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ABSTRACT

We present a real-time algorithm for rendering volumetric 3D Magic Lenses™ having arbitrary convex shapes.

During fragment processing the algorithm performs a second depth test using a shadow map. Exploiting the

second depth test we are able to classify each fragment, with respect to its position relative to the lens volume.

Using this classification we first render the geometry behind the lens volume, then the geometry intersecting the

lens volume using a different visual appearance and finally the parts in front of the lens volume. Regardless of

the shape of the lens volume just two additional rendering passes are needed. Furthermore there are no limita-

tions to the choice of visual appearance used to enhance expressiveness of the virtual world. We will describe

theoretical and practical aspects of the algorithm and our implementation, which is accelerated by current

graphics hardware.
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1. INTRODUCTION
User centered exploration of 3D environments be-

comes more and more important with the advancing

development of 3D graphics processing units (GPU).

Due to the availability of current graphics hardware

at low prices, such hardware is now widely installed

in desktop computers giving more and more users

access to 3D graphics applications. Therefore user

centered visualization techniques are needed, which

can be implemented on off-the-shelf graphics hard-

ware.

The magic lens metaphor has been proved to be a

powerful tool for exploring the virtual world [Sto02].

But up to now mostly the 2D through-the-lens meta-

phor is used to explore and manipulate 2D datasets in

2D graphics applications, because no technique is

known which is capable of rendering arbitrary volu-

metric magic lenses in real-time (i.e. with interactive

frame rates). In this paper we present an algorithm

for rendering volumetric magic lenses having arbi-

trary convex shapes, taking advantage of the features

provided by off-the-shelf graphics hardware. Our

algorithm is a multipass-rendering algorithm which

performs a second depth test using a shadow map.

The algorithm needs only two additional rendering

passes and can therefore be used easily in existing 3D

graphics applications.

Most of the concepts developed for 2D magic lenses

can be applied to our representation of a volumetric

magic lens. Integrating our approach into a high-level

rendering toolkit gives the application programmer

the ability to modify the visualization as well as the

interaction techniques associated with parts of a 3D

scene, and hence allows the end user to change the

region of interest interactively. Therefore we believe

that applying the magic lens metaphor in 3D im-

proves usability while exploring a virtual world.

In our approach the magic lens, which is visually

represented by an arbitrary convex glass volume, can

be positioned and resized interactively to change the

region of interest. This region is visually emphasized

by the filter functionality of the lens which can be

altered interactively as well. New lenses with new

filter functionality can be derived from existing sam-

ple implementations.

The idea of applying the magic lens metaphor to

virtual environments has been proposed before

([Cig94], [Vie96]), but existing approaches lack
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performance and flexibility regarding the shape of

the lens. Our algorithm has the following advantages

over currently known techniques:

 capability of rendering magic lenses having

arbitrary convex shapes,

 the implementation of our algorithm is hardware-

accelerated and therefore permits interactive frame

rates while rendering arbitrary 3D scenes,

 it can be easily extended to support rendering of

more then one magic lens per scene and

 due to its simple structure, the algorithm can be

easily embedded in existing graphics applications

and toolkits.

This paper proceeds in discussing related works in

Section 2. Section 3 introduces the basic idea under-

lying the algorithm. Section 4 describes our imple-

mentation exploiting a second depth test which uses a

shadow map. Section 5 discusses some application

areas potentially benefiting from the use of magic

lenses in 3D. Section 6 gives performance measure-

ments and a brief discussion of our results, and

Section 7 concludes the paper with a short outline of

future work concerning 3D magic lenses.

2. RELATED WORK

Magic Lenses
The magic lens metaphor has been introduced in

1994 by Bier et al. [Bie94a]. In their work they de-

scribe Toolglass™ widgets as new interface tools that

can appear, as though on a transparent sheet of glass,

between an application and a traditional cursor.

Toolglass widgets can be positioned with one hand

while the other positions the cursor. They may incor-

porate visual filters, known as magic lenses, which

modify the visual appearance of application objects,

enhance data of interest or suppress distracting in-

formation in the region of interest, which is deter-

mined by the shape of the lens. Besides the use in 2D

graphics applications Bier et al. describe how to ap-

ply the concept of magic lenses and toolglasses for

text editing. They also give an example how to apply

the concept of 2D planar lenses to 3D virtual envi-

ronments. Inspired by the initial idea of the magic

lens metaphor [Bie94a] several papers followed, cov-

ering a taxonomy [Bie94b] and composition of magic

lenses [Fox98] as well as several applications of the

concept ([Bie97], [Stn94], [Sto02]).

