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ABSTRACT 
 
In general three-dimensional segmentation algorithms assume objects to have connected homogeneous regions. 
However in some cases objects are defined by a fuzzy boundary surface and consist of an inhomogeneous 
internal structure. In the following a new three-dimensional segmentation technique exploiting the contour 
detection capabilities of live-wire is proposed. The algorithm consists of two basic steps. First contours are 
outlined by the user on a small number of planar cross-sections through the object using live-wire. Second the 
traced contours are used for reconstructing the object surface automatically in each slice using live-wire again. 
This user-friendly segmentation algorithm is independent from object topology as the topology is implicitly 
defined during the reconstruction process. 
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1. INTRODUCTION 
Segmentation of objects from volumetric data is 

an important prerequisite for visualization and still a 
hot topic in medical investigations. Bony structures in 
medical datasets have rather steady boundaries but 
consist of inhomogeneous internal structures. The 
boundary may have low gradient areas, which make a 
complete segmentation nearly impossible with region 
growing. Separating bones from other structures by 
thresholding is often not applicable. Due to 
overlapping intensity regions other important features 
(e.g. contrast enhanced arteries) are affected by this 
operation too. Especially in the field of computed 
tomography angiography (CTA) the extraction of 
bones improves the quality of the results dramatically 
[Kan01].  

 

In Section 2 existing segmentation methods are 
reviewed. The new method is described in Section 3 
and Section 4. The results are presented in Section 5. 
Section 6 concludes the work. 

2. RELATED WORK 
Many segmentation methods have been 

developed for specific structures in medical datasets. 
Examples for segmenting homogeneous structures are 
seeded region growing [Ada94] and the water-shed 
algorithm [Beu92]. The manual boundary tracing of 
two-dimensional structures is very time consuming. 
The following acceleration techniques have been 
developed: Snakes is an active contour model 
introduced in 1988 by Kass et al. [Kas88]. The model 
minimizes an energy function based on internal forces 
(contour curvature) and external forces (image data). 
Initially the user sketches a contour and the object 
boundary is approximated automatically by 
minimizing the energy function. Another approach, 
known as live-wire [Mor92] or intelligent scissors 
[Mor98], was introduced in 1992 by Mortensen et al. 
and Udupa et al. [Udu92]. The live-wire process is 
interactively steered by the user who can react 
immediately to automatically suggested contours. The 
contour represents a minimal-cost path between a 
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start and an end point. The cost-function is derived 
from the underlying image. 

A straightforward extension of live-wire to three-
dimensional objects would be to apply the technique 
to each volume slice. This requires considerable user 
interaction and is rather time-consuming especially as 
the number of slices is ever increasing with improved 
imaging modalities. One approach for a more 
efficient three-dimensional extension is the 
application of the algorithm on a subset of slices. The 
object boundary is then reconstructed by propagating 
the contours through the neighboring slices. This can 
be done by shape-based interpolation [Ray90]. The 
user traces contours in every n-th slice. Distance 
fields are generated from these contours. These 
distance fields are interpolated linearly for 
intermediate slices and contours are constructed from 
the interpolated distance fields. Another approach for 
three-dimensional segmentation using live-wire has 
been proposed by Falcão et al. [Fal00]. The slices of 
the volume to be segmented are separated into slabs, 
in which the topology of the object to segment must 
not change. In each slab the user defines a set of 
cross-sections, which are perpendicular to the slices. 
These cross-sections must intersect in a common line. 
The user traces the object boundary using live-wire in 
each cross-section of each slab. The resulting outlines 
of the traced contours are used to reconstruct the 
object boundary in each slice. This approach requires 
extensive user interaction, which increases 
significantly with the complexity of the object to 

segment. Separating the slices into slabs in which the 
object topology does not change may even result in 
dozens of slabs. Another limitation is, that all cross-
sections must have a common intersection line.  

The proposed new technique targets these two 
limitations: The arrangement of the orthogonal cross-
sections is arbitrary. Furthermore the user is not 
required to cope with the object topology, as the 
algorithm itself is not limited by topological 
constraints. 

