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Introduction
The analyses of insurance risks are an impor-

tant part of the project of Solvency II preparing of 
European Commission. Modelling the size of loss 
is of crucial importance for an insurer. Particular 
attention is paid to studying the right tail of the 
distribution, since it is important to not underesti-
mate the size (and frequency) of large losses.

The modelling of loss distributions in non-life 
insurance is one of the problem areas, where 
obtaining a good fit to the extreme tails of 
a distributional model is of major importance. 
The objective of this paper is to call attention to 
a new approach to statistical modelling using 
quantile functions. The use of models based 
on quantile methods provides an appropriate 
and flexible approach to the distributional 
modelling needed to obtain well-fitted tails. 
Modern computer simulation techniques open 
up a wide field of practical applications for this 
theory concept, without requiring the restrictive 
assumptions and sophisticated mathematics, 
of many traditional aspect of insurance risk 
theory. 

The conditions under which claims are perfor-
med (and data are collected) allow us to consider 
the claim amounts in non-life insurance to be 
samples from specific heavy-tailed probability dis-
tributions. The Pareto distribution is often used 
as a model for insurance losses needed to obtain 
well-fitted tails.

1. Pareto Distribution in Non Life 
Insurance

 Pareto distribution is commonly used to model 
claim-size distribution in insurance for its conveni-
ent properties.

Pareto random variable X has survival function 

P(X > x) =1 - F (x) = with positive parameters 

α and λ and density function ƒ (x) =  that 

are very flexible. Pareto quantile function Q (p) 

or the inverse of the Pareto distribution function 
F -1 (x) by [1, p.40] has the form 

Q (p) = F-1 (x) = λ [(1 - p)-1/α -1], 0 < p < 1. (1)

When X is Pareto (α, λ) it is readily determine 

the mean E (X)= (when α > 1) and variance 

D (X)= (when α > 2). Then method 

of moments to estimate parameters α, λ is easy 

to apply. To equate the first two population and 
sample moments we find estimates:

  
α =  (2)

The estimates α, λ obtained in this way tend to 
have rather large standard errors, because s2 has 
a very large variance. We will obtain estimates of 
α and λ using maximum likelihood method. 

We denote as α, λ the maximum likelihood 
estimates given data x

1
, x

2
,...x

n
 from the Pareto 

(α, λ) Solving equation ƒ (λ) = 0 using the initial 
estimate λ, where 

ƒ (λ) = A - B =  (3)

we obtain λ. Substituting λ in A or B we find α.
 The above mentioned definition of the Pareto 

distribution is the common used in America. The 
Pareto distribution with the distribution function 
at the form 

F (x) = 1 -

is the common used definition of the Pareto 
distribution in Europe. By [8, p. 202] if X is “Eu-
ropean” Pareto distributed with parameters c, α, 
then X-c is “American” Pareto distributed with 
parameters (λ, α).

 Various tests may be used to assess the fit of 
a proposed Pareto model, for example Kolmogo-
rov-Smirnoff and χ2 goodness-of-fit test [4, p. 78-
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83]. Other methods are mentioned in the publica-
tion [11], which addresses similar issues.

2. Simulation Using Quantile Func-
tion

 We denoted a set of ordered sampling data 
of losses by

x
(1)

, x
(2)

,..., x
(y)

,..., x
(n-1)

, x
(n)

.

The corresponding random variables are being 
denoted by

X
(1)

, X
(2)

,..., X
(y)

,..., X
(n-1)

, X
(n)

.

Thus X
(n) 

for example is the random variable re-
presenting the largest observation of the sample 
of n. The n random variables are referred as the n 
order statistics. These statistics play a major role 
in modelling with quantile distribution Q(p). 

Consider first the distribution of the largest 
observations on X

(n)
 with distribution function de-

noted F
(n)

(x) = p
(n)

. By [2, p. 95-96] the probability

F
(n)

(x) = p
(n)

 =P (X
(n) 

≤ x)

is also probability that all n independent obser-
vations on X are less then or equal to this value x, 
which for each one is p. By the multiplication law 
of probability 

p
(n)

(x) = pn so p = p1/n and F (x) = p = p1/n.

Inverting F(x), to get the quantile function, we 
have

Q
(n)

(p
(n)

) = Q
 
(p1/n).

For the general r-th order statistic X
(r)

 the cal-
culation becomes more difficult. The probability 
that the r-th larges observations is less than some 
value z is equal 

p
(r)

 = F
(r)

(z) = P (X
(r) 

≤ z).

