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Abstract

Vertical dynamic properties of the ŠKODA 21 Tr low-floor trolleybus were investigated on an artificial test track

when driving with a real vehicle and when simulating driving with a multibody model along a virtual test track.

Driving along the artificial test track was aimed to determine vertical dynamic properties of the real trolleybus and

on the basis of them to verify computer trolleybus models. Time histories and extreme values of the air springs rel-

ative deflections are the monitored quantities. Due to differences of the experiments and the computer simulations

results the influences of the characteristics of the spring-damper structural elements of the axles suspension and

the radial characteristics of the tires used in the trolleybus multibody model on the extreme values of the monitored

quantities are evaluated.
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1. Introduction

Optimum dynamic properties of the vehicle intended for the public transport can usually be

achieved in dependence on its structural design by the proper choice of axles suspension ele-

ments (in some cases in combination with the proper choice of seats suspension elements). The

design must be the compromise of the requirements for the vehicle behaviour during driving

manoeuvres, for the riding comfort and for the body and the chassis parts lifetime when driving

along an uneven road surface, and for the passenger safety (e.g. [26]).

Driving along the uneven road surface can reveal a lot about the vehicle vertical dynamic

properties and about the suitability of the applied axles suspension elements. Especially time

histories of relative deflections of springs, relative velocities in the shock absorbers, stress acting

in the axles radius rods or radius arms and acceleration in various points in the vehicle interior

are the monitored quantities [8]. On the basis of those quantities it is possible to determine the

forces acting in the suspension elements of axles, which can be utilized for the stress analysis

of structures, for the prediction of the fatigue life of the body and the chassis parts of the tested

vehicle. The frequency domain responses of the acceleration in the vehicle interior can be used

for the assessment of a riding comfort. In order to evaluate the vertical dynamic properties

of the vehicle when driving along the uneven road surface it is necessary to know the surface

characteristics, i.e. statistical properties of unevennesses of the surface or just its geometry

(e.g. [26]). The geometry of the uneven surface profile of the run through the section is known

in test polygons. Test tracks, which are created by distributing artificial vertical unevennesses

(obstacles) on the smooth road surface, also are often used (e.g. [13]).
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Fig. 1. The ŠKODA 21 Tr low-floor trolleybus

Vertical dynamic properties of the ŠKODA 21 Tr low-floor trolleybus (see fig. 1; its design

concept is described in [22]) were investigated on the artificially created test track when driving

the real vehicle and when simulating driving with the computer models along the virtual test

track. Driving along the artificial test track was aimed to determine the vertical dynamic prop-

erties of the real trolleybus and on the basis of them to verify computer models. The verified

computer models will be further utilized for the simulations of driving along the virtual uneven

road surfaces, which will be generated on the basis of the statistical evaluation of the measured

quantities in the course of driving along the real city road with the real trolleybus [11, 12].

This article continues the work presented in [10, 17, 21, 22, 23, 24, 25]. Those papers

deal with the influences of characteristics of various spring-damper structural elements and

of the multibody models complexity on the air springs relative deflections determined by the

simulations with the selected multibody models of the empty trolleybus. The extreme values

of time histories of the air springs relative deflections are compared. It follows from those

papers that the results of the simulations and the experimental measurement are not completely

identical, especially in the rebound stage of the rear axle suspension. Therefore the sensitivity

analysis of the influence of various model parameters has to be performed.

Usually the sensitivity analysis is connected with the problems of the parameter selection for

design optimization and with the problems of gradient calculations in gradient-based optimiza-

tion procedures [6]. The sensitivity analysis is also a tool used in many applications in order

to qualitatively analyse the behaviour of a chosen system. The general recursive approach to

the calculation of sensitivities of multibody systems by means of direct differentiation is shown

in [1]. The extension of this analytical approach for rigid-flexible systems is presented in [5].

However, in most practical cases of real multibody systems, the numerical approaches are the

most suitable and efficient methods. Handling properties of road vehicles were investigated

using the sensitivity analysis in [4]. The sensitivity analysis for the tyre wear evaluation was

employed in [3]. Another application in rail vehicles and pantograph interaction can be found

in [14].

