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Numerical approximation of fluid-structure interaction problems

P. Sváčeka,∗
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Abstract

This paper is devoted to numerical approximations of fluid-structure interaction problems. Namely the problem

of interaction of turbulent flow over flexibly supported airfoil is addressed. In order to model the turbulence

effects the flow is described by Reynolds Averaged Navier-Stokes (RANS) equations. The Reynolds equations

and the turbulence model is numerically approximated by the finite element method. In order to avoid spurious

oscillations stabilization procedures are applied. The application of the developed numerical method is shown in

several numerical experiments.
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1. Introduction

The interation of fluid flow and an elastic structure is important in many technical disciplines

as aeroelasticity/hydroelasticity, cf. [3]. Frequently linearized models are used in engineering

applications. Recently, the problems of nonlinear aeroelasticity began to be important with the

arising number of studied situations, see, e.g. [12]. In technical applications the turbulence

effects are modelled by Reynolds Averaged Navier-Stokes(RANS) equations together with the

Boussinesq approximation of the Reynolds stresses, cf. [15]. The turbulence viscosity is then

approximated by a solution of additional partial differential equations (PDE). The approxima-

tion of PDEs describing the turbulence model by finite element method is complicated mainly

due to the dominating convection. Use of standard SUPG/GLS stabilization methods do not

vanish the local undershoots/overshoots effects. To overcome this nonphysical phenomena the

additional nonlinear crosswind diffusion can be employed, cf. [2]. Here, we consider the ap-

proach based on flux corrected transport (FCT) applied in the finite element context, cf. [9].

The verification of the numerical scheme behaviour is shown in several numerical examples.

Further, an aeroelastic model is numericaly approximated.

2. Mathematical model

2.1. Fluid model

The flow is modelled by Reynolds equations and the Reynolds stresses are approximated by

the Boussinesq assumption. The turbulent viscosity is modelled with the aid of k − ω model,

cf. [15]. In order to take into account the deformations of the computational domain, we start

with a short introduction of Arbitrary Lagrangian-Eulerian (ALE) method, see also [11, 10, 5].
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2.1.1. Arbitrary Lagrangian-Eulerian method

Let us assume that there exists a mapping Φ = Φ(ξ, t) defined for any ξ ∈ Ω0 and t ∈ [0, T ]
such that for any t the mapping Φ(·, t) is a one-to-one transformation of Ω0 onto Ωt. Let us

denote At = Φ(·, t). The mapping At is called arbitrary Eulerian-Lagrangian mapping (ALE

mapping). We assume that for any t ∈ I the mapping At denotes C1 continuous bijective

mapping from the reference (original) configuration Ω0 onto the domain Ωt at time t (the current

configuration).

The time derivative of the ALE mapping At yields the domain velocity wD = wD(x, t) for

x ∈ Ωt and t ∈ [0, T ].

wD(x, t) =
∂Φ

∂t
(ξ, t), At(ξ) = x, ξ ∈ Ω0. (1)

Furthermore, by DA/Dt the ALE derivative is denoted (derivative with respect to a fixed

point ξ in the reference domain ξ ∈ Ω0). The ALE derivative is related to the time and spatial

derivatives as
DAf

Dt
(x, t) =

∂f

∂t
(x, t) + wD(x, t) · ∇f(x, t), (2)

for any x ∈ Ωt and t ∈ (0, T ).

2.1.2. Reynolds equations in ALE form

The Reynolds equations are used written in the ALE form read (cf. [13, 15])

DA
v

Dt
−∇ · (νeffS(v)) + (w · ∇)v + ∇p = 0, (3)

divv = 0, in Ωt

where S(v) =
(
∇v + (∇v)T

)
, v denotes the vector of mean part of the velocity, p denotes the

mean part of the kinematic pressure, w = v − wD, νeff = (ν + νT ), ν denotes the kinematic

viscosity, and νT denotes the turbulent viscosity.

wD

a) b) c)

Fig. 1. Different parts of computational domain boundary: a) Dirichlet part of boundary, b) outlet bound-

ary, c) moving airfoil

The system is equipped with the boundary conditions prescribed on the mutually disjoint

parts of the boundary ∂Ωt (see Fig. 1)

a) v(x, t) = vD(x), x ∈ ΓD, b) v(x, t) = wD(x, t), x ∈ ΓWt,

c) − νeff

(
∇v + (∇v)T

)
· n + (p − pref)n = 0, on ΓO, (4)

where pref ∈ R, vD ∈ H
1/2(ΓD), wD ∈ H

1/2(ΓWt) for any t ∈ (0, T ). Moreover, system (3)

is equipped with the initial condition v(x, 0) = v0(x) for x ∈ Ω0, where v0 ∈ H
1(Ω0) such

that ∇ · v0 = 0.
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2.1.3. Turbulence model