This is also probability that at least r of the n 
independent observations is less or equal to z. 
The probability of s observations being less than 
or equal to z is ps, where p = F (z) is given by the 
binomial expression

P (s observations ≤  z) =  ps (1 - p)(n - s)

and 

p
(r)

 = Σ  ps (1 - p)(n - s).

This function is the incomplete beta function and 
is denoted by

p
(r)

 = I (p, r, n - r + 1).

If it can be inverted, then we can write 

p
 
= BETAINV (p

(r)
, r, n - r + 1) 

From the last two expressions we get 

Q
(r)

(p
(r)

) = Q (BETAINV (p
(r)

, r, n - r + 1))  
 

• The order statistics distribution rule
If a sample of n observations from a distribution 
with quantile function Q(p) is ordered, then the 
quantile function of the distribution of the r-th 
order statistic is given by

Q
(r)

(p
(r)

) = Q (BETAINV (p
(r)

, r, n - r + 1)) (4)

BETAINV (.) is a standard function in packa-
ges such as Excel. Thus, the quantiles of the 
order statistics can be evaluated directly from 
the distribution Q (p) of the data. A particularly 
useful application of this result lies in evaluating 
the medians of the distributions of ordered data. 
Thus, the median M

(r)
 of the distribution of the r-th 

order statistics for p
(r)

 = 0,5 is Q (BETAINV (0,99, 
r, n - r + 1)), 99th percentile of X

(r) 
we get as and so 

Q (BETAINV (0,99, r, n - r + 1)) on.
Probably all spreadsheet software, all statisti-

cal software and many pocket calculators provide 
the user with a simple way of generating random 
numbers. The basic random number is a number 
in interval [0, 1] that represents an observation 
on a continuous uniform distribution. In quantile 
language the quantile function is 

S (p) = p, 0 ≤ p ≤ 1.

The generating mechanism is designed to pro-
duce a steam of approximately independent valu-
es u

1
, u

2
, ..., u

n
 from the uniform distribution on the 

interval [0, 1]. We refer to the generation of ran-
dom variables in such a fashion, and also to the 
use of such values in the investigation of a model 
of any type, as simulation. The basis of this is the 
relevance of the next two rules [9, p. 56-57]. 

• The Q-transformation rule 
If z = T(x)

 
is non-decreasing function of x and Q (p) 

is a quantile function, then T(Q (p)) is a quantile 
function too.

• The uniform transformation rule
If U has a uniform distribution then the variable 

X, where x = Q(u) has a distribution with quantile 

(n) (n)

(n)

n
s( (

n
s( (n

s = r
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function Q(p). Thus data and distributions can be 
visualized as generated from the uniform distri-
bution by transformation Q(.), where Q(p) is the 
quantile function.

This rule follows directly from the Q-transfor-
mation rule when it is observed that the quantile 
function of the uniform distribution is just p.

The uniform transformation rule shows that 
the values of x from any distribution with quantile 
function Q(p) can be simulated as 

 x
i
 = Q(u

i
), i = 1, 2, ..., n

where u
1
, u

2
, ..., u

n
 are simulated from uniform 

distribution on the interval [0, 1]. The non-decre-
asing nature of Q(.) ensures the proper ordering 
of the x.

The quantile function thus provides the natural 
way to simulate values for those distributions for 
which it is an explicit function of p.

3. Simulation of Extreme Values 
In a number of applications of quantile functi-

ons in non-life insurance interest focuses parti-
cularly on the extreme observations in the tails 
of the data. Fortunately it is possible to simulate 
the observations in one tail without simulating 
the central values. We will present here how to 
do this.

Consider the right-hand tail. The distribution 
of the largest observation has been shown to be 
Q(p1/n). Thus by [7, p. 96] the largest observation 
can be simulated as x

n
 = Q(u

(n)
), where u

(n) 
= v

n 

and v
n 

is a random number from interval [0, 
1]. If we now generate a set of transformed 
variables by 

u
(n) 

= v
n

u
(n -1) 

= (v
n -1

) ⋅ u
(n)

u
(n -2) 

= (v
n -2

) ⋅ u
(n -1)

     

where the v
i 
, i

 
= n, n - 1, n - 2, ... are simply simula-

ted set of independent random uniform variables, 
not ordered in any way. It will be seen from their 
definitions that u

i 
, i

 
= n, n - 1, n - 2,..., form a decre-

asing series of values with u
(i - 1) 

< u
(i)
.

