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ABSTRACT 

Inverse rendering infers realistic descriptions of illumination and material properties from photographs. However, 
the applicability of state of the art inverse rendering algorithms in real world scenarios is currently limited by the 
many assumptions made, eg. controlled or simple illumination. In this paper we concentrate on estimating pol-
ished materials and describe an inverse rendering system that works under constant complex uncontrolled distant 
illumination. In particular, we develop an analytical dual angular frequency space shading model for polished 
materials. We use this shading model in algorithms for estimating homogeneous materials, textures, illumination 
and both homogeneous materials and illumination simultaneously to the correct scale. We verify the algorithms 
experimentally in two indoor spectrally different real world scenarios. Furthermore, some of the practical chal-
lenges and problems inherent to inverse rendering under complex uncontrolled illumination are discussed. 
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1. INTRODUCTION 
Synthesizing images indistinguishable from photo- 
graphs and realistically mixing computer generated 
and real world imagery has found application in many 
areas such as movies, entertainment and architectural 
design. However, it requires highly detailed and real-
istic input descriptions of materials and illumination.  

Inverse rendering employs (semi-) automatic algo-
rithms to measure real world material properties and 
illumination directly from photographs, thereby ena-
bling these parameters to be changed independently. 
Using real world measurements of such data as input 
to physically based rendering algorithms adds further 
realism to computer generated images. 

There has been a lot of research in the field of inverse 
rendering and many have reported impressive results. 
However, the applicability of the approaches in gen-

eral real world situations are limited, as they most 
often require point source illumination 
[1][2][7][10][19][24][26] or that the illumination can 
be parameterized in some way [8][17][25]. Thus ex-
periments are most frequently conducted in labora-
tory or outdoor clear sky environments. 

Recently Ramamoorthi and Hanrahan[13] developed 
a general signal processing framework for inverse 
rendering. They reported very promising algorithms 
towards solving the inverse rendering problem under 
arbitrary complex illumination for materials that can 
be described by the Torrance-Sparrow microfacet 
BRDF (Bidirectional Reflectance Distribution Func-
tion) model [23]. However, their algorithms are only 
designed for and tested under carefully constructed 
semi-complex illumination, see figure 1. As we will 
argue later, applying their algorithms under constant 
complex uncontrolled illumination requires additional 
work. 

In this paper, we address inverse rendering under 
constant complex uncontrolled distant illumination, 
thus eliminating the assumption of simple or con-
trolled illumination explicitly or implicitly made by 
other algorithms. We do not consider extending the 
algorithms suggested by Ramamoorthi and Hanrahan 
for the Torrance-Sparrow microfacet BRDF to work 
under more general illumination conditions.  
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Figure 1 The image to the left shows the carefully constructed semi-complex illumination used by Rama-

moorthi and Hanrahan[12]. The two other images show the uncontrolled complex illumination used by us.

Instead we focus on polished materials that consist of 
a diffuse and a perfectly reflecting specular contribu-
tion. Many materials in the real world adhere to this 
type, e.g. plastics, polished marble or wood, building 
facades etc.  

We use the parametric coupled BRDF model intro-
duced by Shirley et al.[21] that consists of a non-
lambertian diffuse term and a perfectly reflecting 
specular term modulated by Schlick's approximation 
to the Fresnel reflectance[20]. The model couples the 
diffuse and the specular terms in order to ensure en-
ergy conservation. Using the spherical harmonics 
orthonormal system [5][6][9] we derive an analytical 
dual angular frequency space shading model for pol-
ished materials, analogous to the derivations carried 
out by Ramamoorthi and Hanrahan[13][15][16] for 
other types of materials, and use it to quickly predict 
the reflected light field during material estimation. 
Our inverse rendering algorithms are similar to those 
of Ramamoorthi and Hanrahan tailored for the shad-
ing model for polished materials. Furthermore, we 
test the algorithms under constant complex uncon-
trolled illumination in two indoor spectrally different 
real world scenarios exhibiting complex illumination 
patterns. The illumination in these scenarios can be 
seen in figure 1. In particular we demonstrate recov-
ering homogeneous BRDFs, textures, illumination 
and both homogeneous BRDFs and illumination si-
multaneously to the correct scale. All test scenes con-
sist of a single sphere thus allowing us to ignore 
shadowing and inter-reflections. 