3. OUR SEGMENTATION METHOD 
The basic idea of our technique is a two level 

application of live-wire: Initially the user chooses an 
object to segment and defines a set of cross-sections 
perpendicular to the slices in a way that they intersect 
the desired object. The object boundary in each 
cross-section is traced using live-wire. In cases where 
the cross-section is intersected by another cross-
section, the previously calculated contour contributes 
connectivity points for the currently processed 
contour (see Figure 1). The set of orthogonal cross-
sections and their contours provide vertical 
connectivity information about the desired object. 
This information is used to reconstruct the contours 
in each slice automatically using live-wire again (see 
Figure 2). 

Live-Wire 
Live-wire is a method for tracing contours in a 2D 
gray level image from a fixed starting point to an 

 
Figure 1. The user traces the object boundary of the tooth dataset in each orthogonal cross-section. The 

connectivity points are depicted by black dots. 

 
Figure 2. Three-dimensional display of the cross-sections with outlines (left), with the reconstructed 

surface (middle) and the reconstructed surface (right). 

 



interactively moveable end point. The contour is 
calculated by applying the single-source shortest-path 
algorithm on an undirected weighted graph generated 
from the image. The graph is generated as follows: 
Each pixel is interpreted as a node which is 
connected by edges to each of its eight neighboring 
nodes (horizontal, vertical and diagonal neighboring 
pixels). The weight of each edge depends on the 
gradient. Low gradient magnitude means high cost 
and high gradient magnitude means low costs. 
Additionally scale space zero-crossing information is 
included in the weight calculation. 

Assumptions 
The described method is based on the following 

assumptions:  

The three-dimensional volume is defined by 
three orthogonal axes denoted by x, y and z. Slices 
and cross-sections are planar sections through the 
volume, which are bounded by the volume borders. 
Slices are perpendicular to the z-axis whereas cross-
sections are parallel to the z-axis.  

An object is a structure, which the user wants to 
segment. An object should not consist of more than 
one component. Each object has a boundary surface. 
The intersection of the boundary surface with a cross-
section results in a contour on the cross-section. A 
traced contour is referred to as an outline. A cross-
section may contain more than one outline. The 
outline must not cross itself or other outlines in the 
same cross-section. Each outline must be closed (i.e. 
being topologically equivalent to a circle). In general 
intersecting an outline with a slice produces an even 
number of intersection points (outline points). 
Tangent points are a special case, which can be 
handled easily by counting them twice. The user-
interface ensures that these requirements are fulfilled. 
The user is not required to cope with these 
requirements. 

Segmentation Procedure 
The segmentation procedure consists of the 

following four steps (see Figure 8, left side):  

Set of orthogonal cross-sections is defined. For 
segmenting a chosen object, an arbitrary number of 
orthogonal cross-sections intersecting the object are 
selected. Typically the user will select at least two up 
to a  dozen representative cross-sections. 

The boundary of the desired object is traced. 
The user traces the boundary of the object in each 
cross-section. Outlines of two different cross-sections 
may have points in common. These points are located 
on the joint intersection line of the cross-sections. 
They are called connectivity points (see Figure 3). 
Connectivity points due to previously processed 

cross-sections guide the user in tracing the outline in 
the current cross-section.  

Automatic boundary surface reconstruction. 
After the object boundary in all cross-sections has 
been outlined, an automatic boundary surface 
reconstruction algorithm is done. The algorithm takes 
the outlines and the spatial positions of the cross-
sectional planes as input. Successively for each slice 
the outlines are computed by connecting the outline-
points in each slice using live-wire in an automatic 
fashion. The output of the algorithm is a set of 
outlines in each slice. If the result of the algorithm is 
not satisfying, cross-sections may be deleted or added 
and the process is repeated from step 2. This may 
happen in case of an object of high complexity where 
it is not always easy for the user to find a 
representative set of cross-sections for reconstructing 
the object surface. The automatic boundary surface 
reconstruction is described in detail in the following 
section. 

Visualization. From the stack of outlines a 
binary mask is generated. For visualization purposes 
the binary mask is transformed into a binary dataset. 
After a data-smoothing step an iso-surface is 
extracted and rendered.  

4. AUTOMATIC BOUNDARY 
SURFACE RECONSTRUCTION 

A detailed description of the automatic boundary 
surface reconstruction within each axial slice is 
presented in this section. A flow chart of this process 
is shown in Figure 8 in the gray box on the right. 

