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ABSTRACT

A point P ∈ R
n is represented in Parallel Coordinates by a polygonal line P̄ (see [Ins99] for a recent survey).

Earlier [Ins85], a surface σ was represented as the envelope of the polygonal lines representing it’s points. This is

ambiguous in the sense that different surfaces can provide the same envelopes. Here the ambiguity is eliminated

by considering the surface σ as the envelope of it’s tangent planes and in turn, representing each of these planes

by n-1 points [Ins99]. This, with some future extension, can yield a new and unambiguous representation, σ̄, of

the surface consisting of n-1 planar regions whose properties correspond lead to the recognition of the surfaces’

properties i.e. developable, ruled etc. [Hun92]) and classification criteria.

It is further shown that the image (i.e. representation) of an algebraic surface of degree 2 in R
n is a region whose

boundary is also an algebraic curve of degree 2. This includes some non-convex surfaces which with the previous

ambiguous representation could not be treated. An efficient construction algorithm for the representation of the

quadratic surfaces (given either by explicit or implicit equation) is provided. The results obtained are suitable for

applications, to be presented in a future paper, and in particular for the approximation of complex surfaces based

on their planar images. An additional benefit is the elimination of the “over-plotting” problem i.e. the “bunching”

of polygonal lines which often obscure part of the parallel-coordinate display.
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1 INTRODUCTION

Our purpose here is expository, sparing the reader from

most of the mathematical tribulations and, focusing on

the more intuitive aspects of the representational re-

sults. After a short review of the fundamentals, the

essentials of the mathematical development are given

together with some detailed examples to clarify the nu-

ances and satisfy the more mathematically inclined.
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In parallel coordinates (abbr. ‖-coords), a point

in R
2 is represented by a line and a line is represented

by a point yielding a fundamental point ↔ line dual-

ity. There follows the representation of p-flats (planes

of dimension 2 ≤ p ≤ n − 1) in R
n in terms of in-

dexed points [Ins85]. Naturally, for non-linear objects

the representation is more complex, especially if they

are also non-convex. The points of a curve in R
2 can

be mapped directly into a family of lines whose en-

velope defines a curve (“line-curve”). Actually this is

awkward and also clutters the display. Instead we map

the tangents of the original curve into points to obtain

the “point-curve”, sometimes called “dual-curve”, im-

age directly as shown in Fig. 1. In short, this approach

provides a convenient point-to-point mapping [Ins99].

Applying these considerations it was proved that

the image of an algebraic curve of degree n is also al-
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Figure 1. Point-curve mapped into point-curve, result

of considering the point-curve as the envelope of it’s

tangents.

gebraic of degree at most n(n − 1) in the absence of

singular points [Izh01]. This theorem is a generaliza-

tion of the known result that conics are mapped into

conics [Dim84] in six different ways.

Perhaps we are “pushing our luck”, our intent is

to apply next the point-to-point mapping in the rep-

resentation of surfaces considered as the envelope of

their tangent planes; with the resulting image being

constructed from the representation of tangent planes

[Ins99]. As has already been pointed out, planes can

be represented in ‖-coords by indexed points. The col-

lection of these planar points, grouped for each index,

is the representation of the surface.

In the past [Ins85], surfaces were represented in

‖-coords by the envelope of the polygonal lines rep-

resenting the surfaces’ points. By itself this is am-

biguous. For example the image of a sphere in n-

dimensions is the same as the image of the surface

obtained by the intersection of n cylinders properly

aligned having the same radius. In applications this

was ameliorated by accessing the correct equation of

the surface when needed. Not only is the ambiguity

completely removed with the new representation, but

also non-convex surfaces can be nicely treated some-

thing that was not possible previously.

Hung [Hun92] first applied this notion and found

that regions representing developable surfaces consists

only of the boundary curves (i.e. there are no interior

points), and also that ruled surfaces can be recognized

from characteristic properties of their corresponding

regions. Encouraged by these initial results the anal-

ysis is extended to more general surfaces yielding use-

ful criteria in the approximation of surfaces by simpler

ones; but we are getting ahead of ourselves.

At first we lay the foundations, then derive the

representation of quadratic algebraic surfaces and fur-

ther generalize to higher dimension as well as more

complex hyper-surfaces. As a result an efficient al-

gorithm for constructing the representation of the

quadratic surfaces (given either by explicit or implicit

equation), and a proof that the image of an algebraic

surface of degree 2 in R
n is also an algebraic curve

and of degree 2 are obtained.

