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Abstract

The paper deals with mathematical modelling of vibration and modal analysis of rotors composed of a flexible

shaft and several flexible disks. The shaft is modelled as a one dimensional continuum whereon flexible disks

modelled as a three dimensional continuum are rigid mounted to shaft. The presented approach allows to introduce

continuously distributed centrifugal and gyroscopic effects. The finite element method was used for shaft and

disks discretization. The modelling of such flexible multi-body rotors with large DOF number is based on the

system decomposition into subsystems and on the modal synthesis method with condensation. Lower vibration

mode shapes of the mutually uncoupled and non-rotating subsystems are used for creation of the rotor condensed

mathematical model. An influence of the different level of a rotor condensation model on the accuracy of calculated

eigenfrequencies and eigenvectors is discussed.
c© 2008 University of West Bohemia in Pilsen. All rights reserved.
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1. Introduction

Many rotating systems with disks (gears, wheels, rings) are modelled as one-dimensional ro-

tating shafts with rigid disks attached to them [4, 5, 11]. This approach can be usually applied

on rotating systems excited in time periodic (harmonic) forces and moments with frequency

corresponding to operating speed and its multiple. However, there are systems (high speed

gears, bladed disks in turbomachines, engine rotors, wheels of rail vehicles) in which the natu-

ral modes of the disks can not be neglected.

Many publications are dedicated to the dynamic analysis of thin rotating disks. One of

newest and most comprehensive publication is the monograph of Genta [2]. Started from the

classical membrane theory for thin disks there are shown some possible approaches for mod-

elling general three dimensional rotors and disks considering gyroscopic and centrifugal effects.

In all to us know publications the flexible disk is modelled separately as an isolated subsystem

or as a flexible disk linked on the internal or external surfaces to rigid body rotating with con-

stant angular velocity. The rigid and flexible coupling between disk and the shaft was modelled

in author’s publications [3, 8] dealing with a special test rotor with one disk.

The main aim of this article is to present a generally accepted modal synthesis method

with reduction DOF number (so-called condensation) for modelling of flexible multi-body rotor

vibrations. This method is applied on rotors composed of a flexible shaft and several flexible

disks discretized in a rotating coordinate system using FE method. Rigid constraints between

disks and outer shaft surfaces are under consideration.

∗Corresponding author. Tel.: +420 377 632 332, e-mail: zemanv@kme.zcu.cz.
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2. Mathematical model of the shaft with several disks

We suppose that only small deformations occur in the elastic bodies, so that the overall body

motion can be described by large rotation of a rotor reference frame xyz superimposed by small

linear deformations given by some elastic coordinates.

We will decompose the rotating shaft with disks (Fig. 1) into subsystems — disk subsystems

(subscript s = 1, 2, . . .) and a shaft subsystem (subscript S). It is supposed that the reference

frame rotates with constant operational angular velocity ω around its X-axis.

According to the derivation in the book [6] the disks can be discretized in the rotating xyz-

coordinate system using linear isoparametric hexahedral finite elements (Fig. 2). The equations

of motion for deformable disks can be written in a configuration space defined by the vector

qs = [. . . uj vj wj . . .]T ∈ Rns , s = 1, 2, . . . (1)

of nodal j displacements in x, y, z-directions (see Fig. 1). The superscripts corresponding to free

(F) or coupled (C) node elastic coordinates of the disks in the expression (1) are not meanwhile

reflected. The motion equations of undamped and uncoupled rotating disks were derived in [10]

using Lagrange equations in the form

Msq̈s(t) + ωGsq̇s(t) + (Ks − ω2Kω,s)qs(t) = ω2fs, s = 1, 2, . . . (2)

Fig. 1. Scheme of the shaft and the disk coordinate system

Fig. 2. Scheme of the linear isoparametric hexahedral element
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Fig. 3. Scheme of the shaft finite element

where mass Ms, static stiffness Ks and dynamic stiffness Kω,s matrices are symmetric and

skew-symmetric matrices ωGs express gyroscopic effects. Centrifugal load vectors ω2fs are

constant in time.