The results of the sensitivity analyses of the multibody model of the ŠKODA 21 Tr low-floor

trolleybus [20] created in the alaska 2.3 simulation tool [18] at simulating driving along the

virtual test track are given in [23] and [25]. The parameters of the sensitivity analysis presented

in [23] are the loading characteristics of the decisive spring-damper structural elements of the
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axles suspension and the influence of changes of those characteristics on the extreme values

of relative deflections of the air springs is monitored. The results of the sensitivity analysis of

the influence of the different tire inflation are given in [25]. Sensitivity analyses in both cases

were performed during the simulations of the trolleybus drive along the real test track at the

trolleybus speed 44.13 km/h. The possibility of bounce of the tire from the road surface, which

really occurs in the course of the vehicle relative speeding along the relatively demanding test

track, is considered in the trolleybus multibody model. The influence of the change in the radial

characteristics of the tires is not fully deterministic in the course of the simulation of drive along

this test track and the results of the performed sensitivity analyses would be biased.

As it is possible to compare the influence of the loading characteristics of the spring-damper

structural elements of the axles suspension and the radial characteristics (force-deformation

characteristics and damping coefficient) of the tires on the results of the simulations, the speed

of 10 km/h, at which the tire bounce from the uneven road surface does not occur yet, is chosen

at simulating the trolleybus drive along the test track. The contribution of this paper is mainly

in the complex analysis of the influences of various characteristics on the trolleybus vertical

dynamics investigated by means of the comprehensive multibody model.

2. Experimental measurements with the real trolleybus

The experimental measurements on the empty ŠKODA 21 Tr low-floor trolleybus were carried

out in the depot of Hradec Králové Public City Transit Co. Inc. (Dopravnı́ podnik města Hradce

Králové, a. s.) in October 2004.

Fig. 2. The standardized artificial obstacle

The test track consisted of three standardized artificial obstacles (in compliance with the

Czech Standard ČSN 30 0560 Obstacle II: h = 60 mm, R = 551 mm, d = 500 mm — see

fig. 2) spaced out on the smooth road surface 20 meters one after another. The first obstacle

was run over only with right wheels, the second one with both and the third one only with left

wheels (see fig. 3).

In the course of the test driving the already mentioned time histories of the relative displace-

ments between the axles and the chassis frame were recorded (altogether four displacement

transducers, which were placed in the lateral direction approximately on the level of the air

springs: on the left front half-axle, on the right front half-axle, on the rear axle to the left and

on the rear axle to the right, were used). Further time histories of stress on twelve places of
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Fig. 3. A track scheme

the trolleybus structure and time histories of the vertical acceleration on seven places of the

trolleybus structure were recorded during the test drives. The records of the time histories of

the measured quantities were made during three test drives. Trolleybus speed moved within the

range from 43 km/h to 47 km/h at that drives.

3. Trolleybus multibody model

In order to simulate drives along the virtual test track, which corresponded to the artificially

created test track in the depot of Hradec Králové Public City Transit Co. Inc., the most complex

multibody model [20] (see fig. 4) created in the alaska 2.3 simulation tool [18] is used to inves-

tigate the influences of the loading characteristics of the spring-damper structural elements of

the axles suspension and the radial characteristics of the tires.

Fig. 4. Visualization of the multibody model of the ŠKODA 21 Tr low-floor trolleybus in the alaska 2.3

simulation tool

3.1. Structure of multibody model

The multibody model of the ŠKODA 21 Tr low-floor trolleybus is formed by 35 rigid bodies

and two superelements (2×4 bodies) mutually coupled by 52 kinematic joints. The rigid bodies

correspond generally to the vehicles individual structural parts. The superelements correspond

to the flexible parts of the chassis frame. The number of degrees of freedom in kinematic

joints is 136. Rigid bodies are defined by inertia properties (mass, centre of mass co-ordinates

and moments of inertia). Air springs and hydraulic shock absorbers in axles suspension and
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bushings in the places of mounting some trolleybus structural parts are modelled by connecting

the corresponding bodies by nonlinear spring-damper elements [18]. When simulating driving

along the uneven road surface the contact point model of tires is used in the multibody model;

radial stiffness and radial damping properties of tires are modelled by nonlinear spring-damper

elements considering the possibility of bounce of the tire from the road surface [16].