The main contributions of this paper are 

• Derivation of an analytical dual angular frequency 
space shading model for polished materials. 

• Application of inverse rendering algorithms to 
objects with polished materials under constant 
complex uncontrolled illumination conditions. To 
our knowledge this has not previously been suc-
cessfully demonstrated. 

In addition we verify that multispectral inverse ren-
dering must be employed in order to successfully 
render recovered materials under spectrally different 

illumination, and that recovery under white light pro-
duces the best results. We also describe our test setup 
in detail and identify and discuss a number of prob-
lems inherent to inverse rendering under general il-
lumination conditions. 

2. PREVIOUS WORK 
Many algorithms are designed for point source illu-
mination in a laboratory environment as this simpli-
fies BRDF measurements. Ward[24] and Marschner 
et al.[10] both use a single point light source and 
measure BRDFs of homogeneous opaque surfaces in 
a laboratory. Sato et al.[19] also estimate textures. 
Lensch et al.[7] measure spatially varying BRDFs of  
complex objects and  Debevec et al.[2] recover the 
reflectance field of a human face. Typically the above 
methods produce very convincing results for a wide 
range of materials, but require a fairly large number 
of input images and only work in laboratory settings. 
Thus they are not applicable in real world scenarios. 

The method of Yu et al. [26] demonstrates estimation 
of parametric BRDFs and diffuse textures. Contrary 
to the methods above it can handle inter-reflections, 
but still it requires that the only direct illumination 
stems from a number of point light sources. Boivin et 
al.[1] propose a method to estimate parametric 
BRDFs and texture from a single image and known 
point source illumination. It can account for global 
illumination effects but is not capable of accurately 
recovering textured specular surfaces.  

Some existing methods work outside of a laboratory 
which means that they must account for an increase in 
the complexity of the illumination, however, restric-
tions are still imposed. 

Yu and Malik[25] recover albedo maps and BRDFs 
of a building. However, their algorithm is specifically 
tailored for a single isolated building, cannot handle 
highly specular surfaces and depends on the accuracy 
of the parametric sky radiance model used. Similarly 
Sato et al.[17] and Love[8] estimate BRDFs under 
clear sky illumination by assuming a parametric 
model of sky and sun radiance.  Gibson et al.[4] try to 
overcome constraints of previous algorithms by al-



lowing incomplete descriptions of the illumination. 
However, ambiguities are introduced. Sato et al.[18] 
demonstrate recovering both a coarse discretization 
of the incoming complex illumination and the BRDF 
of planar surfaces, but still require shadows to be 
present.  Nishino et al.[12] estimate spatially varying 
reflectance parameters and the illumination distribu-
tion from a small shiny object. However, the com-
plexity of the illumination used for testing is limited.  

Ramamoorthi and Hanrahan[13] deal with complex 
illumination, and their practical algorithms give very 
impressive results. However, the algorithms are only 
tested in a highly controlled environment under care-
fully constructed semi-complex illumination.  

3. SHADING MODEL FOR POLISHED 

MATERIALS 
When rendering a scene, the reflection equation must 
be evaluated at least at every visible surface point in 
order to determine the color of each pixel in the im-
age. Inverse rendering takes as input one or several 
images and attempts to invert the reflection equation 
to recover the (possibly spatially varying) BRDF 
and/or the illumination. In this paper we perform this 
inversion numerically which requires us to evaluate 
the reflection equation a large number of times to 
predict the reflected light field based on the evolving 
estimates of the BRDF and the illumination. In order 
to make inverse rendering feasible for polished mate-
rials, we derive an analytical dual angular frequency 
space shading model from the coupled BRDF 
model[21] and the reflection equation. By represent-
ing part of the integral in frequency space wrt. the 
spherical harmonics orthonormal system[5][6][9], 
this shading model allows for quick evaluation and in 
fact reduces the evaluation time by several orders of 
magnitude compared to brute force integration in the 
angular domain, see eg.[14]. The derivations are not 
trivial, but are far too long to be presented in detail 
here. The full derivations can be found in [11]. 

