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ABSTRACT

This paper presents a stochastic iteration algorithm solving the global illumination problem, where
the random sampling is governed by classical importance sampling and also by the Metropolis
method. Point pairs where radiance transfer takes place are obtained with random ray shooting.
Ray shooting can mimic the source radiance and the geometric factor, but not the receiving
capability of the target (i.e. the BRDF and the area), which results in not optimal importance
sampling. This deficiency is attacked by the Metropolis method. The pseudo random numbers
controlling ray shooting are generated not independently, but by the perturbation of the previously
used pseudo random numbers. These perturbations are accepted or rejected according to the
change of the contribution of the transfers. The algorithm is mesh based, requires only a few
variables per patch, and can render moderately complex glossy scenes in a few seconds.

Keywords: Global illumination, finite-element techniques, Monte-Carlo methods.

1 INTRODUCTION

Global illumination algorithms should compute
the average of the radiance values on the area
visible through a pixel or leaving surface patches
in a given direction:

Li(ω) =
1

Ai

·

∫

Ai

L(�x, ω)d�x,

where Ai is the area of the surface on which the
average is computed. The surface of interest Ai

can be a patch in mesh-based finite-element algo-
rithms or the surface visible in a pixel in con-
tinuous methods. The algorithm presented in
this paper belongs to the mesh-based approaches,
thus we assume that the surfaces are tessellated
to patches A1, . . . , AN .
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According to the rendering equation [Kaj86], the
directional radiance of a point is the sum of the
emission and a reflected component. The average
of the reflected radiance on patch Ai is:

Lr
i (ω) =

∫

Ai

∫

S

L(�y, ω�y→�x)·G(�x, �y)·
fr(ω�y→�x, �x, ω)

Ai

d�yd�x.

In this equation fr is the BRDF and G is the
geometric factor:

G(�x, �y) = v(�x, �y) ·
cos θ�x · cos θ�y

|�x − �y|2

where v is the visibility function that is one if
the two points can see each other, and θ�x, θ�y are
the angles between the surface normals and the
direction ω�y→�x connecting �x and �y.

We can observe three main actors in the integrand
of the reflected radiance: the source at �y having
intensity of radiation L(�y → �x) = L(�y, ω�y→�x);
the receiver at �x having intensity of reception
Rω(�y → �x) = fr(ω�y→�x, �x, ω)/Ai; and finally
the communication between the source and the
receiver as represented by the geometry factor
G(�x, �y). When developing a good sampling strat-
egy, these actors and their sampling densities



should be taken into account simultaneously. Un-
fortunately, only partial solutions are available,
which rely on only two actors from the possible
three.

In practice the computation should be carried out
on all patches Ai, thus N separate integrals need
to be evaluated. These different integrals can be
merged together if the domain of the integral is
expanded to the total surface S while multiplying
the integrand by the characteristic function ξi(�x)
of surface area Ai (ξi(�x) = 1 iff �x is in area Ai):

Lr
i (ω) =

∫

S

∫

S

L(�y → �x)·G(�x, �y)·Rω(�y → �x)·ξi(�x) d�yd�x.

This integral is often evaluated by Monte-Carlo
or by quasi-Monte Carlo quadrature. In these
methods the original integration domain S ×S is
mapped onto a unit cube U where the uniformly
distributed pseudo-random or low-discrepancy
points can be found [Deá89]. The local expansion
between the two spaces is du = t(�x, �y)·d�xd�y. Here
t is the determinant of the Jacobi matrix. This
mapping assigns an (�x, �y) point pair to point u in
the unit cube, thus the radiance, the geometric
factor and the intensity of the reception will also
be functions of u. Using variable transformation
in the integrand, we can obtain

Lr
i (ω) =

∫

U

L(u) · G(u) · Rω(u) · ξi(�x(u))

t(u)
du.

A classical Monte-Carlo quadrature would take
M uniformly distributed random samples in the
unit cube and approximate the integral as follows:

1

M
·

M
∑

m=1

L(um) · G(um) · Rω(um) · ξi(�x(um))

t(um)
.

