
Semi-Automatic Topology Independent Contour-
Based 2 ½ D Segmentation Using Live-Wire

Michael Knapp
Vienna University of Technology

Computer Graphics Group

Favoritenstrasse 9-11/E186
1040 Wien, Austria

knapp@cg.tuwien.ac.at

Armin Kanitsar
Vienna University of Technology

Computer Graphics Group

Favoritenstrasse 9-11/E186
1040 Wien, Austria

kanitsar@cg.tuwien.ac.at

Meister Eduard Gröller
Vienna University of Technology

Computer Graphics Group

Favoritenstrasse 9-11/E186
1040 Wien, Austria

groeller@cg.tuwien.ac.at

ABSTRACT

In general three-dimensional segmentation algorithms assume objects to have connected homogeneous regions.
However in some cases objects are defined by a fuzzy boundary surface and consist of an inhomogeneous
internal structure. In the following a new three-dimensional segmentation technique exploiting the contour
detection capabilities of live-wire is proposed. The algorithm consists of two basic steps. First contours are
outlined by the user on a small number of planar cross-sections through the object using live-wire. Second the
traced contours are used for reconstructing the object surface automatically in each slice using live-wire again.
This user-friendly segmentation algorithm is independent from object topology as the topology is implicitly
defined during the reconstruction process.

Keywords
Segmentation, Live-wire.

1. INTRODUCTION
Segmentation of objects from volumetric data is

an important prerequisite for visualization and still a
hot topic in medical investigations. Bony structures in
medical datasets have rather steady boundaries but
consist of inhomogeneous internal structures. The
boundary may have low gradient areas, which make a
complete segmentation nearly impossible with region
growing. Separating bones from other structures by
thresholding is often not applicable. Due to
overlapping intensity regions other important features
(e.g. contrast enhanced arteries) are affected by this
operation too. Especially in the field of computed
tomography angiography (CTA) the extraction of
bones improves the quality of the results dramatically
[Kan01].

In Section 2 existing segmentation methods are
reviewed. The new method is described in Section 3
and Section 4. The results are presented in Section 5.
Section 6 concludes the work.

2. RELATED WORK
Many segmentation methods have been

developed for specific structures in medical datasets.
Examples for segmenting homogeneous structures are
seeded region growing [Ada94] and the water-shed
algorithm [Beu92]. The manual boundary tracing of
two-dimensional structures is very time consuming.
The following acceleration techniques have been
developed: Snakes is an active contour model
introduced in 1988 by Kass et al. [Kas88]. The model
minimizes an energy function based on internal forces
(contour curvature) and external forces (image data).
Initially the user sketches a contour and the object
boundary is approximated automatically by
minimizing the energy function. Another approach,
known as live-wire [Mor92] or intelligent scissors
[Mor98], was introduced in 1992 by Mortensen et al.
and Udupa et al. [Udu92]. The live-wire process is
interactively steered by the user who can react
immediately to automatically suggested contours. The
contour represents a minimal-cost path between a

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972
WSCG’2004, February 2-6, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

start and an end point. The cost-function is derived
from the underlying image.

A straightforward extension of live-wire to three-
dimensional objects would be to apply the technique
to each volume slice. This requires considerable user
interaction and is rather time-consuming especially as
the number of slices is ever increasing with improved
imaging modalities. One approach for a more
efficient three-dimensional extension is the
application of the algorithm on a subset of slices. The
object boundary is then reconstructed by propagating
the contours through the neighboring slices. This can
be done by shape-based interpolation [Ray90]. The
user traces contours in every n-th slice. Distance
fields are generated from these contours. These
distance fields are interpolated linearly for
intermediate slices and contours are constructed from
the interpolated distance fields. Another approach for
three-dimensional segmentation using live-wire has
been proposed by Falcão et al. [Fal00]. The slices of
the volume to be segmented are separated into slabs,
in which the topology of the object to segment must
not change. In each slab the user defines a set of
cross-sections, which are perpendicular to the slices.
These cross-sections must intersect in a common line.
The user traces the object boundary using live-wire in
each cross-section of each slab. The resulting outlines
of the traced contours are used to reconstruct the
object boundary in each slice. This approach requires
extensive user interaction, which increases
significantly with the complexity of the object to

segment. Separating the slices into slabs in which the
object topology does not change may even result in
dozens of slabs. Another limitation is, that all cross-
sections must have a common intersection line.

The proposed new technique targets these two
limitations: The arrangement of the orthogonal cross-
sections is arbitrary. Furthermore the user is not
required to cope with the object topology, as the
algorithm itself is not limited by topological
constraints.