Cignoni et al. [Cig94] were the first to transfer the

magic lens metaphor to volumetric lenses. In their

work they describe the MagicSphere metaphor repre-

senting an insight tool for 3D data visualization. As

the name implies, the metaphor is limited to a spheri-

cal lens volume. Besides this restriction to one usable

lens shape the visual appearance lacks due to their

analytical approach: In a preprocessing step geomet-

rical elements are classified based on their position

relative to the border of the magicsphere. Subsequent

rendering requires two passes; one for the geometri-

cal elements lying outside the magicsphere and one

for those inside the magicsphere. The elements lying

on the border, classified as border elements, are ren-

dered in both of the two passes. When using the

magicsphere with a MultiRes filter Cignoni et al. ob-

tain a satisfactory visual appearance even for the

border elements, which are rendered twice. However,

the visual appearances used in the two rendering

passes of their EdgesEmphasizer filter differ too

much and therefore cause visual artifacts near the

border of the magicsphere. Similar artifacts have to

be expected with other visualization techniques used

by the magicsphere metaphor.

Another more general extension of the magic lens

metaphor to 3D virtual environments has been pre-

sented by Viega et al. [Vie96]. They introduced an

algorithm for visualizing volumetric lenses as well as

flat lenses in a 3D environment. Their implementa-

tion of these concepts exploits SGI Reality Engine

hardware support for clipping planes. Since only in-

finite clipping planes are supported, it takes an extra

rendering pass for almost every face of the lens vol-

ume. Thus it would be computationally very expen-

sive to render magic lenses having arbitrary shapes.

Another disadvantage results from the limited num-

ber of clipping planes supported by current graphics

devices increasing the number of necessary rendering

passes.

A different analytical approach of a similar concept

has been used by Idelix Software Inc. [Ide02]. Their

Pliable Display Technology 3D (PDT3D) avoids ob-

ject occlusions in 3D virtual environments by ana-

lyzing camera and lens parameters and applying cor-

responding geometric transformations to occluding

objects. Thus it is possible to select a region of inter-

est, to which the system provides an occlusion-free

view. The major disadvantage of this concept is the

modification of the scene structure lying outside the

region of interest through geometrical transforma-

tions, which leads to a loss of contextual information.

The powerful concept of magic lenses has been de-

ployed in many fields. But due to the computation-

ally expensive realization of volumetric magic lenses,

leading to a limitation of lens shapes and overhead in

rendering time, mostly 2D magic lenses have been

applied so far. The concept has been used for exam-

ple in Kai’s Power Tools [Vie96], a collection of

innovative filters for 2D image processing, as well as

in Macromedia Freehand™, a tool for creating illus-

trations. But also users of 3D applications can benefit

from the concept of magic lenses. For example in

figure 1 the underlying geometry is revealed by the



applied wireframe lens, giving a better overview

of object composition without loss of contextual

information.

(a) (b)

Figure 1: Sample scene without magic lens (a).

Magic lens reveals the inside structure (b).

Shadow Mapping
Shadow mapping has been introduced by Williams

[Wil78] in 1978. To display shadows in real-time, the

scene is rendered in a preprocessing step using the

position of the light source as a viewpoint. The re-

sulting depth buffer information, which represents

the surfaces visible from the light source, is stored in

a shadow map sometimes referred to as depth texture.

During the main rendering pass, each point is

transformed into the camera coordinate system. This

way it is possible to compare the distance of any

point to the light source with that of the closest point

to the light source. Points that are farther from the

light source than the closest one lie in shadow and

are therefore rendered less illuminated.

Because shadow mapping is a widely accepted real-

time shadowing technique, it is accelerated by cur-

rent graphics hardware.

Depth Peeling
In this subsection we will give a brief description of

the depth peeling technique [Eve02], which uses

shadow maps to enable a second depth test and there-

fore benefits from hardware-acceleration.

Everitt describes the use of depth peeling to achieve

order independent transparency. The idea is to peel

away layers of the scene from front to back on a

fragment level and render those layers in inverted

order. To obtain a specific fragment layer it is neces-

sary to utilize an additional depth test to get all frag-

ments contained in that layer.