Note that if u is sampled uniformly, the prob-
ability density of obtaining an (�x, �y) pair is
t(�x(u), �y(u)) due to the local expansion of the
mapping from the unit cube onto space S×S. In
order to reduce the variance, the variable trans-
formation should result in a flat integrand, that is,
the local expansion factor t should mimic the in-
tegrand. This approach is called importance sam-
pling.

Unfortunately it is impossible to construct a
transformation where t mimics all actors of the
integrand, the source, the receiver and the com-
munication. It is, however, possible to find a
transformation for any two actors from the three.
In ray shooting we can first sample the source
point and the direction proportional to its cosine
weighted radiance, then a ray is traced from the

selected point at the selected direction to obtain
the destination of the transfer. Ray shooting can-
not mimic the BRDF and the area of the receiver
patch. In ray gathering on the other hand, a
receiver point and a direction are sampled pro-
portional to its cosine weighted BRDF, and the
source of the radiance transfer is found by casting
a ray. Ray gathering is not able to follow the ra-
diance of the source patch. Finally the source and
radiance can be sampled simultaneously and the
visibility is detected by a shadow ray. In this case
the sampling does not take the geometric factor
into account. Despite to their limitations, these
methods, or their combination are worth using,
since they can flatten the integrand. However,
they are not able to completely eliminate the ran-
dom fluctuations. We shall call the algorithm of
converting points in the unit cube to point pairs
for the radiance transfer as the basic method.

In order to reduce the variance of the not op-
timal importance sampling of the basic method,
we shall apply Metropolis sampling. Metropo-
lis algorithm obtains samples proportionally with
a prescribed scalar importance function in the
framework of an adaptive process. We shall set
this prescribed importance function to take into
account all actors of the transfer.

1.1 Metropolis sampling

Metropolis method constructs a Markovian pro-
cess in a way that its stationary distribution p(u)
is proportional to a prescribed scalar importance
function I(u). This scalar importance function
can be the integrand, or the luminance of the inte-
grand if the light is simultaneously transferred on
several wavelengths. Thus the Metropolis method
can provide optimal importance sampling asymp-
totically. Note that in our case a separate integral
needs to be evaluated for every patch. We can
use the same Markovian process for all integrals
simultaneously, if the scalar importance function
is defined as the common part of all integrands.

The sampling density is then p(u) = 1/b · I(u),
where b =

∫

I(u)du is the normalization constant
that makes the density to integrate to one. Thus
the quadrature rule for integral

∫

F (u)du is the
following:

P =

∫

F (u)du ≈
1

M

M
∑

m=1

F (um)

p(um)
=

b

M

M
∑

m=1

F (um)

I(um)
.

In our case the actual sample ui, also called the
actual state, is a point in the unit cube, which un-



ambiguously determines a pair of surface points
(�x, �y) between radiance transfer takes place.

The next state ui+1 of the sampling process is
found by letting an almost arbitrary tentative
transition function T (ui → ut) generate a tenta-
tive sample ut which is either accepted as the real
next state or rejected making the next state equal
to the actual state. The decision uses the “accep-
tance probability” a(ui → ut) that expresses the
increase of the scalar importance function (if this
“acceptance probability” is greater than one, then
the sample is accepted deterministically).

Veach[VG97] recognized that it is worth using
also the rejected samples since they also provide
useful information. Note that a tentative sample
is accepted with probability a, while the original
sample is kept with probability 1 − a. Replacing
this random variable by its mean, both locations
can be contributed but the contributions of the
tentative sample and the old sample should be
weighted with a and 1 − a, respectively.

The original Metropolis algorithm scales the in-
tegral quadrature by the normalization constant
of the scalar importance function b =

∫

I(u)du,
thus the integral of the scalar importance func-
tion needs to be approximated. Veach proposed
a preprocessing step, when b is obtained by a clas-
sical Monte-Carlo scheme. This means that the
error of computing b is inherited by the Metropo-
lis algorithm, which will not be able to correct it,
thus the algorithm will be biased. Summarizing,
the pseudo-code of the Metropolis algorithm is as
follows:

Approximate b =
∫

I(u) du
for i = 1 to M do

Sample a tentative ut using T (ui → ut)

a(ui → ut) = min
{

I(ut)·T (ut→ui)
I(ui)·T (ui→ut)