3.2. Characteristics of spring-damper structural elements

Dynamic properties of road vehicles are most influenced by the suspension springs, shock ab-

sorbers, bushings and tires (e.g. [2]). In order that vehicle virtual computer model should re-

liably approximate kinematic and dynamic properties of the real vehicle, knowledge of the

characteristics of those decisive spring-damper structural elements is the important presump-

tion (besides the proper approach to the model creating and knowledge of all the substantial

vehicle parameters).

The characteristics of the air springs (force in dependence on deflection) of the ŠKODA

21 Tr trolleybus were determined on the basis of the test reports of ŠKODA OSTROV s. r. o.

and of the Hydrodynamic Laboratory of the Technical University of Liberec [20].

In the multibody model of the ŠKODA 21 Tr trolleybus the damping force dependence on

the relative velocity of compression and rebound of the shock absorbers is used as the shock

absorbers characteristics. The characteristics were measured by BRANO a. s. (the shock ab-

sorbers producer) on the Schenck testing device [21].

In the shock absorbers structure rubber bushings are used in the places of mounting to the

chassis frame and to the axles of the trolleybus [21]. In the multibody model the bushings

are modelled by means of spring elements, the nonlinear force-deformation characteristics of

which were determined under the laboratory conditions (they are taken over from [15]) and

which are coupled in series to the damping elements representing the hydraulic shock absorbers

themselves.

The review of the tire models used in the field of vehicle multibody dynamics can be found

in the monograph [19]. The most important tire characteristics needed for solving the vehicle

vertical dynamics tasks are their radial properties [2]. The used tire model for the vertical

dynamics is the already mentioned contact point model based on the tire substitution by a single

parallel spring and a damper. Radial stiffness and radial damping properties of the tires were

experimentally measured in the Dynamic Testing Laboratory ŠKODA VÝZKUM s. r. o. The

evaluation of the measured quantities for the purpose of generation of multibody models is

given in [9].

4. Results of the simulations

As it has been already stated the results of the simulations at speed 10 km/h (at which the tire

bounce from the uneven road surface does not occur yet) during simulating the trolleybus drive

along the test track are given in this article.

When simulating movement with the multibody models, nonlinear equations of motion,

which are solved by means of numerical time integration, are generated. Results of the simu-

lations were obtained using the Shampine-Gordon integration algorithm [18]. Fig. 5 shows the

time histories of the air springs relative deflections at simulating the test drive with the trolley-

bus multibody model (with the consideration of the MICHELIN tire radial characteristics model

at 100 % inflation — [25]). The extreme values of the air springs relative deflections read from

the time histories are in tab. 1.
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Fig. 5. Time histories of the front right and the rear right air springs relative deflection when simulating

the test drive with the trolleybus multibody model at speed 10 km/h

Table 1. Extreme values of the relative deflections of air springs

Obstacle Value Extreme values of relative deflection of air springs [mm]

Right front Left front Right rear Left rear

1st min. −53 −9 −57 −9

max. 18 6 12 8

2nd min. −52 −51 −66 −68

max. 26 25 24 23

3rd min. −10 −53 −9 −58

max. 7 17 8 12
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5. Sensitivity analysis of the multibody model

The sensitivity analysis of the influence of the change of the characteristics of the spring-damper

structural elements of the axles suspension and the radial characteristics of the tires in the trol-

leybus multibody model is performed.

The sensitivity analysis of the influences of the selected parameters characterizing the sys-

tem behaviour for the change in various system parameters is applied especially in the field

of optimization, identification and correction of the mathematical models of the investigated

systems. By means of that it is possible to determine which parameters influence the change

of the selected quantities most significantly and subsequently to select the parameters as the

optimizing ones and to try to define them more precisely or to correct them.