3. OUR SEGMENTATION METHOD
The basic idea of our technique is a two level

application of live-wire: Initially the user chooses an
object to segment and defines a set of cross-sections
perpendicular to the slices in a way that they intersect
the desired object. The object boundary in each
cross-section is traced using live-wire. In cases where
the cross-section is intersected by another cross-
section, the previously calculated contour contributes
connectivity points for the currently processed
contour (see Figure 1). The set of orthogonal cross-
sections and their contours provide vertical
connectivity information about the desired object.
This information is used to reconstruct the contours
in each slice automatically using live-wire again (see
Figure 2).

Live-Wire
Live-wire is a method for tracing contours in a 2D
gray level image from a fixed starting point to an

Figure 1. The user traces the object boundary of the tooth dataset in each orthogonal cross-section. The

connectivity points are depicted by black dots.

Figure 2. Three-dimensional display of the cross-sections with outlines (left), with the reconstructed

surface (middle) and the reconstructed surface (right).

interactively moveable end point. The contour is
calculated by applying the single-source shortest-path
algorithm on an undirected weighted graph generated
from the image. The graph is generated as follows:
Each pixel is interpreted as a node which is
connected by edges to each of its eight neighboring
nodes (horizontal, vertical and diagonal neighboring
pixels). The weight of each edge depends on the
gradient. Low gradient magnitude means high cost
and high gradient magnitude means low costs.
Additionally scale space zero-crossing information is
included in the weight calculation.

Assumptions
The described method is based on the following

assumptions:

The three-dimensional volume is defined by
three orthogonal axes denoted by x, y and z. Slices
and cross-sections are planar sections through the
volume, which are bounded by the volume borders.
Slices are perpendicular to the z-axis whereas cross-
sections are parallel to the z-axis.

An object is a structure, which the user wants to
segment. An object should not consist of more than
one component. Each object has a boundary surface.
The intersection of the boundary surface with a cross-
section results in a contour on the cross-section. A
traced contour is referred to as an outline. A cross-
section may contain more than one outline. The
outline must not cross itself or other outlines in the
same cross-section. Each outline must be closed (i.e.
being topologically equivalent to a circle). In general
intersecting an outline with a slice produces an even
number of intersection points (outline points).
Tangent points are a special case, which can be
handled easily by counting them twice. The user-
interface ensures that these requirements are fulfilled.
The user is not required to cope with these
requirements.

Segmentation Procedure
The segmentation procedure consists of the

following four steps (see Figure 8, left side):

Set of orthogonal cross-sections is defined. For
segmenting a chosen object, an arbitrary number of
orthogonal cross-sections intersecting the object are
selected. Typically the user will select at least two up
to a dozen representative cross-sections.

The boundary of the desired object is traced.
The user traces the boundary of the object in each
cross-section. Outlines of two different cross-sections
may have points in common. These points are located
on the joint intersection line of the cross-sections.
They are called connectivity points (see Figure 3).
Connectivity points due to previously processed

cross-sections guide the user in tracing the outline in
the current cross-section.

Automatic boundary surface reconstruction.
After the object boundary in all cross-sections has
been outlined, an automatic boundary surface
reconstruction algorithm is done. The algorithm takes
the outlines and the spatial positions of the cross-
sectional planes as input. Successively for each slice
the outlines are computed by connecting the outline-
points in each slice using live-wire in an automatic
fashion. The output of the algorithm is a set of
outlines in each slice. If the result of the algorithm is
not satisfying, cross-sections may be deleted or added
and the process is repeated from step 2. This may
happen in case of an object of high complexity where
it is not always easy for the user to find a
representative set of cross-sections for reconstructing
the object surface. The automatic boundary surface
reconstruction is described in detail in the following
section.

Visualization. From the stack of outlines a
binary mask is generated. For visualization purposes
the binary mask is transformed into a binary dataset.
After a data-smoothing step an iso-surface is
extracted and rendered.

4. AUTOMATIC BOUNDARY
SURFACE RECONSTRUCTION

A detailed description of the automatic boundary
surface reconstruction within each axial slice is
presented in this section. A flow chart of this process
is shown in Figure 8 in the gray box on the right.

Connectivity Graph
For each slice a so-called connectivity graph is

created. This graph is needed to connect the outline
points in a correct order to form a slice outline. To
determine the correct order the graph is traversed
along the edges starting from a randomly selected

Figure 3: Outlines of two cross-sections may
have points in common. These connectivity
points are on the intersection line of the two

cross-sections

vertex. The topology of the graph is determined in the
following way: A slice is intersected by all cross-
sections, which split up the slice into a set of convex
polygons. Then a binary space partition (BSP) tree is
created based on the cross-sections. A cross-section
divides the slice along an intersection line into two
halves, which are split up recursively by further
cross-sections. During the tree creation the
neighborhood information of the resulting polygons is
tracked within the tree. A leaf node represents a
polygon and a branch node an intersection line. For
each polygon the adjacent line fragments, which
belong to its boundary, are stored in a list.