2 GENERAL REPRESENTATION OF

HYPER-SURFACE

In general, the method employed below applies to

the class of smooth hyper-surfaces in R
n having a

unique tangent hyper-plane at each point. Equiva-

lently, each such hyper-surface is the envelope of it’s

tangent hyper-planes. This is our point of departure,

for it enables us to represent each tangent hyper-plane

in ‖-coords by n−1 indexed points [Ins99]. The hyper-

surface’s representation consists of the n − 1 points

sets, one for each index [Hun92]. For the present we

restrict our attention to algebraic hyper-surfaces and

in particular those defined by quadratic polynomials.

To simplify matters, most of the analysis is done in

3-dimensional space but in a way which points to the

generalization for R
n.

2.1 Hyper-Planes Representation

An n-dimensional hyper-plane π in R
n

π :

n
∑

i=1

cixi = c0, (1)

is represented by the n−1 indexed points [Ins99]. For

our purposes only the first

π̄1...n = (

n
∑

i=1

(i − 1)ci, c0,

n
∑

i=1

ci). (2)

needs to be studied. The remaining n − 2 points have

similar form differing only in the factor (i−1) of the ci.

An important property is that the horizontal distance

between the i-adjacent (in the indexing) points is the

equal to the coefficient ci; from which the sequence of

indexed points can be generated from the coefficients

or vice-versa.

2.2 Hyper-Surfaces Representation

Moving on to the representation of non-linear hyper-

surfaces in R
n from their tangent hyper-planes. Let

σ be a smooth n-dimensional hyper-surface generated

by the differentiable function F (x1, . . . , xn) = 0, and

an arbitrary point (x0
1, . . . , x

0
n) ∈ σ. Then the hyper-

surface’s tangent hyper-plane at this point is given by

:
n

∑

i=1

(xi − x0
i )

∂F

∂xi
(x0

1, . . . , x
0
n) = 0.
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Figure 2. For a hyper-surface, it’s representation’s boundary curves are determined

from the images of curves contained in hyper-surface.

Taking the x0
i as parameters, the coefficients of the tan-

gent hyper-planes can written as a function of points

which satisfy the hyper-surface’s equation. Namely,

the family of tangent hyper-planes of σ is represented

in homogenous coordinates, by a collection of sets σ̄
(see Fig. 2), containing the indexed points represent-

ing each member (i.e. hyper-plane) of the family. Each

of the n−1 indexed set, σ̄j...n1′...(j−1)′ , consists of the

points with the same index.

In the remainder the analysis is confined to the

first indexed set σ̄1...n using a shorter notation σ̄ de-

fined as,

σ̄ = {(P (x̄), S(x̄), Q(x̄)) | x̄ ∈ σ)} , (3)

where for σ̄1...n and the tuple x̄ = (x1, . . . , xn) :

P (x̄) =

n
∑

i=1

(i − 1)
∂F

∂xi

S(x̄) =

n
∑

i=1

xi
∂F

∂xi
(4)

Q(x̄) =

n
∑

i=1

∂F

∂xi
.

In general, the representation in ‖-coords is con-

structed via the rational transformations

x =
P (x̄)

Q(x̄)
, y =

S(x̄)

Q(x̄)
. (5)

The representation of all these hyper-planes transform

an n-dimensional hyper-surface into subsets of P
2; re-

gions which are distinguished from each other by their

indices. The algorithm which constructs and describes

these regions is presented next.

3 REPRESENTATION OF QUADRAT-

IC HYPER-SURFACE

At first we treat the class of algebraic surfaces in R
3

described by quadratic polynomials. Mercifully, the

corresponding system of transformations (4) can be

linearized. The next step is to determine the boundary

of the regions representing the surface. Without get-

ting into details, the existence of the boundary can be

assured by selecting an appropriate spacing of axes in

the system of the ‖-coords, which eventually reflect by

changing the constant multipliers of the first equation

in (4).

3.1 Definition of the Regions’ Boundary

Let σ be a quadratic surface whose representation is

the region σ̄. The boundary points are those whose

every neighborhood contains both interior and exterior

points. For this case both the transformation (4) and

the surface, are defined by polynomials and hence are

differentiable. The basic properties including continu-

ity are therefore preserved under the transformation.

Geometrically we rely on the differentiability in

finding those points p̄ ∈ σ̄ so that we can “move” from

p̄ in any direction and still remain in region; these are

interior points of σ̄. Clearly the boundary points are

easily found as the complement of the interior of σ̄.

The condition for determining whether a point is in-
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Figure 3. The boundary of each region is an image of a curve embedded in surface.

terior or not is given by theorem of implicit function

[Mar85]. Equivalently, a point ā ∈ σ̄ is interior point

if and only if the Jacobian, J(F )|ā, at this point is dif-

ferent from zero. Conversely, a point b̄ ∈ σ̄ for which

this is not true is necessarily a boundary point; namely,

a point b̄ ∈ σ̄ s.t. J(F )|b̄ = 0. In essence the theorem

tells us that σ̄ is closed set and the complement of its

interior is the sought after boundary.