In this paper the turbulence viscosity νT is modellad by the k-omega turbulence model (see

[15, 8]):

∂k

∂t
+

∂(kvj)

∂xj
= Pk − β∗ωk +

∂

∂xj

(
(ν + σkνT )

∂k

∂xj

)
(5)

∂ω

∂t
+

∂(ωvj)

∂xj
= Pω − βω2 +

∂

∂xj

(
(ν + σωνT )

∂ω

∂xj

)
+ CD, (6)

where v = (v1, v2) is the velocity vector, ν is the kinematic viscosity, k is the turbulent kinetic

energy, ω is the specific turbulent dissipation, and νT = k/ω is the kinetic eddy-viscosity

coefficient. The production terms are given by

Pk = τR
ij

∂vj

∂xi
, Pω =

αωω

k
Pk, CD = σD

1

ω
max

{
∂k

∂xi

∂ω

∂xi
, 0

}
,

with τR the Reynolds-stress tensor. The closure coefficients are chosen according [8], i.e

β∗/β = 6/5, αω = β/β∗ − σωκ2/
√

β∗ (κ = 0.41 is the Von Karman constant), β∗ = 0.09,

σω = 0.5, σk = 2/3 and σd = 0.5.

2.2. Structure model

The structure is considered to be a flexibly supported airfoil, which can be vertically displaced

and rotated. Figure 2 shows the elastic support of the airfoil on translational and rotational

springs and its placement in the channel. The governing nonlinear equations are written in the

form (see [3, 4])

mḧ + Sα α̈ cos α − Sαα̇2 sin α + khhh = −L(t), (7)

Sαḧ cos α + Iαα̈ + kααα = M(t).

where m is the mass of the airfoil, Sα is the static moment of the airfoil around the elastic axis,

Iα is the inertia moment of the airfoil around the elastic axis, and khh and kαα are the bending

stiffness and torsional stiffness, respectively. The pressure and viscous forces acting on the

vibrating airfoil immersed in fluid result in the lift force L(t) and the torsional moment M(t)

L = − l

∫

ΓWt

2∑

j=1

τ2jnj dS, M = l

∫

ΓWt

2∑

i,j=1

τijnjr
ort
i dS, (8)

h

α EA

T

L(t)M(t)

U

Fig. 2. The elastic support of the airfoil on translational and rotational springs (left) and the computa-

tional domain for the channel flow over DCA profile (right)
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where

τij = ρ

[
−pδij + ν

(
∂vi

∂xj
+

∂vj

∂xi

)]
, rort

1 = −(x2 − xEA2), rort
2 = x1 − xEA1. (9)

By τij we denote the components of the fluid stress tensor, δij denotes the Kronecker symbol,

n = (n1, n2) is the unit outer normal to the domain occupied by surrounding fluid Ωt on ΓWt

(pointing into the airfoil) and xEA = (xEA1, xEA2) is the position of the elastic axis (lying in the

interior of the airfoil). Relations (8) and (9) define the coupling of the fluid dynamical model

with the structural model.

3. Numerical approximation

3.1. Time discretization

We consider a partition 0 = t0 < t1 < . . . < T, tk = kτ , with a time step τ > 0, of the time

interval [0, T ] and approximate the solution v(·, tn) and p(·, tn) (defined in Ωtn) at time tn by

v
n and pn, respectively. For the time discretization we employ a second-order two-step scheme

using the computed approximate solution v
n−1 in Ωtn−1

and v
n in Ωtn for the calculation of

v
n+1 in the domain Ωn+1 = Ωtn+1

.

We define for a fixed time t = tn+1 the function spaces for velocity and pressure

W = H
1(Ωn+1), X =

{
z ∈ W : z = 0 on ΓD ∪ ΓWtn+1

}
, Q = L2(Ωn+1).

We approximate the ALE velocity w(tn+1) by w
n+1 and set v̂

i = v
i ◦ Ati ◦ A−1

tn+1
(the

symbol ◦ denotes the composite function). The vector-valued functions v̂
i are defined in the

domain Ωtn+1
.