In fact, values u
(i) 

form an ordering sequence 
from a uniform distribution. Notice that u

(n) 
once is 

obtained, the relations have the general form 

u
(m) 

=  (v
m
) ⋅ u

(m +1)
, m

 
= n -1, n - 2, ...  

The order statistics for the largest observations 
on X are then simulated by 

x
(n) 

= Q (u
(n)

)

x
(n -1) 

= Q (u
(n -1)

)

x
(n -2) 

= Q (u
(n -2)

)

In most simulation studies of n observations are 
generated and the sample analyses m times to 
give an overall view of their behaviour. A techni-
que that is sometimes used as an alternative to 
such simulation, is to use a simple of ideal obser-
vations, sometimes called a profile. Such a set of 
ideal observations could be the medians M

r
 u

(n) 
= 

= v
n 

, r
 
= 1, 2, ..., n.

4. Demonstration Example
We will present the illustrative example of mo-

delling losses by Pareto probability distribution. 
We have observed sample of 91 claim amounts 
(Kč) in a motor hull insurance portfolio. This data 
set is small relative to many which one may en-
counter in practice; however, it will provide a use-
ful example of how one might search for a loss 
distribution to model typical claims and simulate 
the extreme losses. 

The mean and standard deviation of this data 
have been calculated by x

 
= 47111,17 Kč and 

s
 
= 97044,05 Kč.
We suppose the random variable X that is claim 

amount, is Pareto with distribution function 

p
 
= F (x)

 
= 1 - (7)

Using the method of moments to estimate the 
parameters α, λ of a Pareto distribution to solve 
the equations (2) we get estimators that are α

 
= 

= 2,6167, λ
 
= 73163,76.

Of course, asymptotically maximum likelihood 
estimators are preferred. The maximum likeliho-
od estimator λ

 
= 37277,81 is a solution of equa-

tion (3) by numerical method using tool Goal 
seek of Excel and α

 
= 1,7394 has then be found 

as A or B from equation (3). 
Now we can check whether the Pareto distribu-

tion with maximum likelihood estimators provides 
an adequate fit to the data using χ2 goodness-of-fit 
test. The χ2 statistic is computed as usual by

χ2
 
= Σ

1/n

1/n

1
n -1

1
n - 2

(5)

……

1
m

(6)

……

1/n

λ
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with k-1-p degrees of freedom (k is the number of 
intervals and p is the number of estimated para-
meters). As O

i
 we denote the observed frequen-

cies and as E
i 
expected frequencies supposed 

Pareto distribution. The result of goodness of fit 
test presents Table 1. 

The Pareto model gives an excellent fit because 
of calculated value χ2 = 0,63138 is less than criti-
cal value χ2 = 9,48772 with 4 = 7-1-2 degrees 
of freedom.

The quantile function of Pareto distribution that 
is fit on our data set has by (1) the form 

 Tab.1: Observed and fitted values for the Pareto model

Source: Own calculations.

x O
i

P
i

E
i

(O
i
 - E

i
)2

E
i

- 5000 42 0,429683 39,6714 0,14021

- 10000 17 0,205483 18,4934 0,12060

- 15000 9 0,113084 10,1776 0,13625

- 20000 6 0,068441  6,1597 0,00414

- 30000 6 0,074673  6,7206 0,07726

- 450000 5 0,049385  4,4447 0,06938

Above 45000 6 0,059251  5,3326 0,08353

 91 1,000000 91,00000 0,63138

0,95

Tab. 2: Steps of simulation of the 20 largest losses

Source: Own calculations.

v n 1/n v1/n u Q(u)

