
Fairing of Polygon Meshes Via Bayesian

Discriminant Analysis

Chun-Yen Chen
Institute of Information Science,

Academia Sinica.
Department of Computer Science

and Information Engineering,
National Taiwan University.

 115, Taiwan, Taipei, Nankang

ccy@iis.sinica.edu.tw

Kuo-Young Cheng
Institute of Information Science,

Academia Sinica.
Department of Computer Science

and Information Engineering,
National Taiwan University.

115, Taiwan, Taipei, Nankang

kycheng@iis.sinica.edu.tw

Hong-Yuan Mark Liao
Institute of Information Science,

Academia Sinica.

115, Taiwan, Taipei, Nankang

liao@iis.sinica.edu.tw

ABSTRACT

Design of an anisotropic diffusion-based filter that performs Bayesian classification for automatic selection of a

proper weight for fairing polygon meshes is proposed. The data analysis based on Bayesian classification is

adopted to determine the decision boundary for separating potential edge and non-edge vertices in the curvature

space. The adaptive diffusion filter is governed by a double-degenerate anisotropic equation that determines how

each polygon vertex is moved along its normal direction in the curvature space iteratively until a steady state is

reached. The determination of how much a polygon vertex should be moved depends on whether it is a potential

edge or a non-edge vertex. At each fairing step, conceptually, a bi-directional curvature map whose boundary

line while couched by the weight value can be plotted to understand the type of a vertex. Experimental results

show that the proposed diffusion-based approach could effectively smooth out noises while retaining useful data

to a very good degree.

Keywords

Polygon Mesh Smoothing, Bayesian Discriminant Analysis, Feature Detection.

1. INTRODUCTION
When one tries to acquire a 3D object model by a

3D laser scanner, the scanned object shape is, usually,

represented in the form of triangular polygon meshes.

However, such sampled points are always inherited

with noises and the resultant polygon surface looks

faceted due to the existence of noises. A technique

that can remove noise while retaining polygon sur-

face is always preferable. Such a technique falls into

the category of special filter design, in which a de-

graded polygon shape is smoothed by gradually fair-

ing out noise iteratively.

The information that can be obtained from a

scanned 3D object model includes the position of a

vertex, the passing tangent planes, and the curvatures

of surfaces that are formed by tangent planes. A

noisy vertex causes signification of local facet effects

and thus produces low quality surfaces. It is well

known that the filter design based upon a constrained

optimization technique is able to generate satisfac-

tory surface with high quality. In this paper, we let

the smoothing of the data of a scanned object gov-

erned by a thin shell heat equation. In the smoothing

process, each vertex is considered as a point tempera-

ture and the curvature of a vertex is considered as the

energy associated with it. Therefore, the filter design

problem is converted into an optimization problem.

In the optimization process, the proposed algorithm

tries to locate a new position for each vertex so that

the associated energy can be minimized. Because

different vertex types have different curvature values,

they will be governed by the heat equation with dif-

ferent heat transfer rates.

In the literature, the most similar existing ap-

proach is the discrete fairing technique proposed by

Kobbelt et al. [Kob98]. In that work, they applied a

so-called umbrella algorithm together with a thin

plate energy function to derive a recursive equation

for designing their filter. However, they used a fixed

weight value for relocating each vertex during the

iterative process. It is well know that the polygon

smoothing process based on the filter design concept

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy oth-

erwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972

WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

relies heavily on the local fine structure as well as the

noise that associated with the given 3-D polygon

model. Without considering the vertex type and dif-

ferent weights for different vertices, the designed

smoothing algorithm may produce some unwanted

facets in the final output results.

In this paper, we propose a method for polygon

smoothing using a filter design approach. The pro-

posed scheme is able to perform intelligent data

analysis and to classify each vertex as either a feature

vertex or a non-feature vertex. This classification

result can be used as the basis for selecting appropri-

ate weight for each vertex at a fairing step. To differ-

entiate our method with others, we call the filter de-

sign based on our proposed method the adaptive dif-

fusion filter design. The experimental results show

that the proposed adaptive diffusion filter can im-

prove the resultant surface quality significantly as

compared to some previous polygon filter designs.