, 1
}

P += F (ui)/I(ui) · b/M · (1 − a)
P += F (ut)/I(ut) · b/M · a

// accept with probability a(ui → ut)
Generate random number r in [0, 1].
if r < a(ui → ut) then ui+1 = ut

else ui+1 = ui

endfor

This scheme has been used to evaluate integrals
in the path space, that is to find complete light
paths proportionally to their carried luminance
in [VG97]. The basic idea was extended to in-
corporate participating media in [PKK00]. In
[KSKAC02] it was pointed out that perturbations
are worth executing in the space where the uni-
formly distributed pseudo-random numbers are

obtained. We shall also use this idea in this pa-
per. An interesting attempt to incorporate the
Metropolis sampling in the radiosity method has
been published in [BS02]. These methods all be-
long to the category of random walks, when the
integral corresponds to the infinite dimensional
path space. However, the Metropolis algorithm
is more powerful when the domain of the integral
is not high dimensional. This is the particular
case in iteration algorithms, when the radiance
update in a single iteration requires the evalua-
tion of four dimensional integrals.

In the next section we propose a new global illu-
mination algorithm that applies Metropolis sam-
pling to reduce the variance of a stochastic itera-
tion scheme applying ray shooting to iterate the
scene radiance. The new algorithm is the first
method that applies Metropolis sampling inde-
pendently of the random walk context. Similarly
to [VG97] we also utilize the rejected samples
weighting the tentative and actual samples by
the acceptance and the rejection probabilities, re-
spectively. However, unlike in other methods, we
propose an adaptive computation of the scaling
factor b instead of approximating it separately.
This adaptive process guarantees asymptotically
unbiased results.

We can also interpret our approach in the fol-
lowing way. The mapping from the unit cube
to the space of point pairs, as defined by the
basic method (ray shooting), makes t only ap-
proximately proportional to the integrand. Then
Metropolis method is used to reduce that vari-
ation which is left by the improper importance
sampling of the basic method. The integrals esti-
mated by the Metropolis method are low dimen-
sional thus we can expect fast convergence and
the full power of the optimal sampling.

2 THE NEW ITERATIONAL ALGO-

RITHM

So far we assumed that the radiance is available
and we have to compute the average radiance
reflection at different patches of the scene. In
practical situations this case holds only for final
gathering but not during the global illumination
solution. To cope with this problem, we can fol-
low an iteration approach. Originally the radi-
ance values are initialized to the emissions, then
the emission is increased by the reflection of the
current radiance estimate. For the computation
of the reflected radiance we use the Metropolis
method. This step is repeated to compute fur-



ther iterations which are responsible for refining
the Monte-Carlo estimates of each light bounce
and also for the introduction of higher order light
bounces. Note, however, that the stochastic iter-
ation of the radiance will not converge, the ran-
dom radiance estimates fluctuate around the real
solution. From these random estimates the final
result can be obtained by averaging[SK00]. If the
diffuse radiosity problem is solved, averaging can
be done in object space. However, in the non-
diffuse case the representation of the complete ra-
diance function would require large storage. Thus
an image estimate is computed after each itera-
tion step, and averaging takes place in the image
space. In our method we shall use both object
space and image space averaging. The main part
of the radiance (i.e. the directional average of
the diffuse and specular terms), which is inde-
pendent of the direction, is stored in the object
space, since this is needed to compute the scaling
factor b. On the other hand, the fluctuation of
the radiance caused by the specular materials is
averaged in the image space.

2.1 The basic method

To realize the mapping between the unit cube
and the pairs of surface points, we use ray shoot-
ing. The first two elements of vector u is used
to select a point proportionally to its radiance.
A unit interval is decomposed to intervals pro-
portional to the patch powers and with the first
element we find the source patch proportionally
to its power. Subtracting the start of the elemen-
tary interval from the first random number and
multiplying with the length of the elementary in-
terval, the new number will again be distributed
in the unit interval. This number together with
the second element of vector u are used to sam-
ple a uniformly distributed random point �y on
the selected patch. Finally two additional ran-
dom variables are needed to sample a direction
proportionally to the cosine weighted BRDF. The
first one determines whether the diffuse or the
specular BRDF is sampled. Scaling the first el-
ement after the decision, and taking the second,
the direction is obtained by transforming the two
values with the selected BRDF function. Cast-
ing a ray from �y into the sampled direction, hit
point �x is obtained. Radiance transfer is com-
puted between points �x and �y. Note that this ray
shooting algorithm defines a correspondence be-
tween the points of a four-dimensional unit cube
and the pair of surface points.

