Bayesian classification 

rule [Sch92], the best threshold value can be deter-

mined by the boundary line that best divides the two 

classes with the following property: 

)|()|( 21 wxpwxp = , (12) 

where 1w  and 2w  are the two classes and x  is the 

best threshold value. Under these circumstances, the 

best threshold value can be derived by solving equa-

tions (12), (13), and (14), where equations (13) and 

(14) are as follows: 
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The best solution for the threshold value is thus ob-

tained as follows: 

a

cb
x ⋅

−=
2

, (15) 

where  
2
1

2
2 σσ −=a , )(2 2

2
11

2
2 µσµσ −⋅=b , adbc 42 −= , and 

)ln(2
1

22
2

2
1

2
2

2
1

2
1

2
2 σ

σσσµσµσ −−=d . 

 

Figure 8. The dashed line shows where the best 

threshold is located by a Bayesian classifier. 

Since the classification process is automatically 

performed on every given 3D model, the number of 

classes is an important issue. For a 3D shape such as 

a sphere, there is no edge or corner on its surface. As 

a result, there is only one class for a sphere. There-

fore, before the classification task is executed, we 

have to check every 3D model to see if it has at least 

two separable classes. In order to do so, we define 

the following function: 

σµσµ /)(),,( ththD −= , (16) 

where th is the threshold value derived from equation 

(15). If both values of ),,( 11 thD σµ  and 

),,( 22 thD σµ  are less than a preset δ  value, then the 

vertices of a given 3D polygon model are not separa-

ble and all of them are regarded as non-feature verti-

ces. For the rest of the paper, we use 2=δ  in all ex-

amples. That is, there exists only one non-separable 

class if the distance between two calculated means, 

1µ  and 
2µ , is less than 

21 22 σσ + . 

3.2 Edge and Corner vertices 
The reason why we have to perform feature and 

non-feature vertex classification is because they will 

be processed differently in the subsequent steps of 

our algorithm. A vertex is regarded as a potential 

edge vertex if it has at least two neighboring feature 

vertices in its 1-ring, where 1-ring of a vertex is the 

collection of common planar vertices of the vertex. If 

a feature vertex has a minimum curvature, which is 

larger than the threshold value obtained from equa-

tion (15), and it has at least three neighboring poten-

tial feature vertices in its 1-ring, then it is regarded as 

a potential corner vertex. If a vertex is not of one of 

the above types, then it is classified as a non-feature 

vertex. The formal algorithm that can be applied to 

detect edge, corner, or non-feature vertices is as fol-

lows:  

Corner vertex: 

If thresholdk >|| 1
and thresholdk >|| 2

and there are 

at least 3 vertices in 1-ring neighbor with their 

thresholdk >|| 1
. 

Edge vertex: 

If thresholdk >|| 1
and there are at least 2 vertices 

in 1-ring neighbor with their thresholdk >|| 1
. 

Non-feature vertex: 

None of the above two types. 

Here 1k and 2k  represent the maximum and the 

minimum principal curvature, respectively, of an 

arbitrary vertex on a 3D model. Figure 9 illustrates 

an example showing how the feature vertex classifi-

cation algorithm works. The left hand side of Figure 

9 shows a fandisk model. On its right is the result 

after performing feature vertex classification. 

   

Figure 9. On the left is a given fandisk model; On 

the right shows the calculated feature vertices (in 

dark color). 

 



3.3 Convergence Test 
A vertex is said to reach a steady state if the 

change of its curvature values in two consecutive 

iterations becomes negligible. Whenever a vertex 

reaches its steady state, its position should be re-

mained intact in the subsequent iterations. Thus, we 

need a convergence test for each vertex to determine 

whether a vertex has reached its steady state. There-

fore, we conduct a convergence test in which we 

calculate the total curvature and then use it to test the 

convergence of non-feature vertex. On the other 

hand, we use the minimum principal curvature of 

every vertex to test the convergence of feature vertex. 

The function that is adapted to the convergence test 

for a vertex at the p-th iteration is defined as follows: 
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where the superscript p indicates the p-th iteration 

and the total curvature tc can be calculated by 

21 kk + , { }F  is the set of feature vertices, and ε  is 

a preset threshold value. The value of ε  has to be 

small and we set it 0.01 in our experiments. 

With the iteration goes on, we say a vertex is con-

verged or has reached to its steady state if it passes 

the convergence test. When a vertex reaches its 

steady state, the corresponding feature value remains 

intact in the subsequent iteration steps. It is noted 

that the convergence rate of each vertex is different. 

Therefore, the number of vertices that reaches to 

steady state will decrease gradually as the iterative 

process goes on. The smoothing process for polygon 

meshes is completed when all vertices reach their 

steady state. Figure 10 illustrates the flow chart of 

the proposed adaptive anisotropic diffusion process. 