The shaft is modelled as an one dimensional continuum on assumption of the undeformable

cross-section that is still perpendicular to the shaft centre-line. The shaft is discretized us-

ing shaft finite elements [7] with two nodes A, B (see Fig. 3). The derivation of the motion

equations is in [7] shown in non-rotating coordinate system XY Z. To our purpose the math-

ematical model must be derived in rotating coordinate system xyz — [9] as for disks. The

elastic displacements of each node i on the shaft centre-line are described by six generalized

coordinates — three displacements ui, vi, wi in x, y, z — directions and three rotation angles

ϕi, ϑi, ψi (see Fig. 1). The bending displacements v(x, t), w(x, t) of the arbitrary shaft finite

element point C0 on the shaft centre-line at the position x from nodal point A0 (see Fig. 3)

are approximated by cubic polynomials of variable x, longitudinal u(x, t) and torsion ϕi(x, t)
displacements are approximated by linear polynomials. Supposed small Eulerian angles satisfy

the conditions

ϑ(x, t) = −
∂w(x, t)

∂x
, ψ(x, t) =

∂v(x, t)

∂x
. (3)

The motion equations of the shaft can be written in configuration space defined by vector

qS = [. . . ui vi wi ϕi ϑi ψi . . .]T ∈ RnS (4)

of nodal i displacements (see Fig. 1). The conservative mathematical model of the rotating

uncoupled shaft supported on rolling-element bearings has the form [9]

MSq̈S(t) + ωGSq̇S(t) + (KS − ω2Kω,S + KB(t))qs(t) = 0, (5)
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where mass MS , static stiffness KS and dynamic stiffness Kω,S matrices are symmetric and

gyroscopic matrix ωGS is skew-symmetric. The linearized rolling-element bearings are gener-

ally described by in time harmonic varying symmetric stiffness matrix

KB(t) = KB + ∆KC cos(2ωt) + ∆KS sin(2ωt) (6)

where the matrices ∆KC and ∆KS depend on difference of bearing stiffnesses in two principal

axis of stresses. For the isotropic bearings the bearing stiffness matrix is time independent.

The vectors of disk generalized coordinates can be partitioned with respect to the couplings

between disks and shaft in the form

qs =

[

q
(F )
s

q
(C)
s

]

, q(F )
s ∈ Rn

(F )
s , q(C)

s ∈ Rn
(C)
s , s = 1, 2, . . . (7)

where the displacements of the contact disk nodes on the disk inner surface (shaft outer surface)

can be expressed by the displacements of shaft nodes i at its axis in the same (xj = xi) or near

(xj �= xi) perpendicular plane (see Fig. 1). This relation for displacements of nodes j and i is

⎡

⎢

⎣

u
(C)
j

v
(C)
j

w
(C)
j

⎤

⎥

⎦
=

⎡

⎣

1 0 0 0 zj −yj

0 1 0 −zj 0 xj − xi

0 0 1 yj −xj + xi 0

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ui

vi

wi

ϕi

ϑi

ψi

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8)

or shortly

q
(C)
j = Tj,iqi. (9)

The displacements of the free (uncoupled) disk nodes are localized in vector q
(F )
s ∈ Rn

(F )
s .

The total transformation between displacements of coupled nodes of the disk s with a shaft

outer surface can be expressed in the matrix form
⎡

⎢

⎢

⎣

...

q
(C)
j

...

⎤

⎥

⎥

⎦

=

⎡

⎢

⎣

...

· · · Tj,i · · ·
...

⎤

⎥

⎦

⎡

⎢

⎣

...

qi

...

⎤

⎥

⎦
=⇒ q(C)

s = Ts,SqS (10)

where the transformation rectangular matrix is Ts,S ∈ Rn
(C)
s ,nS and n

(C)
s = ns − n

(F )
s is DOF

number corresponding to coupled nodes of the disk s.