We allow complex uncontrolled illumination, but 
require it to be distant and remain constant during 
data acquisition. Furthermore we assume that the 
scene consists of a single, stationary and convex ob-
ject which allows us to ignore shadowing and inter-
reflections. The above implies that the incoming il-
lumination can be represented in 2D, eg. as an envi-
ronment map, and that the reflected light field at a 
surface point depends only on the material, surface 
normal and the viewing direction. 

The coupled model[21] for polished materials con-
sists of a non-lambertian diffuse term coupled with a 
perfectly reflecting specular term multiplied by 
Schlick’s approximation[20] to the Fresnel reflec-
tance. A detailed analysis[11] shows that the specular 
term contains arbitrarily high frequencies and is best 

represented in angular space. It can also be shown 
analytically[11] that the spherical harmonics coeffi-
cients of the coupled diffuse term tend to zero as the 
order increases and that 99.73% of total energy of the 
diffuse term is in fact concentrated in the 25 first 
terms of  its spherical harmonic expansion, corre-
sponding to truncation to order l=4.  

In the formula below we make use of spherical coor-
dinates. Coordinates in the local tangent frame of a 
surface point are primed and global coordinates are 
unprimed. 

The shading model for polished materials based on 
the coupled BRDF model becomes 
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Equation 1 

Where 
oL  is the outgoing illumination, 

iL  is the  

incoming illumination, ),( oo φθ  is the outgo-

ing/viewing direction, ),( rr φθ  is the viewing direc-

tion reflected about the surface normal, ]1;0[0 ∈R  is 

the specular reflectance coefficient at normal inci-

dence, ]1;0[∈dR is the diffuse reflectance coefficient 

and ))1(20/(21 0Rk −= π  is a constant. In our prac-

tical experiments we use a different
dR but the same 

0R for each of the red, green and blue color compo-

nents, corresponding to a dielectric. 
lmL is the (l,m)’th 

spherical harmonic coefficient[9] of the 2D incoming 
illumination and is easily precomputed if the illumi-

nation is known[11]. ),( βαlmY is the (l,m)’th spheri-

cal harmonic[9] and ),( βα  is the surface normal. 

Finally, 
lh is given by an analytical expression which 

can be found in [11]. The numerical values for orders 

of l from 0 to 4 are given in table 1. 

l lh  

0 0.8440 

1 1.0051 

2 0.5308 

3 0.0326 

4 -0.1271 

In our practical inverse rendering algorithms de-
scribed later, we use the shading model presented 
here and derived in detail in [11]. 

Table 1 Numerical values of hl. 



4. EXPERIMENTAL SETUPS 
We have tested our algorithms in two spectrally dif-
ferent scenarios. In both scenarios, the scene consists 
of a single sphere. We have estimated the materials of 
three different spheres in each of the two scenarios. 
These spheres, one textured and two homogeneous, 
are shown in Figure 2. 

 

Figure 2 The three test spheres 

We have chosen two indoor scenarios, as this allows 
us to take the pictures under truly complex and un-
controlled yet constant illumination. In the first sce-
nario we have placed the sphere in the middle of a 
large office. The complexity of the lighting however 
remains high as we have direct light coming from 
more than 20 lights in the ceiling and indirect light 
reflected off of both specular and diffuse surfaces. 
This scenario, which we will refer to as the office 

scenario, is depicted in Figure 3 left. 

  

Figure 3 Test setup for the two scenarios 

In the second scenario, we have moved the setup into 
a blue-painted room. Switching on several projectors, 
including one with a red filter attached, we again 
have a complex illumination setup including direct 
white and red light from the projectors and indirect, 
mostly blue, light from the walls. This scenario, re-
ferred to as the blue room scenario, is depicted in 
Figure 3 right.  