Generalizing the above for R
n we get the map-

ping (x1, . . . , xn) → (η, ξ, ψ) into the projective

space, were x = η
ψ and y = ξ

ψ . Restating the con-

dition in terms of differential products using homoge-

neous coordinates with the variables η, ξ and ψ yields,

(ηdξdψ − ξdηdψ + ψdηdξ)dF = 0. (6)

This form is more convenient for handling hyper-

surfaces embedded in R
n where n > 3, for n = 3

eq. (6) can be written equivalently in term of Jacobian

as,

J(F )ψ3 = Det







∂F
∂x1

∂F
∂x2

∂F
∂x3

∂(η/ψ)
∂x1

∂(η/ψ)
∂x2

∂(η/ψ)
∂x3

∂(ξ/ψ)
∂x1

∂(ξ/ψ)
∂x2

∂(ξ/ψ)
∂x3






ψ3.

(7)

Substituting η, ξ and ψ in terms of the xi’s yields an

equation which defines an algebraic surface, σ′, in R
3.

Geometrically, the boundary γ̄ consist of points which

represent tangent planes touching at points of σ on the

intersection σ′ ∩ σ. Hence, γ̄ is the image of the alge-

braic curve σ′ ∩ σ = γ (see Fig. 3).

Combining the criterion, eq. (7), for the bound-

ary with the equation of the surface (embedded in 3-

dimensional space) and the transformation equations

(in homogenous coordinates) yields :

F (x1, x2, x3) = 0,
ηQ(x1, x2, x3) − ψP (x1, x2, x3) = 0,
ξQ(x1, x2, x3) − ψS(x1, x2, x3) = 0,
J(F (x1, x2, x3))ψ

3 = 0.

(8)

Solving for η, ξ and ψ yields the equation of the

boundary. Note that if F is a polynomial of degree

2, then the degree of J(F )ψ3 is ≤ 2 in terms of all

variables, while it is linear in terms of x1, x2 and x3.

Thus far we have constructed a system of four

equations (8) in six variables which define a mapping

from the R
3 into the projective plane P

2. Our aim,

is to determine the specific equation of the region’s

boundary explicitly. This involves solving this system

of equations in terms of η, ξ and ψ by eliminating the

variables x1, x2 and x3.

The equation’s structure turns out to be very ad-

vantageous. Since the last three equations are linear,

the elimination can be done by isolating a variable

(finding an explicit expression in term of the other vari-

ables), and substituting in the remaining linear equa-

tions. When all is said and done, each of the variables

x1, x2 and x3 can be expressed as a rational equation

in η, ξ and ψ. Upon substitution of these expressions

into F the boundary’s equation in homogeneous coor-

dinates is obtained. It follows that the boundary γ̄ is a

quadratic curve.

3.2 Algorithm

The algorithm’s input is an equation of algebraic sur-

face σ : F (x1, x2, x2) = 0 of degree two and the out-

put is the polynomial which describes the boundary
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Figure 4. Saddle σ: z = −(x/2)2 + (y/2)2 → γ̄ : 16 − 16x − 4y + y2 − 4xy + 4x2 = 0.

of the surface’s image in ‖-coords. It is noteworthy

that the algorithm applies to implicit or explicit poly-

nomials with or without singular points. The formal

description is followed by examples which clarify the

various stages and their nuances.

For a given polynomial equation F (x1, x2, x3) =
0 of degree 2 and a spacing of axes S1...n:

• Let :

η =
∑3

i=1(i − 1) ∂F
∂xi

,

ξ =
∑3

i=1 xi
∂F
∂xi

− 2F ,

ψ =
∑3

i=1
∂F
∂xi

.

• Write the three linear equations:

a) ψ
∑3

i=1(i − 1) ∂F
∂xi

− η
∑3

i=1
∂F
∂xi

= 0,

b) ψ(
∑3

i=1 xi
∂F
∂xi

−2F )− ξ
∑3

i=1
∂F
∂xi

= 0,

c) J(F )ψ3 = 0.

• Using substitution write

xi = fi(η, ξ, ψ) , for i = 1, 2, 3.

• Substitute

F (f1(η, ξ, ψ), f2(η, ξ, ψ), f3(η, ξ, ψ)) = 0.

• Retain the equation’s numerator.

• The output is obtained by substitution:

η ← x , ξ ← y , ψ ← 1.

All this falls into place with the following examples.