Then, on each time level tn+1, the second-order two-step ALE time discretization yields the

problem of finding unknown functions v
n+1 : Ωtn+1

→ R2 and pn+1 : Ωtn+1
→ R satisfying

the equations

3

2τ
v

n+1 +
(
w

n+1 · ∇
)
v

n+1−

−∇ ·
(
(ν + νT )S(vn+1)

)
+ ∇pn+1 =

4

2τ
v̂

n − 1

2τ
v̂

n−1, in Ωtn+1
(10)

div v
n+1 = 0, in Ωtn+1

and the boundary conditions (4a-c). Here, w
n+1 = v

n+1 − w
n+1. The problem (10) is then

weakly formulated in the standard form.

Problem 1 (Weak formulation of Navier-Stokes in ALE form) Find U = (v, p) such that

satisfies

a(U ; U, V ) = f(V ), for all V = (z, q) ∈ X ×Q, (11)
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and conditions (4a,c). The forms are defined

a(U∗; U, V ) =

(
3v

2τ
, z

)

Ω

+ c(wn+1;v, z) +

∫

ΓO

1

2
(v · n)+

v · z dS +

+

∫

Ω

1

2
(∇ · wn+1

D )v · z dx + ((ν + νT )S(v),∇z)
Ω
− (p,∇ · z)

Ω
+ (∇ · v, q)

Ω

f(V ) =

∫

Ω

4v̂n − v̂
n−1

2τ
· z dx −

∫

ΓO

prefz · n dS, (12)

U = (v, p), V = (z, q), U∗ = (v∗, p),

where Ω = Ωn+1, w̃ = v
∗ −w

n+1 and where the trilinear skew-symmetric form c is defined by

the relation

c(u;v,w) =

∫

Ω

[
1

2
(u · ∇)v · w − 1

2
(u · ∇)w · v

]
dx. (13)

3.2. Stabilized finite element method

In order to apply the Galerkin FEM, we approximate the spaces W, X , Q from the weak for-

mulation by finite dimensional subspaces defined over a triangulation T� of the domain Ωn+1.

We use the standard assumptions on the system of triangulation, cf. [1]. Here � denotes the

size of the mesh T�. The spaces W�, X� and Q� are formed by continuous piecewise linear

functions, i.e.

H� = {v ∈ C(Ωn+1); v|K ∈ P1(K) for each K ∈ T�},
W� = [H�]d , X� = W� ∩ X , (14)

Q� = {v ∈ C(Ωn+1); v|K ∈ P1(K) for each K ∈ T�}.
The couple of spaces X� and Q� does not satisfy the Babuška-Brezzi inf-sup condition (cf.

[14]), so to obtain a stable numerical scheme an additional stabilization needs to be applied, [7].

Moreover, the dominating convection requires further stabilization. Thus we shall use the fully

stabilized scheme, cf. ([6]).

We start with the definition of the local element rezidual terms Ra
K ,Rf

K in K ∈ T�

Ra
K(w;v, p) =

3v

2∆t
−∇ ·

(
(ν + νT )

(
∇v + (∇v)T

))
+ (w · ∇)v + ∇p, (15)

and

Rf
K(v̂n, v̂n−1) =

1

2∆t
(4v̂n − v̂n−1). (16)

The GLS stabilizing terms are then defined for any U� = (v, p) ∈ X� × Q�, V� = (z, q) ∈
X� ×Q� and U∗

�
= (v∗, p∗) ∈ X� ×Q�:

L(U∗
�
; U�, V�) =

∑

K∈T�

δK

(
Ra

K(wn+1;v, p),
(
w

n+1 · ∇
)
z + ∇q

)

K
,

F(U∗
�
; V�) =

∑

K∈T�

δK

(
Rf

K(v̂n, v̂n−1),
(
w

n+1 · ∇
)
z + ∇q

)

K
, (17)

where the function w
n+1 stands for the transport velocity, i.e. w

n+1 = v
∗ − w

n+1

D . Further we

define

P�(U�, V�) =
∑

K∈T�

τK(∇ · v,∇ · z)K . (18)
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The following choice of parameters is used

τK = νK

(
1 + Reloc +

h2
K

νK ∆t

)
, δK =

h2
K

τK

,

where νK = |ν + νT |0,2,K , hK denotes the local element size and the local Reynolds number

Reloc is defined as

Reloc =
h‖v‖K

2νK
.