The basic method mimics the radiance of the

source and the geometric factor, but not the
albedo and the area of the target. Thus, if we
used the basic method alone, the algorithm would
be poor at small, high albedo patches, and would
devote needlessly many rays to hit larger patches
of smaller reflectance. This problem is solved by
Metropolis sampling.

2.2 Definition of the scalar importance

function

In order to find an optimal sampling, the impor-
tance function I should be proportional to the
common part of the integrands (the only factor
which is not common is the characteristic func-
tion of the patches ξi(�x(u))):

L(�y(u) → �x(u)) · G(�x(u), �y(u)) · Rω(�y(u) → �x(u))

t(�x(u), �y(u))

Note that this function also depends on viewing
direction ω, which is the direction of the eye in
case of final gathering, or the direction of the next
transfer in an iteration like global illumination al-
gorithm. Since the direction of the next transfer
is not known yet, we can use the average cosine
weighted intensity of reception, taking into ac-
count all directions:

R(�y → �x) ≈
1

π
·

∫

Ω

Rω(�y → �x) cos θ dω =
ρi(ω�y→�x)

πAi

where ρi is the albedo of patch i. This approxi-
mation can also be given an alternative interpre-
tation. In the next iteration step the direction is
obtained by BRDF sampling, thus the probabil-
ity density will follow the cosine weighted BRDF.
The weight of the transfer, that is the ratio of
the cosine weighted BRDF and the probability
density will be the albedo. It means that the re-
placement of the BRDF by the albedo does not
introduce additional variance.

The other problem of the definition of the impor-
tance function is that the radiance and the albedo
are not scalars but rather vectors having elements
for every wavelength on which the transfer is com-
puted. The scalar importance function should
express where the elements of these vectors are
large, therefore we use the luminance function
L, which computes the weighted sum of the el-
ements. Thus the scalar importance function is

I(u) =

L

(

L(�y(u) → �x(u)) · G(�x(u), �y(u)) · R(�y(u) → �x(u))

t(�x(u), �y(u))

)

where L computes the luminance of a spectral
distribution.



2.3 The primary Monte-Carlo estimate

The primary estimate of the Monte-Carlo quadra-
ture is the integrand divided by the probability
density. Taking into account that in the Metropo-
lis algorithm the probability density of the sam-
ples is I(u)/b asymptotically, the primary esti-
mate is

L(�y(u) → �x(u)) · Rω(�y(u) → �x(u)) · ξi(�x(u))

L (L(�y(u) → �x(u)) · R(�y(u) → �x(u)))
· b.

Note that this estimate has small variance since
the geometric factor and the density of the ray
shooting are completely compensated, and the ra-
diance of the shooter and the receiving capability
of the receiver are well mimicked. In fact, the
only factor which can introduce larger variance is
the characteristic function ξi of patch i. Suppose,
for example, that the surfaces are diffuse and the
radiance is computed on a single wavelength. In
this case all rays would result in a reflected con-
tribution equal to b. The Metropolis algorithm
is responsible for distributing the rays in a way,
that the higher radiance patches are hit more fre-
quently.

In moderately complex scenes there are a few tens
of thousands of patches, thus we can expect ac-
ceptable results in about a million stochastic iter-
ations, i.e. having computed about a million rays
(we recall that in stochastic iteration algorithms
a few rays per patch usually give satisfying results
even with poorer importance sampling [Bek99]).
This number of rays are enough even if the image
has a higher resolution or the lighting distribution
is very heterogeneous (e.g. only a small part of
the scene is illuminated by strong light sources).
Note that this ray number would only be enough
for the identification of the points visible in dif-
ferent pixels if a stochastic ray-tracing approach
were applied, thus our method is expected to be
much faster than random walk methods.

Scaling factor b is the integral of the importance
function over the whole domain:

b =

∫

U

I(u) du =

L





∫

S

∫

S

L(�y → �x) · G(�x, �y) · R(�y → �x) d�xd�y



 .