2. FILTER DESIGN USING DIFFU-

SION EQUATIONS: A SURVEY
In an isotropic diffusion-based method, the de-

sign of a low pass or a band pass filter is to use a

diffusion-style partial differential equation to control

the process of event operation. The isotropic diffu-

sion equation that will fit in the polygon mesh fairing

process can be defined as follows:

M
t

M 2∇=∂
∂ , (1)

where 2∇ is a Laplacian operator and M represents a

given polygon mesh model. An analytic solution for

equation (1) can be expressed as a form of a linear

invariant Gaussian kernel convoluted with M

[Tau96]. However, an analytic method that can be

used to solve equation (1) in 3D space is rather com-

plicated. Therefore, it is usually solved by a finite

difference approach using the following iterative

equation:

ttt MMM 21 ∇+=+ λ , (2)

where λ is a user-defined constant. For speeding up

the process described in Equation (2), an umbrella

operator is adopted to linearly approximate the

Laplacian operator. In [Tau96], an umbrella operator

proposed by Taubin is defined as follows:

∑∈ −=∇
)(

2

)(#

1
)(

ij xNx

ij

i

i xx
xN

x , (3)

where)(ixN indicates the neighboring vertices of
ix ,

and)(# ixN indicates the number of vertices being

contained in)(ixN .

+

2∇

ˠt ˠt+1

λ

Figure 1. The Laplacian filter.

Equation (2) can be expressed as an isotropic fil-

ter as shown in Figure 1. It is basically a Gaussian

diffusion filter which contains two main components:

the Laplacian operator 2∇ and the weighting con-

stant λ . The Laplacian operator is used for calculat-

ing the normal difference between a vertex and its

neighboring vertices. The value of the weighting

constant determines the degree of diffusion. A filter

can be called an isotropic diffusion filter if the de-

fined weight is maintained constant in the whole

process; otherwise, we call it an anisotropic one.

Taubin [Tau96] found that a Gaussian-type diffu-

sion process can suppress noise very effectively but

also create a model-shrinking problem. In order to

solve the model-shrinking problem, he designed a

mutually compensated diffusion filter called Taubin

diffusion filter as shown in Figure 2. The process of

a Taubin filter can be defined by the following itera-

tive procedure:





∇+=
∇+=

+ ttt

ttt

MMM

MMM

21

2

µ
λ . (4)

+

2∇

ˠt +

2∇

ˠt+1

λ µ

ˠt

Figure 2. The Taubin diffusion filter.

Figure 2 illustrates how a Taubin filter works. In

Figure 2, λ and µ are two preset constants with one

positive and the other negative. The λ filter is a

Gaussian diffusion filter which enforces the diffusion

direction to make the model shrink a little bit. The µ

filter, on the other hand, is a Gaussian diffusion filter

which enforces the diffusion direction to make the

model expand a little bit. With a proper selection of λ and µ , the Taubin diffusion filter can function

efficiently to remove noises while retaining the origi-

nal mesh data as much as possible.

In order to achieve better convergence result,

Desbrun et al. [Des99] proposed an implicit integra-

tion filter design approach. The iterative equations of

their approach are as follows:

121 ++ ∇+= ttt MMM λ or tt MM =∇− +12)1(λ .(5)

+

2∇

ˠt ˠt+1

λ

Figure 3. The implicit filter.

Figure 3 illustrates how Desbrun et al.’s approach

functions. Equation (5) is basically a representation

of implicit system equations. Under these circum-

stances, if one would like to derive
1+tM from

tM ,

a numerical method using sparse matrix inversion or

pre-conditional bi-conjugate gradient is required to

solve the equations. It is known that the above men-

tioned numerical methods will eventually bring to a

stable solution, but they are time-consuming.