With the use of the Galerkin terms, GLS terms and grad-div terms the stabilized discrete

problem can be formulated in the following way:

Problem 2 (GLS stabilized problem) The stabilized discrete problem: Find U� = (v, p) ∈
W� ×Q� such that v satisfies approximately the Dirichlet boundary conditions (4a-b) and the

equation

a(U�; U�, V�) + L(U�; U�, V�) + P�(U�, V�) (19)

= f(V�) + F(U∗
�
; V�),

holds for all V� = (z, q) ∈ X∆ ×Q�.

4. Flux corrected transport

The application of the finite element method for approximation of the k-omega turbulence

model is complicated due to the several facts: the nonlinearities on the right-hand side, bound-

ary conditions for ω, convection domination. In order to apply the finite element method and

to guarantee the positivity of the solution, we shall apply the flux corrected transport (FCT) in

the finite element context, [9]. In this paper we focus on description of the main idea of the

algorithm. We start with the definition of diffusive and antidiffusive fluxes in the finite element

context.

We consider the time dependent continuity equation

∂u

∂t
+ ∇ · (vu) = 0, (20)

in a two dimensional domain Ω with Lipschitz continuous boundary. Here, u = u(x, t) is

unknown function defined for any t ∈ [0, T ] and x ∈ Ω, v is a given transport velocity v ∈
C

1(Ω).
In order to approximate equation (20), we assume that the domain Ω is a polygonal domain

triangulated by an addmissible triangulation T�. The functions u = u(·, t) are approximated by

piecewise linear continuous functions, i.e.

u(x, t) =
∑

k

uk(t)ϕk(x),

where uk = uk(t) are nodal values of the function u at vertices of the triangulation T�, ϕk are

the standard vertex functions, cf. [1]. This approximation leads to the system of differential

equations

MC u̇ = Ku, (21)
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where u = (ui) is vector of the nodal values, MC = (mij) is the mass matrix and K = (kij) is

the discrete transport operator, i.e.

mij =

∫

Ω

ϕi(x)ϕj(x) dx, kij =

∫

Ω

∇ · (v(x)ϕi(x)) ϕj(x) dx.

The finite element methods produce non-physical undershoots and overshoots in the vincin-

ity of steep gradients. On he other hand, upwind-like approximations are non-oscillatory but

overly diffusive. The modern schemes use flux or slope limiters to switch between such linear

approximations in an adaptive way. Algebraic constraints are usually applied: it is known that

semi-discrete scheme of the form

du

dt
=

∑

j �=i

cij(uj − ui), cij ≥ 0 (22)

is local extremum diminishing (LED). The time disretized scheme of equation (22) remains

LED if for every solution update from un at time instant tn the new solution un+1 satisfies an

equivalent algebraic system

Aun+1 = Bun,

where A is an M-matrix and B has only non-negative entries.

The above criteria can satisfied with the “discrete upwinding”: replace the consistent mass

matrix MC by lumped mass matrix ML, i.e.

ML = diag mi, mi =
∑

j

mij .

and by adding an artificial diffusion operator D to operator K to eliminate all negative off-

diagonal coefficients of K, for instance we choose D such that

dji = dij = max(−kij , 0,−kji), for i �= j, dii = −
∑

j �=i

dij.

The linear LED scheme then reads

MLu̇ = Lu, L = K + D.

The artificial diffusion operator D is symmetric matrix with zero row and column sums, so that

can be rewritten as

(Du)i = −
∑

j �=i

fd
ij , f

d
ij = dij(ui − uj) = −f d

ji,

where fd
ij are the diffusive fluxes. The original scheme can be written in this context as

MLu̇ = Lu − Du + (ML − MC)u,

or componet by component

miu̇i =
∑

j

lijUj +
∑

j �=i

fij , fij = fd
ij + mij(u̇i − u̇j) = −fji, (23)

where mi are coefficients of the lumped mass matrix ML = diag(mi), mi =
∑

j mij . In order

to prevent the oscillations of the solution, the fluxes fij are multiplied by suitable correction

factors

f ∗
ij = αijfij , where 0 ≤ αij ≤ 1.