Since R(�y → �x) = ρi/πAi if �x is on patch i, the
integral of b is the luminance of the total, average
reflected radiance assuming that all surfaces are

diffuse and having the albedo of the original sur-
faces. In order to compute this term, we separate
the constant main part of the reflected radiance.
The estimates of this main part are averaged in
each iteration step, thus it will converge to a sta-
ble value. Let us store the directional average of
the reflected radiance in variable Ld,(n) in each
patch i computed as

L
d,(n)
i =

1

n
·

n
∑

m=1

Ii(m) ·
ρi(ωm)

π
,

where ρ(ω) is the albedo of the material and I(m)
is the irradiance of iteration step m (i.e. irradi-
ance I is the incoming radiance estimate multi-
plied by the cosine of the incoming angle). Then
scaling factor b is the luminance of this main part
taking into account all �x points:

b = L

(

N
∑

i=1

L
d,(n)
i

)

.

We have to emphasize that Ld is not equal to the
diffuse component, but also includes the average
of the specular reflection.

2.4 Representation of the radiance func-

tion

Because of the computation of scaling factor b, we
have to determine the main part of the radiance
function in object space. This main part can also
be used to reduce the fluctuation of the patch
radiances if we express the reflected radiance as
the sum of this main part and a difference part
computed from the difference BRDF ∆fr = fr −
ρ/π:

L
r,(n)
i (ω) = L

d,(n)
i + Ii(n) · ∆fi(ωn, ω).

As mentioned, only the main part converges, the
reflected radiance does not, but fluctuates due to
the random Ii(n) ·∆fi(ωn, ω) term. The final re-
sult is obtained by computing an image estimate
in each iteration step, then averaging these image
estimates.

If a patch is hit by a ray in iteration n, its irra-
diance I(n) and the direction of the ray ωn are
stored on the patch. For those patches that are
not hit by the ray, the irradiance of this iteration
step is zero. Examining this sequence, we can
note that it has a high fluctuation, it is mostly
zero but when the patch is lucky enough to be
hit by a ray, then it gets a larger contribution.



The variance of the whole method can be reduced
if the fluctuation of this sequence is decreased.
The general idea is to replace sequence I(n) by
another sequence which is smoother but still re-
sults in the correct reflected radiance when aver-
aging takes place [KBSK03]. To obtain the new
sequence, zero samples are ignored, large samples
of the original sequence will be scaled down and
small samples will be scaled up. In order not to
distort the average computed from the sequence,
a scaled down larger value will appear more times
in the new sequence. In the optimal case the scal-
ing would make the luminance of the reflected ra-
diances of all elements in the sequence equal. The
average reflected luminance of the sequence is:

C =
1

n
·

n
∑

m=1

L(I(m)∆a).

In this formula ∆a is the albedo of the abso-
lute value of the difference BRDF ∆fr. Thus an
appropriate scaling of I(n), which makes the re-
flected luminance constant, is

I(n)

n · L(I(n)∆a)
· C.

The average will be correct if we can guaran-
tee that I(n) is expected to appear L(I(n)∆a)/C
times. A sampling scheme that can produce sam-
ples proportionally with L(I(m)∆a) is based on
random acceptance and rejection of the Metropo-
lis method. At each iteration step the new irra-
diance I(n) is compared with the stored irradi-
ance I(m). If L(I(n)∆a) is greater or equal than
L(I(m)∆a), then the new irradiance will replace
I(m) in the random representation of the radi-
ance. However, when L(I(n)∆a) is smaller than
L(I(m)∆a), the new irradiance is accepted with
probability L(I(n)∆a)/L(I(m)∆a).

Note that this approach has the advantage that
the representation of the patch radiance requires
just a few variables: the main part Ld, the irra-
diance I together with the direction ωn, the aver-
age reflected luminance C, and the eye radiance.
Thus the storage requirement of this method is
comparable to that of the diffuse radiosity algo-
rithms, although our method can also solve the
glossy global illumination problem.