All imagery is acquired with an off-the-shelf Nikon 
Coolpix 990 digital camera mounted on a tripod. The 
camera is calibrated beforehand such that the camera 
intrinsics are known. To estimate the material of a 
given sphere we acquire photographs from a number 
of viewpoints. For the textured sphere, we took pic-
tures from four different viewpoints spaced 90 de-
grees apart, whereas for the two homogeneous 
spheres, we only took pictures from three different 
viewpoints spaced 120 degrees apart. From each 
viewpoint we take 10 pictures. The first picture is 
always taken with a checker board pattern visible 
which is used for camera registration, see Figure 4, 
using techniques similar to those of Simon et al.[22]. 
In the remaining nine pictures the checker board pat-

tern is hidden by two pieces of black cardboard to 
minimize the amount of non-distant illumination. The 
nine pictures are acquired with different shutter 
speeds and assembled into an HDR image. 

  

Figure 4 Test setup with and without calibration 

pattern visible 

For the algorithms where the incoming illumination 
must be known, we acquire photographs of a mir-
rored sphere from three viewpoints and assemble 
these into a light probe image[3]. Contrary to the 
approach by Debevec, we cannot in this setup make 
the assumption that all imagery is acquired with a 
near-orthographic camera. Therefore we have devel-
oped a new algorithm that does not make this ap-
proximation[11]. The omni directional light probe 
images recovered in the two scenarios are shown in 
Figure 1. Finally the size and position of the sphere is 
found by intersecting the cones defined by the camera 
positions and the conic section that the sphere maps 
to in each of the images. 

5. ESTIMATING MATERIALS 
We will now show how the presented theory can be 
used to construct practical inverse rendering algo-
rithms. The algorithms presented here and in sections 
6 and 7 are all similar to the algorithms of Rama-
moorthi and Hanrahan[13], except that they are 
adapted to the shading model for polished materials 
as described. 

The inputs to our algorithms are a geometrical model, 
i.e. the position and radius of the sphere, a number of 
HDR images for which the intrinsic and extrinsic 
camera parameters are known and, in the algorithms 
where the incoming illumination is assumed known, 
an omni directional environment map is also given.  

In order to estimate materials and illumination, we 
need to generate a number of samples for which the 
surface normal, viewing direction and observed RGB 
radiance is known. These samples are subsequently 
used in the estimation process. For homogeneous 
polished materials the samples are either points dis-
tributed uniformly on the sphere and then projected 
into each HDR image, or taken as each pixel in a 
number of HDR images that back-project to the 
sphere. For textured materials samples are generated 
over the sphere geometry according to the texture 
parameterization and projected into each HDR image. 
We use a parameterization by spherical coordinates. 



Estimating Homogeneous Materials 
Recall the shading model for polished materials from 
Equation 1. For notational convenience in the algo-
rithm to be explained we will rewrite it as  

),,,()(),(),(),( '
00
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For each sample extracted, we can set up an equation 
of this form where the unknowns are the specular 
reflectance at normal incidence, R0, and the diffuse 
reflectance parameter, Rd.  

The algorithm is based on the observation that the 
equation above is nonlinear only in the R0 parameter. 
Given R0, the equation simplifies to the linear prob-
lem of estimating Rd. In practice our measurements 
are influenced by noise and the parametric BRDF 
model does not describe the surface material per-
fectly hence we use a larger number of samples and 
solve the resulting system of nonlinear equations in a 
least squares manner (For our tests, we used the Mat-
lab function lsqlin  and lsqnonlin for solving linear 
and nonlinear systems of equations). 

The algorithm is based upon nested procedures. In 
the outer procedure a nonlinear least squares method 
is used to estimate the parameter R0, which is then 
passed on to the inner procedure. Given R0, the inner 
procedure then finds the estimate for Rd, constrained 
to lie in the interval [0;1], as described above. A re-
sidual, computed from the difference between the 
observed radiance and the radiance predicted using 
the estimated parameters, is returned to guide the 
search for the optimal R0.  

Estimating Textured Materials 
Extending the algorithm for homogeneous polished 
materials described above to estimate a diffuse tex-
ture is done by allowing Rd to vary with surface posi-
tion. Only the inner procedure that solves the linear 
problem of determining the diffuse texture requires a 
few additions. 