Considered as a multipass rendering technique depth

peeling works as follows. The first pass uses the

standard depth test and therefore writes the depth-

and RGBA-values of the nearest fragment to the re-

spective buffers. The depth buffer information gener-

ated by this pass is copied to a shadow map, which

serves as the depth buffer for the second depth test

performed in the subsequent rendering pass. Iterating

this process over the necessary n passes gives the

ability to peel away and obtain the n-th nearest

fragment layers.

Using this technique it is possible to get n layers

deeper into a scene with n passes, whereby in each

pass the shadow map, generated in the preceding

pass, serves as the depth buffer for the second depth

test. Projective texture mapping [Eve01] is used to

project the shadow map onto the scene aligned along

the eye view image plane. This projection makes sure

that fragments of the shadow map overlay corre-

sponding fragments (i.e. with same window coordi-

nates) of the depth buffer. To compare the depth

values of the corresponding fragments the shadow

comparison function is used [Pau02b], which assigns

an alpha value to the resulting fragment based on its

depth value. Finally the alpha test discards fragments

as a result of their alpha values.

The read-only limitation of the shadow map is no

restriction, because the depth information for the n-th

pass is created in the (n-1)-th pass and therefore it is

not necessary to write into both depth buffers in one

rendering pass.

3. ALGORITHM
Our image-based algorithm utilizes functionality

similar to shadow mapping to achieve an effect

similar to depth peeling while fragment processing.

For explaining the basic idea of the algorithm con-

sider the following classification (see figure 2) into

fragments lying

(a) behind the lens,

(b) inside the lens,

(c) in front of the lens and

(d) the remaining fragments.

Figure 2. Subdivision of the view frustum into

three sections (behind, inside, in front of)

depending on camera parameters.



The first rendering pass uses two depth tests to ex-

clude fragments lying inside (b) and in front of (c)

the lens from rendering. The second rendering pass

also uses two depth tests to exclude fragments lying

outside the lens ((a), (c), (d)) whereas the third pass

only needs one depth test to exclude fragments inside

(b) and behind (a) the lens.

Visible fragments belonging to (d) are rendered in

the first and third pass.

The order of the three rendering passes is relevant

because some parts of the scene lying inside or in

front of the magic lens could be semi-transparent.

Therefore it is important to render the parts ((a), (b),

(c)) in a back to front order to preserve a correct

image in case of semi-transparency, like it is done

during depth peeling.

Since the algorithm works on fragment level regard-

less of the shape of the lens only two additional ren-

dering passes are needed. So unlike the approach of

Viega et al. [Vie96] the complexity of the lens shape

does not affect the rendering complexity.

4. IMPLEMENTATION
The presented algorithm has been realized in C++

using OpenGL as rendering library. Furthermore it

has been integrated into a high-level graphics frame-

work called VRS (Virtual Rendering System) [Döl02]

exploiting the integrated scenegraph structure.

Our algorithm is a straight-forward multipass-ren-

dering algorithm. Like in the depth peeling tech-

nique, we use the shadow comparison function

[Pau02b] along with the alpha test to perform the

second depth test. The alternative to use a fragment

program [Lip03] to discard fragments due to their

alpha value has been implemented as well.

Assuming that it is possible to use two depth buffers

with separate configurable depth tests, the complete

algorithm is given by the following pseudo code.

// pass 1: render geometry
// behind the lens
clearDepthBuffer1 ( 0.0 );
setDepthTest1 ( GREATER );
clearDepthBuffer2 ( 1.0 );
setDepthTest2 ( LESS );
actDepthBuffer ( DepthBuffer1 );
renderLens ( );
actDepthBuffer ( DepthBuffer2 );
renderScene ( NORMAL );
// pass 2: render geometry
// intersecting the lens
clearDepthBuffer1 ( 1.0 );
setDepthTest1 ( LESS );
clearDepthBuffer2 ( 0.0 );
setDepthTest2 ( GREATER );
actDepthBuffer ( DepthBuffer1 );

renderLens ( );
actDepthBuffer ( DepthBuffer2 );
setDepthTest1 ( ALWAYS );
renderLens ( );
setDepthTest1 ( GREATER );
setDepthTest2 ( LESS );
renderScene ( LENS_STYLE);
// pass 3: render geometry
// in front of the lens
clearDepthBuffer1 ( 1.0 );
setDepthTest1 ( LESS );
setDepthTest2 ( ALWAYS );
actDepthBuffer ( DepthBuffer1 );
renderLens ( );
renderScene ( NORMAL );

actDepthBuffer()  activates one of the two

depth buffers DepthBuffer1  and Depth-

Buffer2 for writing. setDepthTest1() and

setDepthTest2() configure the corresponding

depth test. clearDepthBuffer1() and clear-

DepthBuffer2() overwrite data in the corre-

sponding depth buffer with the assigned value.

renderScene()executes the instructions for ren-

dering the scene data, renderLens() the instruc-

tions for rendering the lens geometry. render-

Scene()  updates both, the color buffer and the

depth buffer, whereas renderLens()writes only

to the depth buffer. renderScene() expects either

the parameter NORMAL or LENS_STYLE to deter-

mine which viusal appearance to use for rendering.