0,135493 1000 0,001 0,9980032 0,9980032 1291697,514

0,331321 999 0,001001 0,9988948 0,9969002 994804,452

0,253843 998 0,001002 0,9986272 0,9955316 799110,676

0,993465 997 0,001003 0,9999934 0,9955251 798406,978

0,180922 996 0,001004 0,9982849 0,9938177 656697,334

0,997123 995 0,001005 0,9999971 0,9938148 656511,689

0,855881 994 0,001006 0,9998434 0,9936592 646673,091

0,919813 993 0,001007 0,9999158 0,9935756 641539,780

0,943984 992 0,0010081 0,9999419 0,9935178 638057,160

0,76104 991 0,0010091 0,9997245 0,9932441 622188,114

0,865165 990 0,0010101 0,9998537 0,9930988 614169,640

0,561498 989 0,0010111 0,9994166 0,9925194 584666,674

0,436941 988 0,0010121 0,9991623 0,991688 548102,839

0,068052 987 0,0010132 0,9972808 0,9889915 460784,822

0,198585 986 0,0010142 0,9983619 0,9873713 422982,371

0,905523 985 0,0010152 0,9998993 0,9872719 420910,870

0,130303 984 0,0010163 0,9979311 0,9852293 383336,723

0,624701 983 0,0010173 0,9995215 0,9847579 375807,461

0,64864 982 0,0010183 0,9995593 0,9843239 369193,331

0,554228 981 0,0010194 0,9993986 0,9837319 360622,519



FINANCE

E + M EKONOMIE A MANAGEMENT 4 / 2009 strana 101

Q
(p)

= 37277,81 (1 - p)-1/1,7394 -37277,81  (8)

Table 2 contains the results of simulation of 
th e 20 largest values in sample of 1000 Pareto 
distributed losses with quantile function (8) step 
by step part 4 using terms (5) and (6).

On the Figure 1 we can see simulated values
x

i 
= Q (u

i
), i

 
= 1000,999,...,991 and the quantiles 

x
0,5

, x
0,995

, x
0,005

 of the order statistics x
(1000)

, x
(999)

,... 
, x

(981)
. Quantiles x

0,005 
and x

0,995
 give the bounds 

which the 20 largest values of Pareto distributed 
losses would exceed with probability only 0,01.

 Simulation of p the largest claim amount in 
non-life insurance portfolio is useful in case of re-
insurance. We can use this information in non 
proportional reinsurance of the types of LCR(p), 
when insurance company cedes p the largest 
amounts of loss to reinsurer, and ECOMOR, 
when reinsurance company pay losses that exce-
ed p-th largest value in decreasing sequence of 
claim amounts [2, p. 128-129].

 Other methods based on high order statistics, 
known as Extreme Value Theory methods, such 
as methods of block –maxima, peaks-over-thre-
shold approach, or methods based on Generali-
zed Pareto distribution are used in actuarial prac-
tice to model catastrophe risks. This approach is 
discussed for example in articles [6] or [10].

The paper is product part of the research pro-
ject GAČR 402/09/1866: Modelling, simulation 
and management of insurance risks.
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ABSTRACT

SIMULATIONS OF EXTREME LOSSES IN NON-LIFE INSURANCE

Viera Pacáková, Bohdan Linda

 The analyses of insurance risks are an important part of the project of Solvency II preparing of 
European Commission. The risk theory is the analysis of the stochastic features of non-life insu-
rance business. The field of insurance risk theory has grown rapidly. There are now many papers 
and textbooks, which study the foundations of risk processes along strictly theoretical lines. On the 
other hand there is a need to develop the theories into forms suitable for practical purposes and 
to demonstrate their application. Modern computer simulation techniques open up a wide field of 
practical applications for risk theory concepts, without requiring the restrictive assumptions and 
sophisticated mathematics, of many traditional aspect of insurance risk theory..

Modelling the size or loss is of crucial importance for an insurer. Particular attention is paid to 
studying the right tail of the distribution, since it is important to not underestimate the size (and fre-
quency) of large losses. The method of maximum likelihood is often used to estimate parameters 
of possible distributions, and various tests may be used to assess the fit of a proposed model (for 
example Kolmogorov-Smirnoff, and χ2 goodness-of-fit. Often one may find that a mixture of various 
distributions may be appropriate to model losses due to varying characteristics of both the policies 
and policyholders.

The objective of this article is to call attention to a new approach to statistical modelling using 
quantile functions. This approach can deal with many issues associated with the steps of the sta-
tistical modelling process based on quantile methods.

 The definition and modelling of loss distributions in non-life insurance is one of the problem are-
as, where obtaining a good fit to the extreme tails of a distributional model is of major importance. 
It is a thesis of this article that the use of models based on quantiles provides an appropriate and 
flexible approach to the distributional modelling needed to obtain well-fitted tails.

 We are specifically interested in modelling and simulations the tails of loss distributions Thus is 
of particular relevance in reinsurance if we ale required to choose or price a high-excess layer. In 
this situation it is essential to find a good statistical model for the largest observed losses.
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