The new inner procedure iterates over all samples 
with the same texture coordinate, for each possible 
texture coordinate. For each texel, the diffuse reflec-
tance parameter is found as the clamped weighted 
average of all the diffuse reflectance parameters pre-
dicted by the samples with that particular texture co-
ordinate, clamped to lie in the interval [0;1]. The 
weights of the samples are computed as the ratio of 
the diffuse component to the specular component. 
Furthermore, larger weights are given to samples that 
observe the surface close to the normal direction, as 
the foreshortening is minimal in this configuration 
and the sample thus corresponds to a smaller surface 
area and is less influenced by noise. This weighting 
scheme favors well lit (large diffuse component) 
samples with small specular components observed 

from angles close to the normal direction. For poorly 
lit samples and samples with a large specular compo-
nent, the relative noise in the measurement grows and 
completely obliterates the diffuse component. It is 
therefore not possible to estimate the diffuse reflec-
tance parameter reliably from such samples, which is 
the motivation for using this weighting scheme.   

Results 
Table 2 shows the BRDF parameters recovered using 
the algorithms described above. The diffuse textures 
recovered from the textured sphere in the two scenar-
ios are shown in Figure 5.  The spheres were not ori-
ented identically in the two test scenarios and the 
texture recovered in the office scenario has been 
warped to obtain the same orientation as the other 
texture. Note that parts of the texture could not be 
estimated either because they were not visible at all 
(different parts for the two scenarios) or they were 
covered by a specular highlight, making the diffuse 
contribution too small to be estimated correctly. 

  

Figure 5 Diffuse textures recovered from the tex-

tured sphere. a) Blue room scenario b) Office sce-

nario. 

To evaluate the results, we have rendered a set of 
spheres with the estimated materials, lit by the illumi-
nation recovered using a light probe. These rendered 
images along with the photographs of the real spheres 
from the same viewpoints are shown in Figure 6. The 
real images are shown in the top row and were not 
used as part of the estimation process. This shows 
that the estimated materials can be used to success-
fully predict the appearance of the spheres from novel 
viewpoints. 

Scenario Rd,red Rd.green Rd,blue R0 

Red sphere, office 0,9765 0.0186 0.0000 0.0452 

Red sphere, blue 
room 

1.0000 0.1593 0.0121 0.0463 

White sphere, 
office 

0.6242 0.6210 0.4083 0.0385 

Textured sphere, 
office 

- - - 0.0504 

Textured sphere, 
blue room 

- - - 0.0480 

Table 2 Recovered parameters of the BRDF for 

polished materials 

One of the important benefits of inverse rendering is 
the ability to use recovered materials in novel illumi-



nation. To see how well the recovered materials 
transfer to a spectrally different illumination setup, 
we have rendered the spheres using the illumination 
from the scenario different from the one in which the 
materials were estimated. These images are shown in 
Figure 7. 

As pointed out by Yu and Malik[25], limitations of 
the RGB color model only enable the recovery of a 
wavelength dependent pseudo BRDF (contrary to the 
true BRDF) from RGB photographs. This results in 
the color aberrations in the first (red sphere) and 
fourth (textured sphere) image from the left in figure 
7. Parameters recovered in the office under white 
light more successfully predict the appearance of the 
spheres under spectrally different novel illumination.  

Figure 6 The top row shows original photographs 

not used in material estimation. The bottom row 

shows renderings using recovered materials from 

novel viewpoints in original illumination 

One obvious problem with the images in Figure 6 and 
Figure 7 is the “halo” at the objects’ edges. This is 
partly due to the coupled BDRF model’s approxima-
tion to the Fresnel reflectance. However, note that the 
black background enhances this, as the color at the 
edges is (and should be) equal to the color of the 
background. This is because the object reflects light 
perfectly at the edges due to the Fresnel factor. The 
slightly blurred highlights near the edges of the ob-
jects are probably due to the low resolution of the 
environment map used in the rendering (we do not 
use spherical harmonics for rendering but instead a 
Monte-Carlo raytracer).  Furthermore the material of 
the textured sphere cannot be described perfectly by 
the coupled BRDF model which eg. results in the 
dark diffuse component appearing too bright. 