 

Connectivity Graph 
For each slice a so-called connectivity graph is 

created. This graph is needed to connect the outline 
points in a correct order to form a slice outline. To 
determine the correct order the graph is traversed 
along the edges starting from a randomly selected 

 
Figure 3: Outlines of two cross-sections may 
have points in common. These connectivity 
points are on the intersection line of the two 

cross-sections 



vertex. The topology of the graph is determined in the 
following way: A slice is intersected by all cross-
sections, which split up the slice into a set of convex 
polygons. Then a binary space partition (BSP) tree is 
created based on the cross-sections. A cross-section 
divides the slice along an intersection line into two 
halves, which are split up recursively by further 
cross-sections. During the tree creation the 
neighborhood information of the resulting polygons is 
tracked within the tree. A leaf node represents a 
polygon and a branch node an intersection line. For 
each polygon the adjacent line fragments, which 
belong to its boundary, are stored in a list.  

Since an outline in an orthogonal cross-section 
created by the live-wire algorithm is closed it 
separates the cross-section into disconnected regions, 
which can be classified as inside or outside. An axial 
slice intersects an orthogonal cross-section in a 
horizontal line and also the classified regions. 
Therefore this line contains sections also classified as 
inside or outside. The first and the last point of each 
inside section are taken as outline points. Both points 
belong to the outline in the cross-section.  

Based on this information and the binary space 
partition tree a connectivity graph is build up (see 
Figure 4): Each polygon in the axial slice is 
represented by a vertex in the connectivity graph. The 
outline points described in the previous paragraph are 
represented by an edge in the connectivity graph. 
This edge describes a possible transition between two 
neighboring polygons. In the contour reconstruction 
step the computed slice outlines are only permitted to 
cross the polygon boundaries at these outline points. 

In cases, where an outline runs along an 
intersection line several crossings may occur, 
generating many connectivity points. The user may 
not be able to trace the contour exactly, which results 
in a graph containing vertices with an odd number of 

edges (see Figure 5). As a valid graph must contain 
only vertices with an even number of adjacent edges, 
such invalid cases have to be detected: Since an 
outline in a cross-section is closed, a unique 
classification in an inside and outside area is possible. 
An intersection point between two intersection lines 

Figure 5. This figure shows a case where an invalid 
intersection occurs (left) and its according 

connectivity graph (right). Thick lines mean inside. 
Two intersecting cross-sections, where an inside 

line fragment intersects an outside fragment. 

Figure 4. A slice is split into a number of convex polygons by intersecting cross-sections (left) and its 
connectivity graph (right). Letters indicate polygons and numbers indicate outline points 

Figure 6. According to Figure 5 two different 
modifications are possible, depending on the 

outline point closer to the intersection point. This 
modification turns an invalid case into a valid case. 

Point 1 is closer to the invalid intersection point 
(left).  Point 2 is closer to the intersection point 

(right). 



is valid if inside intersects inside, or outside intersects 
outside otherwise this intersection point is marked as 
invalid (see Figure 5). 

The process described below is applied until the 
graph contains only vertices with an even number of 
adjacent edges. Every invalid intersection point, 
which was marked in the previous step, is handled in 
the following way: The outline point, which is closest 
to this intersection point, is chosen. This outline point 
is represented by an edge in the connectivity graph. 
This edge is changed in a way that it connects the 
vertices, which represent the adjacent polygons 
across the intersection line (see Figure 6). This 
computation step results in a topologically consistent 
connectivity graph. This is an essential prerequisite 
for the contour reconstruction step. 

Contour Reconstruction 
The goal of contour reconstruction is to find a set 

of closed outlines in each slice. Since the connectivity 
graph contains only vertices with an even number of 

adjacent edges it is always possible to find these 
closed outlines (Euler circuits). 

Before the outlines in a slice are reconstructed 
using the connectivity graph, the adjacent edges of 
each vertex have to be sorted. Since the vertices 
represent convex polygons the center point of the 
polygon is always inside the polygon. Therefore the 

 
Figure 8: The flow chart of the segmentation process described in section 3 (left side) and 4 (right side). 