Desbrun et al. [Des99] pointed out that the um-

brella operator is inappropriate in dealing with non-

symmetric polygon mesh. This is because the vertex

of a non-symmetric polygon mesh will shift away

from its original position when encountering a diffu-

sion operation. Therefore, they proposed to use a

mean curvature flow operator to replace an umbrella

operator. The mean curvature flow operator is de-

fined as follows:

iiHic nx κ=∇)(2
, (6)

where 2

c∇ is the mean curvature flow operator,
ix is

the vertex subjected to the mean curvature flow op-

eration,
iHκ is the mean curvature on the vertex

ix ,

and
in is the unit normal vector on

ix . Usually, the

vertex
ix of a straight plane will stay steady when

encountering a mean curvature flow operation. As a

consequence, Equation (5) can be rewritten as:

tt
c MM =∇− +12)1(λ , (7)

and the filter design of the implicit curvature flow

system can be modified and shown in Figure 4.

+

2

c∇

ˠt ˠt+1

λ

Figure 4. The implicit curvature flow system.

The filters using Gaussian diffusion, Taubin dif-

fusion, mean curvature flow diffusion, or their com-

binations are classified as isotropic diffusion-type

filters. The factor λ remains constant in an isotropic

diffusion operation, regardless of diffusion direction.

An isotropic diffusion operation can eliminate noise

very effectively but also smooth out useful data. In

[Des99], Desbrun et al. proposed to execute filter

design based on anisotropic diffusion. An anisotropic

filter uses a function of two principal curvatures, 1κ

and 2κ , as the weights for each diffusion direction.

The operation of an anisotropic filter can be repre-

sented graphically as shown in Figure 5, and the

equation that describes this operation is as follows:

t
c

tt MwMM 2
21

1),(∇+=+ κκ , (8)

+

2

c∇

ˠt ˠt+1

),(21 κκw

Figure 5. An anisotropic filter.

where),(21 κκw is an anisotropic diffusion weight-

ing function. With the proper design of),(21 κκw in

accordance with diffusion directions, the designed

anisotropic filter can effectively remove the noise

and at the same time preserve the shape of corners

and edges.

According to the filter design rule described in

[Mey02], if the values of || 1κ and || 2κ of a vertex

are both smaller than a preset threshold, then the ver-

tex is regarded as a noisy vertex. Under these cir-

cumstances, the noise associated with the vertex can

be removed effectively by a Gaussian diffusion filter

or an anisotropic filter if),(21 κκw is set to 1. If the

absolute values of both principal curvatures are lar-

ger than a preset threshold value, then the vertex is

regarded as a corner vertex and it is remained intact

by setting),(21 κκw equal to 0. A vertex is consid-

ered an edge vertex if its minimum curvature is very

small and its mean curvature very large. To deter-

mine the value of),(21 κκw , the following rules will

be used:











=−
=
=

>>>
≤≤

=

),,min(if1

),,min(if

),,min(if

0andandif0

andif1

),(

21

2122

2111

2121

21

21

HH

HH

HH

TT

TT

w

κκκκ
κκκκκκ
κκκκκκ

κκκκ
κκ

κκ
. (9)

In addition to the definition of 1κ and 2κ which has

been made previously, Hκ here represents the mean

curvature of 1κ and 2κ .

Fleishman et al. [Fle03] extended the bilateral fil-

tering method from 2D image to 3D polygon meshes.

Their method adopted two standard Gaussian filters,

one is smoothing function and the other is similarity

function. The similarity function identifies the degree

of similarity. If a vertex has high similarity with its

neighboring vertices, then it will be smoothed with-

out any hesitation; otherwise, it will be identified as a

feature vertex and will not be smoothed. By tuning

up smoothing and similarity functions, the bilateral

filtering method will produce a feature preserving

result for semi-regular polygon meshes.