The structure of the algorithm indicated by the

integrated comments corresponds to the three needed

rendering passes. The result of each of the three ren-

dering passes of the algorithm is shown in figure 3

(a-c) in the top row, using a spherical wireframe lens

to reveal insights into the scene geometry. The bot-

tom row shows the accumulated result after each

rendering pass (hence the two images shown in fig-

ure 3 (a) are the same). Figure 3 (d) shows the visu-

alization of the lens by a semi-transparent lens vol-

ume. In order to prevent the lens from occluding

scene geometry this requires an additional fourth

rendering pass to update depth buffer information

before rendering the lens.

So far we have assumed the existence of a second

depth buffer with an independently configurable

depth test. Unfortunately current graphics systems do

not support a second depth test. However, it is possi-

ble to simulate a second depth buffer with a sepa-

rately configurable depth test using a shadow map.

Although this simulated depth buffer does not allow

writing, this poses no limitation to our algorithm

because the lens geometry is rendered in a separate

rendering pass.



(a) (b) (c) (d)

Figure 3. Content of the color buffer after each of the four rendering passes (a-d).

Top row: resulting color information after each pass; bottom row: accumulated images.

To perform the second depth test in the first and sec-

ond rendering pass, two different shadow maps are

needed. The shadow map in the first pass represents

the back facing polygons of the lens volume, and the

map in the second pass the front facing polygons.

Each of these shadow maps stores the depth buffer

information obtained by rendering the lens geometry

to an offscreen canvas.

Two examples of generated shadow maps are shown

in figure 4, where brighter pixels represent greater

depth values. The shadow map in figure 4 (a) which

contains the depth information obtained by rendering

the back of a spherical lens is used in the first pass to

render the fragments lying behind the lens volume

(a). The map in figure 4 (b) which corresponds to the

front of the same lens is used in the second pass for

rendering the fragments inside the lens volume (b).

(a) (b)

Figure 4. Depth information of

(a) the back and (b) the front of the lens.

Each of the two shadow maps generated in the first

and second rendering pass is aligned with the scene

by projective texture mapping [Eve01]. This ensures

that the depth value of the current fragment can be

compared by the shadow comparison function

[Pau02b] to the depth value of the corresponding

shadow map texel. The alpha value of the current

fragment is set depending on the result of this com-

parison. After evaluating the shadow comparison

function the alpha test is used to discard fragments

not needed in the current rendering pass. Thus we

can assure that only fragments needed in the current

rendering pass are written to the frame buffer.

5. APPLICATION
We have implemented two kinds of volumetric magic

lenses: The position of a camera lens is fixed relative

to the camera, i.e. when the camera moves then the

lens also moves. In contrast a scene lens can be posi-

tioned anywhere in the virtual environment. Camera

lenses can be used similar to the PDT3D [Ide02] to

explore a scene with mostly dense data. A potential

application area would be the exploration of subsur-

faces where magic lenses can reveal a better insight

by displaying data next to the camera differently, for

example semi-transparently. Scene lenses can be

used to assist 3D modeling. Many other application

areas can benefit by exploiting the metaphor of

volumetric magic lenses:

 wireframe lenses are capable of displaying vertex

details for parts of the scene without modifying

the global view, which would lead to a loss of

context information (figure 5),

 eraser lenses (figure 8) can reveal occluded parts

of the scene by removing partial or complete in-

formation from regions intersecting the lens,

 texture lenses can assist in exploring terrain data,

by replacing or modifying the texture of objects.

These 3D lenses are a generalization of the 2D

texture lenses introduced in [Döl00].



Furthermore the concept of volumetric magic lenses

has been used to show different levels of detail for a

model [Cig94] and enhance flow visualization

[Fuh98].