3. Condensed mathematical model of the rotor

The nodal coordinates of the disk finite element models can be used directly as elastic coordi-

nates, although the number of degrees of freedom required to adequately represent the defor-

mation may be very large. Hence, the number of free node elastic coordinates q
(F )
s of the disks

is desirable to reduce by the use of modal condensation [7]. For that purpose each matrix and

vector in the disk mathematical models (2) can be rearranged according to decomposition (7)

Xs =

[

XFF
s XFC

s

XCF
s XCC

s

]

, X = M , G, K, Kω, fs =

[

f
(F )
s

f
(C)
s

]

, s = 1, 2, . . . (11)
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Let modal properties of the conservative model of the isolated non-rotating disk s (for

ω = 0) be characterized by spectral and modal matrices satisfying the orthogonality conditions

V T
s MsVs = E, V T

s KsVs = Λs, s = 1, 2, . . . (12)

where E is unit matrix. Modal matrices of disks can be rearranged into the block form

Vs =

[

mV F
s

sV F
s

mV C
s

sV C
s

]

, s = 1, 2, . . . (13)

corresponding to decomposition (7) and eigenvectors are separated into frequency lower eigen-

vectors (so called master — superscript m) and frequency higher eigenvectors (so called

slave — superscript s).The vectors q
(F )
s , corresponding to free disk nodes, can be approximately

transformed in the form

q(F )
s = mV F

s xs, s = 1, 2, . . . , (14)

where mV F
s ∈ Rn

(F )
s ,m

(F )
s is the modal submatrix of the disk s corresponding to free disk gen-

eralized coordinates and frequency lower eigenmodes. Higher natural modes usually contribute

less to the disk deformation and their influence can be neglected.

The motion equations of the fictive undamped system assembled from uncoupled subsys-

tems — the shaft supported by bearings and isolated disks — in the configuration space

q =
[

(q
(F )
1 )T (q

(C)
1 )T (q

(F )
2 )T (q

(C)
2 )T . . .qT

S

]T

(15)

can be formally rewritten as

Mq̈(t) + ωGq̇(t) + (K − ω2Kω)q(t) = ω2f (16)

where, according to mathematical models (2) and (5), matrices have the block-diagonal form

X = diag(X1, X2, . . . , XS), X = M , G, Kω and K = diag(K1, K2, . . . , KS + KB(t)),
and f = [f1, f2, . . . , 0]T . The vector of generalized coordinates q in consequence of the cou-

plings (10), modal transformations (14) and qS = VSxS can be transformed into new vector

x = [x1, x2, . . . , xS]T of the dimension m =
∑

s m
(F )
s + nS . The transformation is given by

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

q
(F )
1

q
(C)
1

q
(F )
2

q
(C)
2
...

qS

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

mV F
1 · · ·

· · · T1,SVS
mV F

2 · · ·
· · · T2,SVS

...
...

. . .
...

· · · VS

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

x1

x2

...

xS

⎤

⎥

⎥

⎥

⎦

or shortly q = T̃ x. (17)

The matrix VS is the full modal matrix of the shaft supported by isotropic bearings (∆KC =
∆KS = 0), satisfying the conditions V T

S MSVS = E, and V T
S (KS + KB)VS = ΛS .

The condensed mathematical model of the rotor in the configuration space x takes the form

M̃ẍ(t) + ωG̃ẋ(t) + (K̃ − ω2K̃ω)x(t) = ω2f̃ , (18)
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where condensed mass, gyroscopic, static stiffness and dynamic stiffness matrices are given

by X̃ = T̃ T XT̃ , X = M , G, K, Kω, and f̃ = T̃ T f . The transformated matrices of the

condensed model (18) for X = M , G, K, Kω have the block form

X̃ =

⎡

⎢

⎢

⎢

⎣

(mV F
1 )T XFF

1
mV F

1 0 · · · (mV F
1 )T XFC

1 T1,SVS

0 (mV F
2 )T XFF

2
mV F

2 · · · (mV F
2 )T XFC

2 T2,SVS

...
...