The underlying concept of anisotropic diffusion

is from the heat transfer theory, where a zero weight

corresponds to an insulator and a full weight corre-

sponds to a perfect conductor. In what follows, we

shall propose a new anisotropic diffusion-based filter

to execute the fairing process of 3D polygon models.

3. FILTER DESIGN BASED ON

ADAPTIVE ANISOTROPIC DIFFU-

SION

In the previous section, we have surveyed a num-

ber of isotropic and anisotropic diffusion filters

which can be applied to smooth 3D polygon meshes.

In this paper, we propose a bi-directional curvature

mapping function,),(21 κκw , based on the heat

transfer theory. A heat transfer expression is com-

monly used in nonlinear filtering [Wei97]. Let
1κ be

the maximum curvature and
2κ be the minimum

curvature. Assume the relation
21 κκ ≥ always holds.

The weighting function),(21 κκw of a bi-directional

curvature mapping can be expressed as follows:






≤<>−
≤>−

>≥
≤≤

=

−−−−
−−−

TTTee

TTee

T

TT

w

kkT

kk

2andif

andif

2if0

andif1

),(

21
1)1/)2((

21
1)1/(

21

21

21

2
12

2
12

κκ
κκ

κκ
κκ

κκ

(10)

Figure 6. The bi-directional curvature map with

T=5.

In addition to the new weighting function, we

also propose a double degenerate heat equation

[Kob98] to govern the anisotropic diffusion-based

filter. The equation showing how this operation

works is as follows:

]),([2
21

21 t
cc

tt MwMM ∇∇+=+ κκ (11)

+

2

c∇

ˠt ˠt+1

),(21 κκw 2

c∇

Figure 7. The double degenerate anisotropic dif-

fusion-based filter.

Figure 7 illustrates graphically how the two de-

generate heat equations are incorporated into the

design of the filter. An anisotropic diffusion filter

using the bi-directional curvature mapping function

defined in Equation (10) works well if, at each fair-

ing step, the threshold value T can be properly de-

termined. The threshold T can be used to judge the

vertex type in the fairing process. Having the type of

a vertex, the fairing algorithm triggers an appropriate

process to smooth out the vertex. Therefore, the se-

lection of an appropriate T is of great importance to

the success of a fairing process.

To the best of our knowledge, most existing ani-

sotropic diffusion methods require user to provide a

threshold value for a fairing process. However, this

threshold value is data dependent (ill-posed) and

different threshold values may result in different fair-

ing results. Therefore, an automatic threshold selec-

tion procedure that can adaptively decide an appro-

priate threshold for different mesh models is always

preferable. In this paper, we propose a method which

can adaptively select an appropriate threshold value

that will fit in any given 3D polygon model. The

method is based on Bayesian classification which is

commonly used in the field of pattern recognition

[Sch92]. In Section 3.1, we shall describe how to

systematically separate the feature vertices and non-

feature vertices of a 3D polygon model. Section 3.2

will discuss how to distinguish the edge and corner

vertices from the set of feature vertices. The conver-

gence test described in Section 3.3 discusses how to

stabilize our algorithms.

3.1 Vertex Classification
For a 3D polygon model, edge and corner verti-

ces are both classified as feature vertices [Mey02].

The difference between an edge vertex and a corner

vertex can be judged by the magnitudes of their two

principal curvatures. For an edge vertex, the magni-

tude of one of its principal curvatures is small and

the other is quite large. For a corner vertex, the mag-

nitudes of its both principal curvatures are large.

Therefore, if one would like to distinguish feature

vertices from non-feature vertices, the magnitude of

the maximum principal curvature can be used as a

good indicator. For those non-feature vertices, the

magnitude of their maximum principal curvature is

small.