4 EXAMPLE OF QUADRATIC SUR-

FACE AND THEIR TRANSFORMS

In the first example is quite detailed to accommodate

the readers wishing to follow the application of the al-

gorithm in depth. Let σ be 3-dimensional saddle (see

Fig 4) generated by the polynomial equation,

F (x̄) =
(

x1

2

)2
−

(

x2

2

)2
+x3 = x2

1−x2
2+4x3 = 0,

where x̄ = (x1, x2, x3), and S1...n the standard spac-

ing of axes.

step 1 Let :

P (x̄) =
∑3

i=1(i − 1) ∂F
∂xi

= −2x2 + 8,

S(x̄) =
∑3

i=1 xi
∂F
∂xi

− 2F = −4x3,

Q(x̄) =
∑3

i=1
∂F
∂xi

= 2x1 − 2x2 + 4.

step 2 Write1 the three linear equations:

a) ηQ(x̄) − ψP (x̄) =

2(ηx1 + (ψ − η)x2 + 2η − 4ψ) = 0,

b) ξQ(x̄) − ψS(x̄) =

2(ξx1 − ξx2 + 2ψx3 + 2ξ) = 0,

c) J(F (x̄))ψ3 = (x1(ψ − η) + x2η − ξ).

Notice: substitution of η, ξ and ψ in terms of x1,

x2 and x3 yields a surface in R
3,

σ′ : 32(−x2
2 + 4x2 + x2

1 + 2x3 − 2x1) = 0.

Hence γ = σ′ ∩ σ,

1The authors acknowledge and are grateful for the use of the

symbolic manipulation program Singular developed by the Alge-

braic Geometry Group, Department of Mathematics, University of

Kaiserslautern, Germnay.
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Figure 5. Sphere σ: x2 + y2 + z2 = 2 → γ̄ : x2 − 4xy + y2 + 1 = 0.
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Figure 6. Hyperboloid of one sheet σ : x2 + y2 − z2 = 1 → γ̄ : x2 − 4xy + y2 − 1 = 0.
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Figure 7. Hyperboloid of two sheets σ: x2 − 4y2 + 2z2 = −2 → γ̄ : x2 − 2xy + 4y2 − 1 = 0.

γ :

{

x2
1 − x2

2 + 4x3 = 0
−x2

2 + 4x2 + x2
1 + 2x3 − 2x1 = 0

.

step 3 Using simple substitution write

b) ⇒ x3 = − ξ(x1−x2+2)
2ψ ,

c) ⇒ x2 = − (ψ−η)x1−ξ
η .

Then using equation a) we get,

x1 = −−2η2+ηξ−ψξ+4ψη
ψ(ψ−2η) ,

x2 = 2η2
−ηξ−6ψη+4ψ2

ψ(ψ−2η) ,

x3 = ξ(−ξ+2η+2ψ)
2ψ(ψ−2η) .

step 4 Substitute in F ,

x2
1 − x2

2 + 4x3 =

− 16ψ2
−16ψη−4ψξ+ξ2

−4ηξ+4η2

ψ(ψ−2η) = 0.

step 5 Retain the equation’s numerator,

16ψ2 − 16ψη − 4ψξ + ξ2 − 4ηξ + 4η2 = 0.

step 6 Finally, the output is obtained by substitution,

η ← x , ξ ← y , ψ ← 1:

γ̄ : 16 − 16x − 4y + y2 − 4xy + 4x2 = 0.

The surface and its image including the boundary

curve are shown in Fig 4. The representation of other

quadratic surfaces is illustrated in figures 5, 6 and 7.

5 GENERALIZATION FOR MUL-

TIDIMENSIONAL QUADRATICS

HYPER-SURFACES

Summarizing, the representation of 3-dimensional

quadratic surfaces is obtained from :

1. the criterion for the boundary points, and

2. solving the system of equations.

For dimension n = 3 there are only two indexed re-

gions. The generalization to arbitrary dimension n, to

be covered in a future paper, develops along similar

lines.

The boundary criterion, (6), in homogenous co-

ordinates is defined for any dimension. The following

part involves the elimination requiring that the number

of equations be greater then the number of variables.

Hence the system needs to be extended to at least n+1
equations. Without entering into the details it is possi-

ble to obtain the additional equations to complete the

construction algorithm. Then the hyper-surface’s rep-

resentation consists of n − 1 regions stemming from

the n − 1 indexed points representing each of the tan-

gent hyper-planes.

6 CONCLUSION

T he new representation

• is constructive,

• enables the representation of non-convex objects,



• maps algebraic surfaces to regions having alge-

braic curves as boundaries,

• has properties which enable the easy recognition

of the some surface properties, and

• provides a new basis for the approximation of

complex surfaces, from their corresponding pla-

nar regions.

An important “fringe benefit” is the avoidance of the

“over-plotting” problem in ‖-coords where polygonal

lines obscure portions of the display.
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