Inserting these fluxes into (23) we get the nonlinear combination of the low order scheme

(αij = 0) and the original higher order scheme (αij = 1). More detailed description can be

found in [9].
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5. Numerical results. Conclusion

5.1. Flux corrected transport tests

First, the developed flux corrected transport scheme was tested for finite element implementa-

tion in 1d (see Figs. 3–4) for constant transport velocity, i.e. numerical solution of equation

ut + ux = 0

was computed with ∆t = 10−3 and T = 0.5. The exact solution in this case is transported from

the left to the right. The previously described procedure was applied on this case on matrices

arising from the finite element discretization on equidistant mesh with ∆x = 10−2. Four differ-

ent initial conditions were prescribed. The numerical solutions are shown in Figs. 3–4: by the

dashed line the initial condition is shown, the dotted line denotes the exact solution at T = 0.5
and by the solid line the numerical approximation by the finite element method together with

FCT limiting is shown. In all cases, the solution is in agreement with other method and shows

that the method is well applicable for the transport problems.
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Fig. 3. The numerical solution of transport problem by FCT scheme: Convection of rectangle (left)

and semiellipse (right). Dashed line – initial condition, dotted – exact solution, solid line – numerical

approximation
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Fig. 4. The numerical solution of transport problem by FCT scheme: Convection of triangle (left) and

parabolla (right). Dashed line – initial condition, dotted – exact solution, solid line – numerical approxi-

mation

140
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Fig. 5. The 2d numerical solution of transport problem by FCT scheme: the exact solution and the initial

approximation (left) and numerical solution(right)

Further, a problem in 2d was solved: Find u : Ω �→ R such that

ut + ∇ · (vu) = 0,

where v(x, y) = (0.5 − y, 0.5 − x) is divergence free velocity. The exact solution is constant

on each circle trajectory with the center at point [0.5, 0.5] and periodic in time with the period

T = 2π. Thus the exact solution after one period 2π is the same as the initial condition.

Numerical result of this test problem is shown in Fig. 5 for the inital condition u0(x, y) = 1 for

x ∈ [0.4, 0.6] and y ∈ [0.2, 0.4]. In the numerical solution a spreading the jump, is observed

due to added artificial diffusion, but the numerical solution still does not have any undershoots

or overshoots.

5.2. Aeroelastic simulations

The numerical results of aeroelastic simulations are shown for the case studied in [4]. The

following values of structural parameters were used

m = 0.086 622 kg, Sα = −0.000 779 673 kg · m, Iα = 0.000 487 291 kg · m2,

khh = 105.109 N · m−1, kαα = 3.695 582 N · m · rad−1, l = 0.05 m, c = 0.3 m.

The elastic axis is located at 40 % of the airfoil, ρ = 1.225 kg · m−3, ν = 1.5 · 10−5 m · s−2.

The numerical computations were performed for airfoil NACA 0012. The aeroelastic response

in h and α is shown in Figs. 6–11. The numerical simulation agrees with the linear Theodorsen

theory, which predicts the critical velocity U∞ = 37.7 m/s. For velocities lower than 37 m/s

the aeroelastic does not predict any instability. For velocity 45 m/s the typical flutter type of

instability can be observed.

5.3. Conclusion

In this paper a numerical method for approximation of aeroelastic problems was described. It is

based on application of stabilized finite element method on Reynolds Averaged Navier-Stokes

equations, solution of system of ordinary differential equations for structure motion and cou-

pling algorithm. Moreover, the turbulence is modelle by two equation k − ω turbulence model.

In order to guarantee the monotonicity of approximation of k, ω, the idea of flux corrected trans-

port. The numerical solution of several test cases is shown. Further, the developed numerical

scheme was applied on an aeroelastic problem. The critical speed is correctly predicted and

post-flutter behaviour is shown.
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P. Sváček / Applied and Computational Mechanics 2 (2008) 133–144

0 0.5 1 1.5 2
−10

−8

−6

−4

−2

0

2

4

6

8

10

t[s]

h
[m

m
]

0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

2

3

4

5

t[s]

α
[o

]
Fig. 6. Aeroelastic response for far field velocity U∞ = 10 m/s
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Fig. 7. Aeroelastic response for far field velocity U∞ = 20 m/s
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Fig. 8. Aeroelastic response for far field velocity U∞ = 25 m/s
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P. Sváček / Applied and Computational Mechanics 2 (2008) 133–144

0 0.5 1 1.5 2
−10

−8

−6

−4

−2

0

2

4

6

8

10

t[s]

h
[m

m
]

0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

2

3

4

5

t[s]

α
[o

]
Fig. 9. Aeroelastic response for far field velocity U∞ = 35 m/s
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Fig. 10. Aeroelastic response for far field velocity U∞ = 38 m/s
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Fig. 11. Aeroelastic response for far field velocity U∞ = 45 m/s
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