Our technique for rendering volumetric magic lenses

can benefit from the scenegraph concept used in most

recent high-level rendering systems ([Str92],

[Döl02], [Rei02], [Sel02]). The algorithm as de-

scribed above evaluates the whole scene geometry in

each of the three rendering passes. However, by

combining a scenegraph with space partitioning the

amount of data to be processed in each rendering

pass can be reduced. If bounding box extensions are

provided in each scene node as in Java3D [Sel02]

intersections with the lens volume can be detected

more efficiently. This leads to a reduction of

rendering data, which is significant for the second

rendering pass since usually magic lenses are very

small related to the virtual environment.

6. DISCUSSION
Our algorithm has many advantages compared to the

clipping plane based approach introduced by Viega et

al. [Vie96]. Since the algorithm works on a fragment

level the number of rendering passes does not in-

crease with the complexity of the lens volume, which

makes it possible to use arbitrary convex shapes as

lenses. Thus it is possible to use e.g. quadric shaped

lenses as shown in figure 5 without generating visual

artifacts, which arise for example when combining

the magicsphere metaphor [Cig94] with common

rendering styles.

shadow map

resolution
fps

no lens used 106,50

128x128 44,72

256x256 44,39

512x512 44,10

1024x1024 43,12

Table 1. Frame rates achieved by rendering the

scene shown in figure 5.

Unlike Viega’s [Vie96] approach the performance of

our technique does not depend on the shape of the

lens volume. Even the offscreen rendering to obtain

the shadow maps does not result in a noteworthy ren-

dering overhead since a hardware-accelerated pixel

buffer is used and only the lens geometry has to be

rendered without shading. Furthermore it would be

possible to use render-to-texture functionality to ac-

celerate offscreen rendering.

In order to determine the rendering performance of

our algorithm, we used the scene in figure 5 for

measuring frame rates. Table 1 contains the frame

rates achieved by rendering the scene with no lens

and with the application of a spherical wireframe lens

using different shadow map resolutions. We used a

Pentium 4 2,66 GHz system, running Windows XP

Professional, equipped with 1 GB RAM and an ATI

Radeon 9800 Pro graphics card with 128 MB RAM.

Figure 5. Application of a quadric wireframe lens

to an arbitrary 3D model.

Figure 6. Definition of two sections (lens, outside)

depending on the camera parameters using a 2D

flat lens.

It is obvious, that our technique is also capable of

rendering convex flat lenses introduced by Viega et

al. [Vie96]. In our approach, a flat lens is just a spe-

cial case of a volumetric 3D lens. It can be placed

anywhere in the scene and its sphere of influence,

called the lens frustum, ranges from its 2D shape to

the far clipping plane. This divides the scene into two

regions and therefore decreases the number of addi-

tional rendering passes to one (see figure 6). Thus it

is possible to render flat lenses with our algorithm



using two passes, similar to the procedure for ren-

dering volumetric lenses.

Another advantage of our approach is its sparse need

of resources. It only uses one texture to perform the

second depth test. Thus it is fairly easy to integrate

the concept of magic lenses with other multipass ren-

dering techniques like shadow or reflection genera-

tion.

A critical aspect is formed by volumetric lenses in-

tersecting the near or the far clipping plane. While

rendering the parts of a scene intersecting the lens

volume our algorithm requires the lens volume to

have a front- and a back-facing region, which form

the lens volume. Lenses intersecting the near or the

far clipping plane do not have an intuitively defined

front- or back-facing region leading to an undefined

lens volume (see figure 7). It is obvious that the

problem is even worse concerning lenses intersecting

both the near and the far-clipping plane. Although

this problem has not been solved yet, it can be

avoided by using camera lenses (see section 5) posi-

tioned between the near and the far clipping plane

without intersecting them.

Figure 7. Lens intersecting the far clipping plane.

7. CONCLUSION AND FUTURE

WORK
We have presented an algorithm for real-time ren-

dering of volumetric magic lenses having arbitrary

convex shapes, which is fully hardware-accelerated.

The concept of magic lenses supports the combina-

tion of different visualization appearances in one

scene, giving the user a better insight regarding his

region of interest. We have presented several appli-

cations of volumetric magic lenses. We will investi-

gate more application areas and develop different

kinds of magic lenses to use in 3D virtual environ-

ments.

Furthermore we are working on an approach for ren-

dering more than one magic lens per scene, which is

closely related to the combination of visualization

techniques associated with overlapping magic lenses.

Due to the nature of volumetric magic lenses their

combination in 3D often leads to non-convex regions

having their own visualization techniques, which we

are implementing right now. Using this extension we

are confident to be able to render more general non-

convex magic lenses as well.
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