     

     

Figure 7 Top row shows original photographs. 

Bottom row shows renderings of estimated mate-

rials in novel illumination 

6. ESTIMATING ILLUMINATION 
We now consider recovering the illumination from an 
object of an arbitrary, known polished material. This 
is a problem of great importance for future practical 
applications. Explicitly capturing the illumination is 
unpractical and hard in most real world situations. 
Recovering it from observations of real world objects 
already present is much more convenient.  

Algorithm 
The algorithm first determines a low frequency repre-
sentation of the illumination in frequency space, then 
use this to determine the diffuse contribution of the 
reflected light field and finally subtract the diffuse 
contribution from the observed reflected light field to 
determine a high resolution angular space version of 
the illumination. With this approach, estimating the 
spherical harmonic coefficients of the low frequency 
part of the illumination from the reflected light field 
amounts to solving a system of 25 linear equations in 
25 unknowns for each color channel. The derivation 
of this system of equations is similar to that of 
Ramamoorthi and Hanrahan [13][16] and we will not 
present them here.  

Results 
We have used the above algorithm to estimate the 
illumination from pictures of the red and the white 
spheres. However, as the known material properties 
used as input to this algorithm are estimated as de-
scribed in the previous section, any errors in those 
estimates propagate to these tests. We therefore also 
tested the algorithm on images of the red sphere ren-
dered using a standard Monte-Carlo ray tracer. Figure 
8 shows the recovered illumination. The HDR image 
generation process introduced visible banding arti-
facts, especially pronounced in the images of the 
white sphere (see Figure 6), not present in the origi-
nal photographs. These artifacts are the main reason 
for the visible bands in the recovered illumination. 
The recovered illumination for the red rendered 
sphere is closer to the one recovered using the mir-
rored sphere. The noise present stems from the 
Monte-Carlo raytracer used to render the input pic-
tures. 

  

  

Figure 8 Recovered illumination. Top left: Light 

probe. Top right White sphere. Bottom left: Red 

Sphere. Bottom right: Red rendered sphere 

     

     



7. ESTIMATING ILLUMINATION 

AND BRDF SIMULTANEOUSLY 
Ramamoorthi and Hanrahan[13] demonstrated recov-
ering the BRDF and illumination up to a scale from a 
simplified Torrance-Sparrow micro-facet BRDF. A 
consequence of estimating polished materials using 
the coupled BRDF model is that the BRDF and illu-
mination can be recovered simultaneously up to the 
correct scale as the BRDF model does not allow a 
linear scale.  

Algorithm 
The algorithm consists of nested procedures. In the 
outer procedure a nonlinear least squares method 
optimizes the parameters of the BRDF. In the inner 
procedure the illumination is first estimated based on 
the current BRDF parameters using the algorithm 
described in the previous section. Next, the reflected 
light field predicted by the BRDF parameters and the 
illumination is computed. The residual between the 
predicted and observed reflected light field is then 
computed and returned to the nonlinear least squares 
solver to guide the search for the optimal BRDF pa-
rameters. 

Results 
We have evaluated the algorithm on the red sphere. 
The original photographs and the renderings are 
shown in Figure 9 and the numerical values of the 
BRDF parameters are displayed in Table 3. 

Scenario Rd,red Rd,green Rd,blue R0 

Red sphere, 
known illu-
mination 

0.9765 0.0186 0.0000 0.0452 

Red sphere, 
unknown 
illumination 

0.9763 0.0414 0.0244 0.0452 

Table 3 The recovered BRDF parameters for the 

red sphere with known and unknown illumination 

  

  

Figure 9 Images in the top row are original photo-

graphs. Images in the bottom are rendered using 

materials and illumination recovered simultane-

ously 

 The numerical values are quite close to the parame-
ters found under known illumination, apart from 
slightly higher green and blue diffuse reflectance pa-
rameters. The synthetic images in the bottom row in 
Figure 9 are rendered using the BRDF parameters 

and illumination recovered simultaneously. The re-
covered illumination suffers from the same artifacts 
as the illumination recovered with known BRDF pa-
rameters. 