Figure 7. This figure shows the possible 
succeeding edges indicated by arrows pointing 

away from W. 



edges, which represent outline points located on the 
border of the polygon, can be sorted according to the 
absolute angle around the center point. Additionally 
every edge has a flag, which indicates whether an 
edge is used or unused, starting edges are marked as 
start. In the following paragraph the connectivity 
graph traversal for the slice outline reconstruction is 
described.  

For the starting point a vertex containing unused 
edges is selected randomly. Then an unused edge is 
taken and marked as start. The variable V is set to this 
vertex (see Figure 7). The succeeding vertex W of a 
vertex V is connected by an edge e, which represents 
an outline point. As depicted in Figure 7 every 
second edge starting from the first edge after edge e 
either marked as unused or start is a possible 
successor, which is weighted as follows: A live-wire 
path is generated from the outline point represented 
by e to the outline point represented by each 
permissible succeeding edge. The average cost per 
pixel along the previously generated live-wire paths 
as plausibility metric turned out to generate good 
results. The path with the lowest cost per pixel is 
taken as successor because a low cost path usually 
runs along object boundaries. The cost map used for 
the live-wire algorithm is based on the gradient-
magnitude of the density data filtered with a 3x3x3 
Gaussian kernel. Before filtering a windowing 
function is applied, where values below a given 
threshold T0 are mapped to 0, and values above a 
given threshold T1, T1 > T0 are mapped to the 
maximum possible value. T0 is the minimum gray 
value and T1 the maximum gray value of the whole 
dataset.  

In addition to that, the cost map for the live-wire 
algorithm is initialized in a way that the area outside 
of the convex polygon, which is represented by the 
currently investigated vertex, is weighted with such a 

high value so that an outline will hardly ever cross the 
polygon boundary. After the succeeding outline point 
has been determined, its representing edge is marked 
as used. If this edge was marked as start before, then 
the current outline is closed and a new outline is 
started. Otherwise the variable V is set to the current 
vertex W and the algorithm is continued with the 
determination of the next successor. 

 

5. RESULTS 
This section describes the application of the 

method on two datasets: i.e. a tooth (256x256x161, 
16 bit per voxel) and legs (512x512x553, 16 bit per 
voxel) 

The timings are measured on a PC-based 
workstation: AMD Athlon 1.2GHz (133MHz external 
bus clock) with 768MB PC133 SDRAM. The sample 
implementation has been developed using Microsoft 
Visual C++ 6.0. 

In the implementation the calculation time of the 
automatic surface reconstruction algorithm itself was 
20 seconds for the tooth dataset, and 300 seconds for 
the legs dataset. 

As shown in Figure 1 and Figure 2 the tooth can 
be segmented satisfactory just using three cross-
sections. Figure 9 demonstrates the high accuracy of 
the presented technique in comparison to region 
growing and thresholding. Bones have an 
inhomogeneous structure especially at the joints. In 
this area region growing and thresholding do not 
generate useful results.  

Binary masks generated from the segmented 
objects where used to fade out the bones from the 
CTA dataset (see Figure 10). The critical area in 
close vicinity to the knee-joint was processed by this 

 
Figure 9. Segmented right leg bones seen from the back applying thresholding at 386 Hu (top), region 

growing (middle), the new method (bottom). 



new technique with only minor errors. 

For the legs dataset the total time for segmenting 
the bones (Figure 10) was 24 minutes: 5 minutes for 
selecting 14 appropriate cross-sections, 10 minutes 
for tracing the contours. The automatic reconstruction 
algorithm took 5 minutes. The surface of the resulting 
binary mask was smoothed by a 3x3x3 Gaussian 
kernel and extracted with marching cubes in 4 
minutes. 

6. CONCLUSION 
The presented method provides a robust way to 

segment objects with a rather steady boundary 
surface and fuzzy interior. The user interaction effort 
is much lower than in previously introduced methods. 
A set of representative cross-sections through the 
desired object has to be defined. The user does not 
need to cope with the object topology. Tracing the 
contours using live-wire is straight-forward. The 
connectivity points are very helpful to trace the 
contour in intersecting cross-sections. The accuracy 
of the reconstruction heavily depends on the live-wire 
and its cost function but not on the surface 
reconstruction algorithm itself. This algorithm can 
also be used with other contour models. 
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