As it was already mentioned the results of the computer simulations and the experimen-

tal measurements with the ŠKODA 21 Tr low-floor trolleybus, compared on the basis of the

evaluation of the accordance of extreme values of the time histories of the air springs relative

deflections with the measured extreme values of the relative displacements during the run along

the test track, are not identical especially in the course of the rebound stage of the rear axle sus-

pension (e.g. [23]). It is obvious that this fact is influenced by the course of the characteristics

of the spring-damper structural elements. That is why the sensitivity analysis of the influences

of the force-velocity characteristics of the hydraulic shock absorbers, the force-deflection char-

acteristics of the air springs and the force-deformation characteristics of the shock absorbers

bushings on the extreme values of the time histories of the air springs relative deflections was

performed in [23] and the results of the sensitivity analysis of the influence of the different tire

inflation were given in [25]. As it has been already stated it is possible to compare the influence

of the spring-damper structural elements of the axles suspension and the radial characteristics

of the tires on the results of the simulations, the speed of 10 km/h, at which the tire bounce from

the uneven road surface does not occur yet, is chosen at simulating the trolleybus drive along

the test track.

The influence of the changes in the parameters of the characteristics of the spring-damper

structural elements and the radial characteristics of the tires on the extreme values of the relative

deflections of all the air springs when running over each obstacle of the artificial test track is

monitored.

5.1. The sensitivity analysis of the dynamic response of the trolleybus multibody model

Like in most cases of the complicated multibody systems it is not possible to derive analytical

relations to express the dynamic response of the given multibody model to the general exci-

tation. Neither it is possible to derive analytical formulas to calculate the sensitivity of the

dynamic response to the change in the system parameters. In order to express the partial deriva-

tive of the certain monitored quantity y = y(p) regarding the vector of the S selected parameters

of the system p = [p1, p2, . . ., pS]T it is necessary to use relations for the numerical calculations

of sensitivity, so called difference formulas [7].

Change ∆y of the monitored quantity y can be expressed with a small change ∆p of the

initial parameters vector p
0
, when the specific conditions of the continuity of derivations of the

monitored quantity y are fulfilled, using the Taylor formula (approx. by two terms)

∆y = y (p
0
+ ∆p) − y(p

0
) =

S∑

j=1

∂y(p
0
)

∂pj

· ∆pj. (1)
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After the modification of relation (1) it is obtained

∆y

y(p
0
)

=

S∑

j=1

∂y(p
0
)

∂pj

·
pj0

y(p0)
·
∆pj

pj0

. (2)

From relation (2) it is possible to get relative sensitivity ∆ȳj of quantity y to the change in

parameter pj

∆ȳj =
∂y(p

0
)

∂pj

·
pj0

y (p0)
. (3)

Partial derivative in relation (3) is approximated using the finite difference

∂y(p
0
)

∂pj

=
y(p

0
+ ∆pj) − y(p

0
)

∆pj

, (4)

where vector ∆pj = [0, . . ., 0, ∆pj, 0, . . ., 0]T .

Then differential relation for the calculation of relative sensitivity ∆ȳj of quantity y to the

change in parameter pj , using relations (3) and (4), can be written in the final form

∆ȳj =
y(p

0
+ ∆pj) − y(p

0
)

∆pj

·
pj0

y(p
0
)
. (5)

Thus in case of the sensitivity analysis of the ŠKODA 21 Tr trolleybus multibody model when

driving along the artificial test track the relative deflections of the air springs of axles are succes-

sively the monitored quantities y and the relative changes in the characteristics of the decisive

spring-damper structural elements are the vectors of parameters p.