2.5 Perturbation strategy

The Metropolis algorithm is driven by the applied
perturbation strategy. We use uniform perturba-
tions in a small neighborhood of the actual sam-
ple. The edge size of this small neighborhood is

0.1. In order to guarantee the ergodicity of the
process, i.e. to make sure that all non-zero im-
portance point will be generated by positive prob-
ability sooner or later, we randomly introduce
large perturbations among the small ones. These
large perturbations may obtain any point of the
unit cube with uniform probability density and
independently of the actual sample [KSKAC02].
The probability of these large perturbations is
currently 0.5.

Summarizing, the pseudo-code of the proposed
iteration algorithm is:

for i = 1 to M do

large step = a random binary value
if (large step) then Generate a random ut

else ut = small perturbation of ui

a(ui → ut) = min
{

I(ut)
I(ui)

, 1
}

Find �xi, �yi from ui using ray shooting

Reflect L(ui)·Rω(ui)
L(L(ui)·R(ui))

· b · (1 − a)

at the patch of �xi

Find �xt, �yt from ut using ray shooting

Reflect L(ut)·Rω(ut)
L(L(ut)·R(ut))

· b · a

at the patch of �xt

Average the patch radiances
// accept with probability a(ui → ut)

Generate random number r in [0, 1].
if r < a(ui → ut) then ui+1 = ut

else ui+1 = ui

endfor

3 RESULTS

The proposed method has been tested with
a moderately complex scene of a room with
columns and a Beethoven, tessellated to 22767
patches and illuminated by an area light source in
the non-visible corner of the room (figure 3). First
we assumed that all surfaces are diffuse and ren-
dered a close-up of Beethoven. The image resolu-
tion was 800×900. We used only one million rays,
which required 20 second on a 1.4 GHz computer
both for the stochastic ray shooting and for the
Metropolis algorithms (the overhead of Metropo-
lis sampling is negligible). The Beethoven is the
most difficult part of the scene since it consists of
small, high albedo patches, which are far from the
light source. This means that ray-shooting would
assign very few primary and secondary rays these
patches, which is responsible for the high vari-
ance of figure 1. This problem can be solved by
the Metropolis sampler, which takes into account
not only the radiance of the sources but also the



size and the albedo of the targets. Thus Metropo-
lis will allocate more rays for the difficult part of
the scene and reduce the ray numbers at large
low albedo patches, where few rays can provide
accurate results. The reduction of the variance is
shown in figure 2.

Figure 1: Stochastic ray-shooting

Figure 2: Stochastic ray-shooting with
Metropolis sampling

When we turned the surfaces specular we had to
realize that the finite-element decomposition be-
comes visible at specular surfaces due to Gouraud
shading. Thus we decided to compute the direct
illumination separately with Phong shading and
use the proposed algorithm only for calculating
the indirect illumination. The separate computa-
tion of the direct illumination increased the ren-

dering time by 4 seconds. The result rendered on
800 × 600 resolution is shown in figure 3.

4 CONCLUSIONS

In this paper we proposed a stochastic itera-
tion algorithm that uses both classical impor-
tance sampling (i.e. ray shooting) and Metropolis
method to reduce the random noise introduced in
each iteration step. The ray shooting can mimic
the source radiance and the geometric factor, but
not the receiving capability of the target, which
results in not optimal importance sampling. This
deficiency is attacked by the Metropolis method,
which incorporates the albedo and the area of the
target into importance sampling. Thus the new
method is particularly efficient in scenes where
the patch size and the reflectance vary signifi-
cantly. This is the case in architectural scenes,
for example, when the walls and the external
scenery are usually poorly tessellated but the in-
ternal curved objects are decomposed to a large
number of small polygons.

There is room for several improvements. We can,
for example, use a better basic method. Instead
of ray shooting, better results can be obtained
with a method which combines ray shooting, ray
gathering and connecting the shooter and the
receiver. The combination can be made quasi-
optimal by multiple importance sampling. The
method can also be made bi-directional. When
a point pair is established, the radiance or im-
portance can be transferred into both directions.
The proposed algorithm, as all shooting meth-
ods, generates rays that hit surfaces proportion-
ally to the carried radiance. However, this is not
optimal in the last step to compute the eye con-
tribution, which would require samples accord-
ing to BRDF sampling. To attack this prob-
lem, weighted importance sampling seems very
promising [SKAB03].
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Figure 3: A specular scene rendered by the proposed Metropolis sampling (24 secs rendering time)
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