. . .
...

V T
S T T

1,SXCF
1

mV F
1 V T

S T T
2,SXCF

2
mV F

2 · · ·
∑

s V T
S T T

s,SXCC
s Ts,SVs + V T

S XSVS

⎤

⎥

⎥

⎥

⎦

(19)

and transformed vector of centrifugal load is

f̃ =

⎡

⎢

⎢

⎢

⎢

⎣

(mV F
1 )T f

(F )
1

(mV F
2 )T f

(F )
2

...
∑

s V T
S T T

s,Sf
(C)
s

⎤

⎥

⎥

⎥

⎥

⎦

(20)

4. Application

Presented method is tested on a simple test example of a steel rotor, which is supported on two

isotropic rolling-element bearings. The rotor is consisted of two disks and a shaft (see Fig. 4).

The left disk is placed between the bearings and is discretized by 576 finite elements (2 520

DOF). The number of 120 disk nodes is conected to 5 shaft nodes (−360 DOF). The right disk

is cantilevered behind the bearing and is discretized by 360 finite elements (1 728 DOF). The

number of 96 disk nodes is jointed to 4 shaft nodes (−288 DOF). The shaft is modelled by the

22 shaft finite elements (138 DOF). The condensed model of the whole system was assembled

in MATLAB code on the basis of the presented methodology.

In the following table the three condensation levels of non-rotating structure are com-

pared for the 20 lowest eigenfrequencies. In the first column the eigenfrequencies of the non-

condensed (reference) model with 3 738 DOF number are placed. The other columns corre-

spond to condensed models with using c = 50, 100, and 200 DOF number corresponding to

the lowest eigenmodes of each isolated disk (238, 338, 538 DOF number of condensed rotor

model).

The first eigenfrequency is zero because the rotor can rotate freely as a rigid body around

its axis X . The bending eigenmodes are characterized by double eigenfrequencies. A small

difference is made by discretization of the disks. The eigenfrequencies in the second column

of Tab. 1 correspond to full finite element model (FEM) after the transformation (10). This full

model of the rotor results from equation (16) using the transformation
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

q
(F )
1

q
(C)
1

q
(F )
2

q
(C)
2
...

qS

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

E · · ·
· · · T1,S

E · · ·
· · · T2,S

...
...

. . .
...

· · · E

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

q
(F )
1

q
(F )
2
...

qS

⎤

⎥

⎥

⎥

⎦

or shortly q = ˜̃
T y. (21)

According to (17) the transformation matrix originates from T̃ by change the modal submatrices
mV F

s of the all disks (s = 1, 2, . . .) and the shaft modal matrix VS for the unit matrix E. The
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Table 1. Comparison of rotor eigenfrequencies with different condensation level of disks

eig. full condensed models (condensation level c)

mod. model c = 50 c = 100 c = 200
i fi [Hz] fi [Hz] ε [%] fi [Hz] ε [%] fi [Hz] ε [%]

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 403.00 404.94 0.48 404.67 0.42 403.78 0.19