8. DISCUSSION AND FUTURE WORK 
Ramamoorthi and Hanrahan[13] introduced a general 
theoretical framework for analyzing inverse rendering 
problems in frequency space under arbitrary illumina-
tion. However, their practical algorithms are specifi-
cally designed for and tested only under carefully 
constructed semi-complex illumination which can 
easily be separated into low and high frequencies as 
required by their algorithms. As can be seen from 
Figure 1, a separation is easy as the illumnation con-
sists of area light sources that contain only low fre-
quencies and high frequency point light sources. Fur-
thermore, none of the area and point light sources 
overlap.  It is not considered how to separate eg. an 
illumination environment consisting of an area light 
source with high frequency edges or more general 
illumination conditions such as the ones used by us 
and depicted in figure 1.  An alternative to separating 
the illumination would be to treat every pixel in the 
environment map as a point light source, but this 
would require efficient integration schemes to be in-
vestigated in order to make the algorithms practically 
feasible. For these reasons the algorithms of Rama-
moorthi and Hanrahan are not applicable under com-
plex uncontrolled illumination. Thus comparison of 
our results to an extended version of their algorithms 
is left as future work. 

In inverse rendering it is crucial that the chosen 
BRDF model can successfully describe the materials 
being estimated. Our experiments show that although 
the BRDF model we have chosen fits the material of 
the three spheres quite well, it is not good enough. 
This is partially due to the fact that the spheres have 
local anisotropic features and do not exhibit perfectly 
specular reflection. It is an interesting question 
whether parametric BRDF models are at all sufficient 
to capture the realistic behaviour of real world mate-
rials convincingly enough. 

As we have seen in this paper, applying inverse ren-
dering under complex uncontrolled illumination 
means that parts of the surface can be both under- and 
over-exposed in all input photographs, and for such 
parts it is difficult to reliably estimate local character-
istics such as textures. 

Future work will need to consider non-constant illu-
mination such as that occuring in realistic outdoor 
scenarios and this issue can in fact severely limit the 
practical applicability of inverse rendering. Further-
more it is not obvious how to acquire sufficient input 
data in order to reduce ambiguities and still keeping 



the amount of input data required within a practically 
feasible limit. 

As we saw in section 5, limitations in using inverse 
rendering with RGB input photographs only allow us 
to recover the pseudo-BRDF[25]. To overcome this 
problem, a multispectral BRDF model needs to be 
used. The algorithms presented here need to be made 
more robust to errors in the input data such as misreg-
istration with respect to the geometric models and the 
illumination. Extending the algorithms to be able to 
handle non-distant illumination, inter-reflections, 
shadowing, non-convex objects and a broader class of 
materials will also improve on this aspect. 

9. CONCLUSIONS 
In this paper we have applied inverse rendering under 
constant complex uncontrolled illumination which to 
our knowledge has not previously been successfully 
demonstrated. In particular, we have developed an 
analytical dual angular frequency space shading 
model for polished materials. We have presented 
algorithms based on this shading model for estimat-
ing polished materials and evaluated them in two 
spectrally different real world scenarios exhibiting 
complex illumination patterns. Furthermore we have 
identified and discussed some of the problems inher-
ent to inverse rendering, particularly under complex 
uncontrolled illumination. 

10. ACKNOWLEDGMENTS 
This work has been partially funded by the EU IST 
project WorkSPACE [www.daimi.au.dk/workspace/] 
We would like to thank professor Kaj Grønbak and 
Peter Ørbæk for a lot of indispensable help through-
out this entire project. In addition we thank Lars Bo 
Kristensen, Jørgen Lindskov Knudsen, Ole Østerby, 
Michael Christensen, Niels Olof Bouvin and Chris-
tina Nielsen for helping out where ever needed. 

11. REFERENCES 
[1] Boivin, S. and Gagalowicz, A. Image-based rendering 

of diffuse, specular and glossy surfaces from a single 
image. SIGGRAPH 2001. 

[2] Debevec, P. et al. Acquiring the reflectance field of a 
human face. SIGGGRAPH 2000. 