For distinguishing feature vertices from non-

feature vertices, we assume that non-feature vertices

and feature vertices of a given 3-D model are normal

distributed along the maximum principal curvature

axis. Let
1µ and

2µ be the mean values for the two

classes, 1σ and 2σ be two corresponding standard

deviations. Then, by applying Bayesian classification

rule [Sch92], the best threshold value can be deter-

mined by the boundary line that best divides the two

classes with the following property:

)|()|(21 wxpwxp = , (12)

where 1w and 2w are the two classes and x is the

best threshold value. Under these circumstances, the

best threshold value can be derived by solving equa-

tions (12), (13), and (14), where equations (13) and

(14) are as follows:

))(
2

1
exp(

2

1
)|(2

1

1

1

1 σ
µ

σπ
−−= x

wxp , (13)

))(
2

1
exp(

2

1
)|(2

2

2

2

2 σ
µ

σπ
−−= x

wxp . (14)

The best solution for the threshold value is thus ob-

tained as follows:

a

cb
x ⋅

−=
2

, (15)

where
2
1

2
2 σσ −=a ,)(2 2

2
11

2
2 µσµσ −⋅=b , adbc 42 −= , and

)ln(2
1

22
2

2
1

2
2

2
1

2
1

2
2 σ

σσσµσµσ −−=d .

Figure 8. The dashed line shows where the best

threshold is located by a Bayesian classifier.

Since the classification process is automatically

performed on every given 3D model, the number of

classes is an important issue. For a 3D shape such as

a sphere, there is no edge or corner on its surface. As

a result, there is only one class for a sphere. There-

fore, before the classification task is executed, we

have to check every 3D model to see if it has at least

two separable classes. In order to do so, we define

the following function:

σµσµ /)(),,(ththD −= , (16)

where th is the threshold value derived from equation

(15). If both values of),,(11 thD σµ and

),,(22 thD σµ are less than a preset δ value, then the

vertices of a given 3D polygon model are not separa-

ble and all of them are regarded as non-feature verti-

ces. For the rest of the paper, we use 2=δ in all ex-

amples. That is, there exists only one non-separable

class if the distance between two calculated means,

1µ and
2µ , is less than

21 22 σσ + .

3.2 Edge and Corner vertices
The reason why we have to perform feature and

non-feature vertex classification is because they will

be processed differently in the subsequent steps of

our algorithm. A vertex is regarded as a potential

edge vertex if it has at least two neighboring feature

vertices in its 1-ring, where 1-ring of a vertex is the

collection of common planar vertices of the vertex. If

a feature vertex has a minimum curvature, which is

larger than the threshold value obtained from equa-

tion (15), and it has at least three neighboring poten-

tial feature vertices in its 1-ring, then it is regarded as

a potential corner vertex. If a vertex is not of one of

the above types, then it is classified as a non-feature

vertex. The formal algorithm that can be applied to

detect edge, corner, or non-feature vertices is as fol-

lows:

Corner vertex:

If thresholdk >|| 1
and thresholdk >|| 2

and there are

at least 3 vertices in 1-ring neighbor with their

thresholdk >|| 1
.

Edge vertex:

If thresholdk >|| 1
and there are at least 2 vertices

in 1-ring neighbor with their thresholdk >|| 1
.

Non-feature vertex:

None of the above two types.

Here 1k and 2k represent the maximum and the

minimum principal curvature, respectively, of an

arbitrary vertex on a 3D model. Figure 9 illustrates

an example showing how the feature vertex classifi-

cation algorithm works. The left hand side of Figure

9 shows a fandisk model. On its right is the result

after performing feature vertex classification.

Figure 9. On the left is a given fandisk model; On

the right shows the calculated feature vertices (in

dark color).

3.3 Convergence Test
A vertex is said to reach a steady state if the

change of its curvature values in two consecutive

iterations becomes negligible. Whenever a vertex

reaches its steady state, its position should be re-

mained intact in the subsequent iterations. Thus, we

need a convergence test for each vertex to determine

whether a vertex has reached its steady state. There-

fore, we conduct a convergence test in which we

calculate the total curvature and then use it to test the

convergence of non-feature vertex. On the other

hand, we use the minimum principal curvature of

every vertex to test the convergence of feature vertex.