3 403.37 405.30 0.48 405.04 0.41 404.14 0.19

4 683.47 685.66 0.32 684.39 0.13 683.92 0.06

5 893.17 894.87 0.19 894.12 0.11 893.61 0.05

6 919.80 925.97 0.67 924.99 0.56 922.24 0.27

7 919.86 926.02 0.67 925.03 0.56 922.29 0.26

8 1 540.55 1 571.24 1.99 1 566.25 1.67 1 551.44 0.71

9 1 542.29 1 572.33 1.95 1 567.40 1.63 1 552.87 0.69

10 2 549.02 2 586.36 1.46 2 583.98 1.37 2 563.15 0.55

11 2 549.35 2 617.48 2.67 2 584.12 1.36 2 563.38 0.55

12 2 879.60 2 891.33 0.41 2 885.87 0.22 2 883.14 0.12

13 3 238.07 3 238.07 0.00 3 238.07 0.00 3 238.07 0.00

14 3 249.22 3 249.22 0.00 3 249.22 0.00 3 249.22 0.00

15 6 092.97 6 111.39 0.30 6 105.31 0.20 6 098.43 0.09

16 6 515.84 6 555.02 0.60 6 532.84 0.26 6 525.35 0.15

17 6 587.20 6 587.21 0.00 6 587.21 0.00 6 587.20 0.00

18 6 634.50 6 634.51 0.00 6 634.51 0.00 6 634.50 0.00

19 6 711.18 6 803.46 1.38 6 793.64 1.23 6 745.76 0.52

20 6 711.19 6 867.36 2.33 6 793.64 1.23 6 745.77 0.52

mathematical model of the rotor in the configuration space y takes the form

˜̃
Mÿ(t) + ω ˜̃

Gẏ(t) + ( ˜̃
K − ω2 ˜̃

Kω)y(t) = ω2 ˜̃
f , (22)

where
˜̃
X = ˜̃

T T X
˜̃
T , X = M , G, K, Kω, and

˜̃
f = ˜̃

T T f .

Fig. 4. Comparison of the chosen 8th eigenmode of the referential and condensed model of the rotor
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The each eigenfrequency of condensed models is characterized by relative error ε. Relative

errors decrease with decreasing condensation level (DOF number c increases), but the highest

condensation level is sufficient because the relative errors are below 3 %. The chosen eigenmode

calculated on the referential and condensed model (for c = 50) is compared in Fig. 4. The

referential eigenmode is on the left side and the corresponding eigenmode of the condensed

model with 50 DOF number for each disk is on the right side.

4.1. Comparison of modal properties of condensed models with the full FEM of the rotor

Modal properties — eigenfrequencies and eigenvectors for ω = 0 — are a suitable criterion

for comparison the full FEM with condensed models of rotors. Eigenfrequencies are usually

compared by the relative cumulative error

ε50 =
50

∑

ν=2

|fν(m
(F )
1 , m

(F )
2 , . . .) − fν |

fν

(23)

where fν(m
(F )
1 , m

(F )
2 , . . .) are eigenfrequencies of the condensed model with reduced degrees of

freedom (DOFs) of free node elastic coordinates q
(F )
s of the disks and fν are pairing frequencies

of the full FEM of the rotor. The relative cumulative error of the test rotor (Fig. 4) is shown

in Fig. 5 in dependence on numbers of master eigenvectors m
(F )
1 and m

(F )
2 of the disks. Fig. 6

shows the maximal relative error

εmax = max
ν

|fν(m
(F )
1 , m

(F )
2 , . . .) − fν |

fν

, ν = 2, 3, . . . , 50. (24)

The modal assurance criterion (MAC) is the suitable tool for the qualitative comparison of

eigenvectors. A modified MAC, weighted by the mass matrix, is defined according to [1] as

MACij =
|qT

i (m
(F )
1 , m

(F )
2 , . . .)Mqj |

[

qT
i (m

(F )
1 , m

(F )
2 , . . .)Mqi(m

(F )
1 , m

(F )
2 , . . .)

]

[

qT
j Mqj

]

(25)
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Fig. 5. Relative cumulative error of test rotor eigenfrequencies (for ν = 2, 3, . . . , 50)
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Fig. 7. MAC matrix of the first twenty correlated mode pairs of the test rotor: (a) m
(F )
1 = m

(F )
2 = 50;

(b) m
(F )
1 = m

(F )
2 = 100; (c) m

(F )
1 = m

(F )
2 = 200
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where qi(m
(F )
1 , m

(F )
2 , . . .) are eigenvectors of the condensed model and qj are eigenvectors of

the full FEM of the rotor, whereas qi(m
(F )
1 , m

(F )
2 , . . .) and qi, qj(m

(F )
1 , m

(F )
2 , . . .) and qj are

pairing eigenvectors.