[3] Debevec, P. Rendering synthetic objects into real 
scenes: Bridging traditional and image-based graphics 
with global illumination and high dynamic range pho-
tography. SIGGRAPH 98. 

[4] Gibson, S. et al. Flexible image-based photometric 
reconstruction using virtual light sources. Computer 
Graphics Forum, (3):203-214, 2001. ISSN 1067-
7055. 3 

[5] Hobson, E.W.  The theory of spherical and ellipsoi-
dalharmonics. Cambridge University Press, 1955.  

[6] Inui, T., Tanabe, Y., and Onodera, Y.. Group theory 
and its applications in physics. Springer Verlag, 1990. 

[7] Lensch, H. et al. Image-Based reconstruction of spa-
tially varying materials. Rendering Techniques 2001.  

[8] Love, R.C.. Surface Reflection Model Estimation 
from Naturally Illuminated Image Sequences. PhD 
thesis, Leeds, 1997. 

[9] Mathworld, www.mathworld.com 
[10] Marschner, S.R., Westin, S.H., Lafortune, E.P.F., 

Torrance, K.E., Greenberg, D.P. Image-based brdf 
measurement including human skin. Eurographics 
Rendering Workshop 1999. 

[11] Nielsen, M.B. and Brodersen, A. Inverse rendering 
under uncontrolled illumination. Master's thesis, Uni-
versity of Aarhus, Denmark, 2002. 
http://www.daimi.au.dk/~bang/masters_thesis. 

[12] Nishino, K., Zhang, Z. and Ikeuchi K. Determining 
Reflectance Parameters and Illumination Distribution 
from a Sparse Set of Images for View-dependent Im-
age Synthesis. IEEE ICCV ’01. 

[13] Ramamoorthi, R. and Hanrahan, P. A signalprocess-
ing framework for inverse rendering. SIGGRAPH 
2001. 

[14] Ramamoorthi, R. and Hanrahan, P. An Efficient Rep-
resentation for Irradiance Environment Maps. SIG-
GRAPH 2001. 

[15] Ramamoorthi, R. and Hanrahan, P. On the relation-
ship between radiance and irradiance: determining the 
illumination from images of a convex lambertian ob-
ject. Journal of the Optical Society of America, 2001. 

[16] Ramamoorthi, R. Practical algorithms for inverse 
rendering under complex illumination. SIGGRAPH 
2002 Course Notes. Course "Acquiring Material 
Models using Inverse Rendering". 

[17] Sato Y. and Ikeuchi K. Reflectance analysis under 
solar illumination. Technical Report CMU-CS-94-
221, CMU, 1994.  

[18] Sato, I., Sato, Y. and Ikeuchi, K. Illumination distri-
bution from brightness in shadows: adaptive estima-
tion of illumination distribution with unknown 
re_ectance properties in shadow regions. IEEE 
ICCV'99. 

[19] Sato, Y., Wheeler, M.D. and Ikeuchi, K. Object shape 
and reflectance modeling from observation. SIG-
GRAPH 97. 

[20] Schlick, C. A customizable re-ectance model for eve-
ryday rendering. Eurographics1993.  

[21] Shirley, P., Hu, H., Smits, B., and Lafortune, E. A 
practitioners' assessment of light reflection models, 
1997. Pacific Graphics '97.  

[22] Simon, G., Fitzgibbon, A.W. and Zisserman, A. 
Markerless Tracking using Planar Structures in the 
Scene. In Proc. International Symposium on Aug-
mented Reality, October 2000.  

[23] Torrance, K.E. and Sparrow, E.M.. Theory for off-
specular reflection from roughened surfaces. In JOSA, 
volume 57(9), pages 1105-1114, 1967. 

[24] Ward Larson , Gregory J. Measuring and modeling 
anisotropic reflection. SIGGRAPH 92.  

[25] Yu, Y. and Malik, J. Recovering photometric proper-
ties of architectural scenes from photographs. SIG-
GRAPH 98. 

[26] Yu, Y., Debevec, P., Malik, J. and Hawkins, T. In-
verse global illumination: Recovering reflectance 
models of real scenes from photographs. SIGGRAPH 
99