The function that is adapted to the convergence test

for a vertex at the p-th iteration is defined as follows:

{ }
{ }




∈<−∨<
∉<−∨<

= −

−

Fvif
k

k
k

Fvif
tc

tc
tc

vC

p

p
p

p

p
p

p

)1()(

)1()(

)(

2

1

2
2

1

εε
εε

 (17)

where the superscript p indicates the p-th iteration

and the total curvature tc can be calculated by

21 kk + , { }F is the set of feature vertices, and ε is

a preset threshold value. The value of ε has to be

small and we set it 0.01 in our experiments.

With the iteration goes on, we say a vertex is con-

verged or has reached to its steady state if it passes

the convergence test. When a vertex reaches its

steady state, the corresponding feature value remains

intact in the subsequent iteration steps. It is noted

that the convergence rate of each vertex is different.

Therefore, the number of vertices that reaches to

steady state will decrease gradually as the iterative

process goes on. The smoothing process for polygon

meshes is completed when all vertices reach their

steady state. Figure 10 illustrates the flow chart of

the proposed adaptive anisotropic diffusion process.

4. EXPERIMENTAL RESULTS
A series of experiments was conducted to verify

the effectiveness of the proposed method. In the first

set of experiments, we conducted experiments on

two sets of non-separable models. Figure 11(a)

shows a noisy sphere and its corresponding principal

curvature distribution. Since the distribution was

non-separable, our algorithm triggered an isotropic

diffusion process to smooth out the sphere. The re-

sult is shown in Figure 11(b). Figure 12 is another

example. The distributions of the model taken from

different views are shown in Figure 12(a) and (c)

were non-separable. After applying an isotropic dif-

fusion process, the results are shown in Figure 12 (b)

and (d), respectively. As to the case when our algo-

rithm is facing a separable 3D model, we have ob-

tained the following results. Figure 13(a) shows a

noisy 3D polygon model. The results obtained by

applying the proposed adaptive diffusion process, the

anisotropic mean curvature method, the bilateral fil-

tering method and the Gaussian smoothing, are

shown in Figure 13(b), (c), (d) and (e), respectively.

It is obvious that our algorithm was powerful in

terms of preserving edges and corners. The anisot-

ropic mean curvature method was able preserve

edges but fail to retain corners. The reason that led to

this failure was due to the use of fixed threshold

value. The bilateral method was able to preserve

edge features but also damage some corner and edge

vertices. This is due to the use of a fixed coefficient

value to determine the similarity degree for all verti-

ces. As to the Gaussian filtering, it failed to preserve

both the edges and corners. This outcome is predict-

able because a Gaussian filter always filters out both

noise and useful data.

In Figure 14, we show several principal curvature

distributions corresponding to different iteration

numbers. Figure 14(a) shows the original principal

curvature distribution before our algorithm was ap-

plied to the 3D model shown in Figure 13(a). Figure

14(b) shows the distributions after our algorithm was

applied 5 iterations. Finally, Figure 14(c) shows the

final distribution after our algorithm completed its

job (16 iterations).

In the last set of experiments, we tested our algo-

rithm against some noisy 3D models. Figure 15(a)

shows a “fandisk” model. Figure 15(b) shows a cor-

rupted model with 0.3% Gaussian noise. Figure 15(c)

and (d) show, respectively, the results after applying

our adaptive smoothing algorithm and the Gaussian

model. It is apparent that our algorithm could well

preserve both edges and corners in this case. Figure

16(a) is a golf mesh model. Figure 16(b) shows 1%

of Gaussian noise was added to the original model.

The result obtained after applying our algorithm is

shown in figure 16(c).