Since an outline in an orthogonal cross-section
created by the live-wire algorithm is closed it
separates the cross-section into disconnected regions,
which can be classified as inside or outside. An axial
slice intersects an orthogonal cross-section in a
horizontal line and also the classified regions.
Therefore this line contains sections also classified as
inside or outside. The first and the last point of each
inside section are taken as outline points. Both points
belong to the outline in the cross-section.

Based on this information and the binary space
partition tree a connectivity graph is build up (see
Figure 4): Each polygon in the axial slice is
represented by a vertex in the connectivity graph. The
outline points described in the previous paragraph are
represented by an edge in the connectivity graph.
This edge describes a possible transition between two
neighboring polygons. In the contour reconstruction
step the computed slice outlines are only permitted to
cross the polygon boundaries at these outline points.

In cases, where an outline runs along an
intersection line several crossings may occur,
generating many connectivity points. The user may
not be able to trace the contour exactly, which results
in a graph containing vertices with an odd number of

edges (see Figure 5). As a valid graph must contain
only vertices with an even number of adjacent edges,
such invalid cases have to be detected: Since an
outline in a cross-section is closed, a unique
classification in an inside and outside area is possible.
An intersection point between two intersection lines

Figure 5. This figure shows a case where an invalid
intersection occurs (left) and its according

connectivity graph (right). Thick lines mean inside.
Two intersecting cross-sections, where an inside

line fragment intersects an outside fragment.

Figure 4. A slice is split into a number of convex polygons by intersecting cross-sections (left) and its
connectivity graph (right). Letters indicate polygons and numbers indicate outline points

Figure 6. According to Figure 5 two different
modifications are possible, depending on the

outline point closer to the intersection point. This
modification turns an invalid case into a valid case.

Point 1 is closer to the invalid intersection point
(left). Point 2 is closer to the intersection point

(right).

is valid if inside intersects inside, or outside intersects
outside otherwise this intersection point is marked as
invalid (see Figure 5).

The process described below is applied until the
graph contains only vertices with an even number of
adjacent edges. Every invalid intersection point,
which was marked in the previous step, is handled in
the following way: The outline point, which is closest
to this intersection point, is chosen. This outline point
is represented by an edge in the connectivity graph.
This edge is changed in a way that it connects the
vertices, which represent the adjacent polygons
across the intersection line (see Figure 6). This
computation step results in a topologically consistent
connectivity graph. This is an essential prerequisite
for the contour reconstruction step.

Contour Reconstruction
The goal of contour reconstruction is to find a set

of closed outlines in each slice. Since the connectivity
graph contains only vertices with an even number of

adjacent edges it is always possible to find these
closed outlines (Euler circuits).

Before the outlines in a slice are reconstructed
using the connectivity graph, the adjacent edges of
each vertex have to be sorted. Since the vertices
represent convex polygons the center point of the
polygon is always inside the polygon. Therefore the

Figure 8: The flow chart of the segmentation process described in section 3 (left side) and 4 (right side).

Figure 7. This figure shows the possible
succeeding edges indicated by arrows pointing

away from W.

edges, which represent outline points located on the
border of the polygon, can be sorted according to the
absolute angle around the center point. Additionally
every edge has a flag, which indicates whether an
edge is used or unused, starting edges are marked as
start. In the following paragraph the connectivity
graph traversal for the slice outline reconstruction is
described.

For the starting point a vertex containing unused
edges is selected randomly. Then an unused edge is
taken and marked as start. The variable V is set to this
vertex (see Figure 7). The succeeding vertex W of a
vertex V is connected by an edge e, which represents
an outline point. As depicted in Figure 7 every
second edge starting from the first edge after edge e
either marked as unused or start is a possible
successor, which is weighted as follows: A live-wire
path is generated from the outline point represented
by e to the outline point represented by each
permissible succeeding edge. The average cost per
pixel along the previously generated live-wire paths
as plausibility metric turned out to generate good
results. The path with the lowest cost per pixel is
taken as successor because a low cost path usually
runs along object boundaries. The cost map used for
the live-wire algorithm is based on the gradient-
magnitude of the density data filtered with a 3x3x3
Gaussian kernel. Before filtering a windowing
function is applied, where values below a given
threshold T0 are mapped to 0, and values above a
given threshold T1, T1 > T0 are mapped to the
maximum possible value. T0 is the minimum gray
value and T1 the maximum gray value of the whole
dataset.

In addition to that, the cost map for the live-wire
algorithm is initialized in a way that the area outside
of the convex polygon, which is represented by the
currently investigated vertex, is weighted with such a

high value so that an outline will hardly ever cross the
polygon boundary. After the succeeding outline point
has been determined, its representing edge is marked
as used. If this edge was marked as start before, then
the current outline is closed and a new outline is
started. Otherwise the variable V is set to the current
vertex W and the algorithm is continued with the
determination of the next successor.