4. EXPERIMENTAL RESULTS 
A series of experiments was conducted to verify 

the effectiveness of the proposed method. In the first 

set of experiments, we conducted experiments on 

two sets of non-separable models. Figure 11(a) 

shows a noisy sphere and its corresponding principal 

curvature distribution. Since the distribution was 

non-separable, our algorithm triggered an isotropic 

diffusion process to smooth out the sphere. The re-

sult is shown in Figure 11(b). Figure 12 is another 

example. The distributions of the model taken from 

different views are shown in Figure 12(a) and (c) 

were non-separable. After applying an isotropic dif-

fusion process, the results are shown in Figure 12 (b) 

and (d), respectively. As to the case when our algo-

rithm is facing a separable 3D model, we have ob-

tained the following results. Figure 13(a) shows a 

noisy 3D polygon model. The results obtained by 

applying the proposed adaptive diffusion process, the 

anisotropic mean curvature method, the bilateral fil-

tering method and the Gaussian smoothing, are 

shown in Figure 13(b), (c), (d) and (e), respectively. 

It is obvious that our algorithm was powerful in 

terms of preserving edges and corners. The anisot-

ropic mean curvature method was able preserve 

edges but fail to retain corners. The reason that led to 

this failure was due to the use of fixed threshold 

value. The bilateral method was able to preserve 

edge features but also damage some corner and edge 

vertices. This is due to the use of a fixed coefficient 

value to determine the similarity degree for all verti-

ces. As to the Gaussian filtering, it failed to preserve 

both the edges and corners. This outcome is predict-

able because a Gaussian filter always filters out both 

noise and useful data. 

In Figure 14, we show several principal curvature 

distributions corresponding to different iteration 

numbers. Figure 14(a) shows the original principal 

curvature distribution before our algorithm was ap-

plied to the 3D model shown in Figure 13(a). Figure 

14(b) shows the distributions after our algorithm was 

applied 5 iterations. Finally, Figure 14(c) shows the 

final distribution after our algorithm completed its 

job (16 iterations). 

In the last set of experiments, we tested our algo-

rithm against some noisy 3D models. Figure 15(a) 

shows a “fandisk” model. Figure 15(b) shows a cor-

rupted model with 0.3% Gaussian noise. Figure 15(c) 

and (d) show, respectively, the results after applying 

our adaptive smoothing algorithm and the Gaussian 

model. It is apparent that our algorithm could well 

preserve both edges and corners in this case. Figure 

16(a) is a golf mesh model. Figure 16(b) shows 1% 

of Gaussian noise was added to the original model. 

The result obtained after applying our algorithm is 

shown in figure 16(c). 

5. CONCLUSIONS 
In this paper, we have proposed an anisotropic 

diffusion-based method to smooth 3D polygon 

meshes. We used a bi-directional curvature mapping 

function which is based on the heat transfer theory to 

deal with different types of vertices. In order to dis-

tinguish the vertex type, we perform Bayesian classi-

fication to separate all vertices of a 3D model into 

feature and non-feature vertices. Then an energy-

based convergence test function was used to check 

whether each vertex has reached its steady state or 

not. Experimental results show that our approach was 

indeed powerful in smoothing different 3D polygon 

models. 
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Figure 10. The adaptive diffusion filtering process. 

  

(a) (b) 

Figure 11. (a) A noisy sphere model and its principal curvature distribution, (b) the result obtained after 

applying our adaptive diffusion algorithm. 

     
(a)  (b)   (c)  (d) 

Figure 12. Experimental results of another model. (a) and (c) are original model taken from different 

views, (b) and (d) are the results obtained after smoothing. 



     
(a)   (b)     (c)        (d)   (e) 

Figure13. (a) Original polygon model, and (b) the result of the proposed adaptive diffusion, (c) the result 

of the anisotropic mean curvature flow, (d) the result of bilateral filtering, and (e) the result of Gaussian 

smoothing. 

 
(a)   (b)   (c) 

Figure 14. The principal curvature distributions of the noisy model shown in Figure 13. (a) original data, 

(b) applying adaptive diffusion 5 iterations, (c) smoothing procedure finished. 

 
(a)   (b)   (c)   (d) 

Figure 15. Experiments on a Fandisk model. (a) original polygon meshes, (b) the model with 0.3% Gaus-

sian noise, and (c) (d) the results obtained by applying our adaptive diffusion method and Gaussian 

smoothing method, respectively. 

 

         
(a)    (b)    (c) 

Figure 16. Our adaptive diffusion is applied to a golf mesh model, (a) original meshes, (b) add 1% Gaus-

sian noise, (c) the filtered result. 