5.2. Sensitivity analysis results

The loading characteristics of the decisive spring-damper structural elements of the axles sus-

pension and the tire radial characteristics were the parameters of the sensitivity analysis, during

which the influence of parameter changes of those characteristics on the extreme values of rel-

ative deflections of the air springs was monitored. The results of the sensitivity analysis in the

course of the simulations with the multibody model of the ŠKODA 21 Tr low-floor trolleybus

show that the influence of the force-velocity characteristics of the hydraulic shock absorbers

and the force-deflection characteristics of the air springs have greater influence on the results

of driving along the virtual test track than the force-deformation characteristics of the tires. In

contradiction to [23] the force-deflection characteristics of the front air springs have greater in-

fluence on the extreme values of the time histories of the air springs relative deflections than the

force-velocity characteristics of the front hydraulic shock absorbers. It is the other way round

(the same as in [23]) with the characteristics of the rear air springs and the rear shock absorbers.

In comparison with [25] the tire radial force-deformation characteristics have not a significantly

greater influence on the results of driving along the virtual test track than the tire radial damping

characteristics and the rear tire radial force-deformation characteristics considerably influence

even the extreme values of the time histories of the front air springs relative deflections. Those

differences in results are caused by the fact that at speed 10 km/h the tire-road surface contact is

kept during the run over the obstacles of the test track. The force-deformation characteristics of

the shock absorbers bushings have, as it was found also in [23], a minor influence on the results

of the simulations.
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Fig. 6. Relative sensitivity of relative deflection of the front air springs (right and left) on the change in

the individual parameters

Fig. 7. Relative sensitivity of relative deflection of the rear air springs (right and left) on the change in

the individual parameters

The relative sensitivities of relative deflections of the air springs on the change in the indi-

vidual parameters in the course of the simulations of driving along the virtual test track with

the most complex multibody model (e.g. [20]) in the alaska 2.3 simulation tool is given in

fig. 6 and fig. 7 (Sha = influence of the force-velocity characteristics of the shock absorber;

Spr = influence of the force-deflection characteristics of the air spring; Bush = influence of the

force-deformation characteristics of the shock absorber bushing; Tst = influence of the tire ra-

dial force-deformation characteristics; Tdm = influence of the tire radial damping coefficients;

1st to 3rd Obst = obstacle sequence; Comp = compression of air springs; Reb = rebound of air

springs).

6. Conclusion

The vertical dynamic properties of the ŠKODA 21 Tr low-floor trolleybus were investigated on

the artificially created test track when simulating driving along the virtual test track with the

most complex multibody model [20] created in the alaska 2.3 simulation tool [18].
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The sensitivity analysis of the influence of the change of the characteristics of the spring-

damper structural elements of the axles suspension and the radial characteristics of the tires in

the trolleybus multibody model was performed. The results of the sensitivity analysis in the

course of the simulations with the multibody model of the ŠKODA 21 Tr low-floor trolleybus

showed that the influence of the force-velocity characteristics of the hydraulic shock absorbers

and the force-deflection characteristics of the air springs have greater influence on the results

of driving along the virtual test track than the force-deformation characteristics of the tires.

Results of the simulations at the trolleybus multibody model speed 10 km/h, during which the

loss of the tire-road surface contact does not occur at driving over the obstacles of the test track

(in contradiction to [23] and [25] at speed 44.13 km/h) partly differ from the results mentioned

in [23] and [25]; especially in case of the front axle suspension it was not confirmed, that the

results of driving along the virtual test track influence the force-velocity characteristics of the

hydraulic shock absorbers more considerably than the force-deflection characteristics of the air

springs.

In the nearest future the influence of the same characteristics of the decisive structural

spring-damper elements during driving along the test track at the multibody model speed

44.13 km/h, i.e. the same as in [23] and [25], will be investigated. To be able to compare

the influence of the characteristics of the spring-damper structural elements of the axles suspen-

sion and the radial characteristics of the tires, i.e. in order that the loss of the tire-road surface

contact may not occur, the height of the artificial obstacles will be virtually decreased.
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[21] P. Polach, M. Hajžman, M., Influence of the Hydraulic Shock Absorbers Model in Trolleybus

Multibody Simulations on the Suspension Deformations and Comparison with the Experimen-

tal Results, Proceedings of the National Conference with International Participation Engineering

Mechanics 2005, Svratka, Institute of Thermomechanics AS CR, 2005, CD-ROM.
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Science, Besançon, Comité Français pour la Promotion de la Science des Mécanismes et des
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