Using transformations (17) and (21) the MAC can be rewritten in the form of MAC matrix

elements

MAC ij =
xT

i T̃ T M
˜̃
Tyj

[

xT
i M̃xi

] [

yT
j

˜̃
Myj

] = xT
i T̃ T M

˜̃
Tyj (26)

where xi are eigenvectors of the condensed model (18) and yj are eigenvectors of the full FEM

(22) for ω = 0.

The MAC matrix for the test rotor (Fig. 4) from two sets of individual eigenvectors xi, yi

for i, j = 1, 2, . . . , 20 is shown in Fig. 7 for a different level of a rotor condensation (m
(F )
1 =

m
(F )
2 = 50; 100; 200).

Modal properties of the rotor with angular velocity ω are investigated at the first-order mo-

tion equations of the condensed model

[

0 M̃

M̃ ωG̃

] [

ẍ

ẋ

]

+

[

−M̃ 0

0 K̃ − ω2K̃ω

] [

ẋ

x

]

= 0 (27)

corresponding to (18). The eigenvalues λν = ±iΩν are calculated by using mathematical model
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Fig. 8. Campbell diagrams of the test rotor: (a) m
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in the form

(A − λE)u = 0, (28)

where

A =

[

−ωM̃−1G̃ −M̃−1(K̃ − ω2K̃ω)
E 0

]

, u =

[

ẋ

x

]

. (29)

The Campbell diagrams — plots of eigenfrequencies Ων rad/s or fν = Ων/2π Hz as a func-

tion of rotor revolutions per minute n = 30ω/π rpm — are acceptable for the qualitative com-

parison of condensed models with the full FEM of the rotor. The Campbell diagrams of the

frequency lowest ten eigenfrequencies of the test rotor for different level of a rotor condensa-

tion (m
(F )
1 = m

(F )
2 = 50; 200) are shown at Fig. 8.

The relative cumulative error

ε50 =
50

∑

ν=2

|fν(n, m
(F )
1 , m

(F )
2 , . . .) − fν(n)|

fν(n)
(30)

for n = 3 000 rpm is shown at Fig. 9 in dependence on numbers of master eigenvectors m
(F )
1

and m
(F )
2 of the disks.

50

100

150

200

50

100

150

200

0

0.1

0.2

0.3

0.4

0.5

0.6

m
1

(F)m
2

(F)

re
la

ti
v
e

 c
u

m
u

la
ti
v
e

 e
rr

o
r

Fig. 9. Relative cumulative error of test rotor eigenfrequencies (for ν = 2, 3, . . . , 50 and for n =

3000 rpm).

5. Conclusion

The paper deals with a modelling of rotating shaft vibrations with flexible disks that are ideally

fixed to outer shaft surface. The rotating shaft is modelled as a one dimensional continuum on

the basis of the Bernoulli-Euler theory. The disks are modelled as a three dimensional contin-

uum discretized using isoparametric hexahedral solid finite elements. The presented approach

is based on the modal synthesis method and DOF number reduction corresponding to elastic

displacements of the free disk nodes. The displacements of the contact disk nodes on the outer
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shaft surface are eliminated by means of shaft nodes displacements. The method allows to in-

troduce continuously distributed centrifugal and gyroscopic effects. The condensed model of

the system can be used effectively for modal and sensitivity analysis in state space.

This new approach to rotor vibration modelling was tested for the undamped rotor with two

disks supported on rolling-element bearings. The modal values of this test-rotor investigated by

using the condensed models were compared with the same values calculated on the full finite

element model. From an assesment of the modal assurance of condensed models follows that

the developed software in MATLAB code based on the pressented methodology is an effective

means for modelling high speed rotor vibrations.
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