5. RESULTS
This section describes the application of the

method on two datasets: i.e. a tooth (256x256x161,
16 bit per voxel) and legs (512x512x553, 16 bit per
voxel)

The timings are measured on a PC-based
workstation: AMD Athlon 1.2GHz (133MHz external
bus clock) with 768MB PC133 SDRAM. The sample
implementation has been developed using Microsoft
Visual C++ 6.0.

In the implementation the calculation time of the
automatic surface reconstruction algorithm itself was
20 seconds for the tooth dataset, and 300 seconds for
the legs dataset.

As shown in Figure 1 and Figure 2 the tooth can
be segmented satisfactory just using three cross-
sections. Figure 9 demonstrates the high accuracy of
the presented technique in comparison to region
growing and thresholding. Bones have an
inhomogeneous structure especially at the joints. In
this area region growing and thresholding do not
generate useful results.

Binary masks generated from the segmented
objects where used to fade out the bones from the
CTA dataset (see Figure 10). The critical area in
close vicinity to the knee-joint was processed by this

Figure 9. Segmented right leg bones seen from the back applying thresholding at 386 Hu (top), region

growing (middle), the new method (bottom).

new technique with only minor errors.

For the legs dataset the total time for segmenting
the bones (Figure 10) was 24 minutes: 5 minutes for
selecting 14 appropriate cross-sections, 10 minutes
for tracing the contours. The automatic reconstruction
algorithm took 5 minutes. The surface of the resulting
binary mask was smoothed by a 3x3x3 Gaussian
kernel and extracted with marching cubes in 4
minutes.

6. CONCLUSION
The presented method provides a robust way to

segment objects with a rather steady boundary
surface and fuzzy interior. The user interaction effort
is much lower than in previously introduced methods.
A set of representative cross-sections through the
desired object has to be defined. The user does not
need to cope with the object topology. Tracing the
contours using live-wire is straight-forward. The
connectivity points are very helpful to trace the
contour in intersecting cross-sections. The accuracy
of the reconstruction heavily depends on the live-wire
and its cost function but not on the surface
reconstruction algorithm itself. This algorithm can
also be used with other contour models.

7. ACKNOWLEDGMENTS

The work presented in this publication has been
funded by the ADAPT project (FFF-804544).

 ADAPT is supported by Tiani Medgraph
(http://www.tiani.com), and the Forschungs-
förderungsfonds für die gewerbliche Wirtschaft,
Austria.

See http://www.cg.tuwien.ac.at/research/vis/adapt for
further information on this project.

8. REFERENCES
[Ada94] Adams. R., Bischof, L.: Seeded Region

Growing. IEEE Transactions on Image
processing, Vol. 16, No. 6, (1994) 641-647

 [Beu92] Beucher, S., Meyer, F.: The morphological
approach of segmentation: the watershed
transformation. Mathematical Morphology in
Image Processing, Chapter 12 (1992).

[Fal00] Falcão, A.X., Udupa, J.K.: A 3D
generalization of user-steered Live-Wire
segmentation. Medical Image Analysis, Vol. 4
(2000) 389-402

 Figure 10. Coronal MIP of a CTA dataset. The mask for removing the bones was generated by
thresholding (top), region growing (middle), the new method (bottom).

 [Kan01] Kanitsar, A., Wegenkittl, R., Felkel, P.,
Fleischmann, D., Sandner, D., Gröller, E.:
Peripheral Vessel Investigation for Routine
Clinical Use. Proceedings of IEEE Visualization
(2001) 91-98

 [Kas88] Kass, M., Witkin, A., Terzopoulos, D.:
Snakes: Active Contour Models. International
Journal of Computer Vision Vol. 4 (1988) 321-
331

 [Mor92] Mortensen, E.N., Morse, B.S., Barrett,
W.A., Udupa, J.K.: Adaptive Boundary
Detection Using Live-Wire Two-Dimensional
Dynamic Programming. IEEE Computers in
Cardiology (1992) 635-638

[Mor98] Mortensen, E.N., Barrett, W.A.: Interactive
Segmentation with Intelligent Scissors.
Graphical Models and Image Processing, Vol.
60, No. 5 (1998) 349-384

[Ray90] Raya, S.P., Udupa, J.K.: Shape-based
interpolation of multidimensional objects. IEEE
Transactions on Medical Imaging, Vol. 9 (1990)
32-42

 [Udu92] Udupa, J.K., Samarasekera, S., Barrett,
W.A.: Boundary Detection via Dynamic
Programming. Visualization in Biomedical
Computing (1992) 33-39