5. CONCLUSIONS
In this paper, we have proposed an anisotropic

diffusion-based method to smooth 3D polygon

meshes. We used a bi-directional curvature mapping

function which is based on the heat transfer theory to

deal with different types of vertices. In order to dis-

tinguish the vertex type, we perform Bayesian classi-

fication to separate all vertices of a 3D model into

feature and non-feature vertices. Then an energy-

based convergence test function was used to check

whether each vertex has reached its steady state or

not. Experimental results show that our approach was

indeed powerful in smoothing different 3D polygon

models.

6. REFERENCES
[Des99] M. Desbrun, M. Meyer, P. Schroder, and A.

H. Barr. Implicit Fairing of Irregular Meshes us-

ing Diffusion and Curvature Flow. SIG-

GRAPH’99 Conference Proceeings, 317–324,

1999.

[Fle03] S. Fleishman, I. Drori, and D. Cohen-Or.

Bilateral Mesh Denoising. SIGGRAPH ’03 Con-

ference Proceedings, 950-953, 2003.

[Kob98] L. Kobbelt, S. Campagna, T. Vorsatz, and H.

P. Seidel. Interactive multiresolution modeling on

arbitary meshes. SIGGRAPH’98 Conference

Proceeings, 105–114, 1998.

[Mey02] M. Meyer, M. Desbrun, P. Schroder, and A.

H. Barr. Discrete Differential-Geometry Opera-

tors for Triangulated 2-Manifolds, Visualization

and Mathematics Proceedings, May, 2002.

[Sch92] R. J. Schalkoff, Pattern Recognition: Statis-

tical, Structural and Neural Approaches. John

Wiley & Sons. press 1992.

[Tau96] G. Taubin. Optimal Surface Smoothing as

Filter Design. Research Report RC-20404, IBM

Research,. March 1996.

[Wei97] J. Weickert, A Review of Nonlinear Diffu-

sion Filtering, in Scale-space Theory for Com-

puter Vision, Lecture Notes in Computer Science,

Vol. 1252, Bartter Haar Romeny, Ed., 3-28,

Springer, New York, 1997.

3˗ no˼sy
mo˷˸l

˖urv˴tur˸
˴n˴lys˼s

V˸rt˼˶˸s
˶l˴ss˼˹˼˶˴t˼on

An˼sotrop˼˶
˷˼˹˹us˼on

˗o ˴ll v˸rt˼˶˸s
˶onv˸r˺˸ ?

˗˼spl˴y t˻˸ smoot˻˸˷
3˗ mo˷˸l

˖˴n v˸rt˼˶˸s ˵˸
s˸p˴r˴t˸˷ ˼nto two

˶l˴ss˸s ?

Isotrop˼˶
˷˼˹˹us˼on

Y˸s

Y˸s

ˡo

ˡo

Figure 10. The adaptive diffusion filtering process.

(a) (b)

Figure 11. (a) A noisy sphere model and its principal curvature distribution, (b) the result obtained after

applying our adaptive diffusion algorithm.

(a) (b) (c) (d)

Figure 12. Experimental results of another model. (a) and (c) are original model taken from different

views, (b) and (d) are the results obtained after smoothing.

(a) (b) (c) (d) (e)

Figure13. (a) Original polygon model, and (b) the result of the proposed adaptive diffusion, (c) the result

of the anisotropic mean curvature flow, (d) the result of bilateral filtering, and (e) the result of Gaussian

smoothing.

(a) (b) (c)

Figure 14. The principal curvature distributions of the noisy model shown in Figure 13. (a) original data,

(b) applying adaptive diffusion 5 iterations, (c) smoothing procedure finished.

(a) (b) (c) (d)

Figure 15. Experiments on a Fandisk model. (a) original polygon meshes, (b) the model with 0.3% Gaus-

sian noise, and (c) (d) the results obtained by applying our adaptive diffusion method and Gaussian

smoothing method, respectively.

(a) (b) (c)

Figure 16. Our adaptive diffusion is applied to a golf mesh model, (a) original meshes, (b) add 1% Gaus-

sian noise, (c) the filtered result.

