Oponentský posudek k práci „Počítačové modelování napouštění reaktivního plynu pro vysokovýkonové pulzní magnetronové naprašování oxidů kovů“ Milady Krejčové

V posledních několika letech pracovníci naši katedry fyziky vyvinuli nový důmyslný řízený systém pro reaktivní depozice pomocí vysokovýkonového pulzního magnetronového naprašování (HiPIMS). Tento systém je navržen tak, aby se vzájemně kompenzovaly problémy, které mají reaktivní naprašování a HiPIMS odděleně. Výsledkem jsou depozice hustých stehionmetrických oxidů s depozičními rychlostmi řádově většími než v jiných systémech a možnost depozice oxinitridů, které jiné systémy vůbec nejsou schopny připravit. Pro činnost systému je důležitý způsob napouštění kyslíku trubičkami před terčem tak, aby vznikl přetlak směrem k substrátu oproti směru k terči. Bohužel možnosti měřit tlak lokalně a zejména ve výboji jsou omezené, ale můžeme si pomoci počítačovými simulacemi. Milada ve své práci udělala první krok—simulaci proudění a tlaku kyslíku bez výboje.

Svou práci Milada napsala jasně a přehledně až na občasné nevyhnutelné překlepy a drobné nepřesnosti; ty, které jsem našel, přikládám v příloze. V úvodu, tedy první kapitole, nejprve během jedné stránky byla schopná zasadit svoji práci do širšího kontextu plazmových technologií. V druhé kapitole prokázala znalost současného stavu měření tlaku, reaktivního naprašování s jeho dvěma mody a hysterezním přechodem, HiPIMS se zpětným tokem rozprašených ionizovaných částic na terč a konečně zde vyvinutého systému pro reaktivní HiPIMS. Ve třetí kapitole popisuje metody modelování proudění plynu, přičemž se postupně zaměřila na molekulární režim a v něm na stochastické metody přímé simulace Monte Carlo s popisem vztahů pro srážky molekul mezi sebou a se stěnami a s výsledky z literatury pro HiPIMS, které vyšly lépe než kontinuální simulace.

K práci mám jen několik drobných otázek:

1. Můžeš podrobněji vysvětlit, kde je v DSMC náhodnost? Je nějaká souvislost s Metropolisovým MC?
2. Obr. 6.8: Proč nebyla změna teploty taky v testovací trubce? Tepelná energie se mění na kinetickou energii proudění—není to v rozporu s druhou větou termodynamiky?
3. Čekal bych, že při rozšíření oblasti poklesne tlak vůně. Proč na substrátu naopak naroste?
Celkově práce splnila všechny cíle, takže ji doporučuji k obhajobě a po obhájení navrhuji známku výborně.

V Plzni 25.8.15

Šimon Kos

Str. VI: „Ve zvolených metodách zpracování popisuje navržení testovací úlohy - proudění v trubce a také navržením simulace napouštění reaktivního plynu do vakuovalé komory pomocí metody Direct Simulation Monte Carlo.“ Má být „navržení“ i podruhé?

„Ve výsledcích jsou porovnávány teoretické hodnoty tlaku, rychlosti a průtoku pro proudění argonu v trubce s hodnotami ze simulace. “ Co jsou „teoretické“ hodnoty když ne je simulace? Možná by bylo dobré říct, že trubka má analytické řešení: „...navržení testovací úlohy s analytickým řešením—proudění v trubce...“ a pak „...porovnávány teoretické hodnoty analytického řešení pro tlak, rychlost a průtok proudění argonu v trubce s hodnotami ze simulace.“

„Dále byl studován vliv průtoku a vzdálenosti napouštěcí trubky od terče (substrátu) s orientací otvoru směrem k terči pro simulaci napouštění reaktivního plynu (kysliku) do vakuovalé komory. “ Vliv na simulaci? Nebo na výsledky simulace?

Str. 1: „Jedním z faktorů, který určuje konkrétní stehoniometrii produktu, je parcíální tlak reaktivního plynu. “ Má být „které určují“?

Str. 4: typ 1 a typ II, kdežto na obrázku je typ 1 a typ 2.

Str. 5: „anoda slouží pro uzavření siločar“ mělo by se říct „elektrických“?

Str. 6: „poissoned“ má být „poisoned“.

Str. 8: „Rychlost odcivy systému optického emisního spektroskopu je řádově 10 ms, jinak není možné včasně reagovat na změny ve vakuovalé aparaturc. “ Možná lépe říct „jinak by nebylo...“

„Proud se zastaví odpojením kondenzátorů od cívky, a tím se zabrání dalšímu náběhu cívky od výboje.“ Myslí „náběhení kondenzátorů“? Možná lépe říct „indukce“

Str. 10: „Tyto rané HiPIMS zdroje je možné charakterizovat pomocí maximálního počítadlo napětí v řádu kilovoltů následovaný pokolem na několik stovk voltů, což je typické operační napětí při běžném magnetronovém napájáni [9]. “ Má být „následovaného“

Str. 11: „Příklady použití vysokovýkonového reaktivního pulzního magnetronového rozprašování“ Sjednotit počet „n“ ve „vysokovýkonový“ na různých místech práce.

„Další výhodou využití HiPIMS je snížení teploty substrátu během přípravy hliníku ve fázi k na 430 °C oproti zhruba 1000 °C, kterých je zapotřebí při chemické depozici [10].“ Myslí „oxidu hliníku“?

Str. 13: „Grafické znázornění používaných matematických modelů pro kontinuálního i molekulárního proudění v závislosti na Knudsenovo čísle je zobrazeno na obr. 3.1. “ Má být „pro kontinuální i molekulární“ a „Knudsenově“?

 Boltzmannova rovnice—napříkladá spojité rozdělení, tj. kontinuum?

Str. 14: Obrázek 3.1, proč je Eulerova rovnice pro menší hodnotu Ks než Navier-Stokesova?

Str. 15: „Další problém při řešení představují poruchy (perturbace). “ Myslí poruchy vůči rovnováze?
V rovnicích použit velké C pro rychlost jako na str. 13.

Rovnice (3.6)... rozvoj do řady v Kn, které je ale velké v molekulárním režimu. Opět, neznámena to, že pro Boltzmannovu rovnici potřebujeme naopak kontinuum?

Str. 16: Proč maxwellovská rozdělovací funkce délá BGK nelineární a proč integro-diferenciální?

Str. 17: Proč MD funguje jen při vysoké hustotě?

Str. 20: Proč je jemnější stři prostorové než časové podle (3.12)? — překlop

„Důvodem je omezení vzdáleností, na kterou se srážky odehrájí.“ Má být „na které“?

„Při předpokladu nepružných srážek je možné použít například Larsenovo-Borgnakkeho modelu.“ Má být „Larsenův“, tak jako na následující stránce?

Str. 21: Index viskozity — čím je větší oα, tím je větší η, takže d klesá rychleji s rychlostí c. Je to tak správně?

Str. 23: „V [3] se autoři zabývaly porovnáváním řešení získané metodou DSMC implementovanou v programovém balíku OpenFOAM...“ Asi má být „získaného“.

Proč FLUENT dá turbulence a DSMC ne?

Str. 26: Co jsou 2D skicey? Co je typ kót a čím je některý nejvzdělenější? Co jsou modely?

Str. 27: Gms h vytváří stři sám nebo js to udělala ručně z těch základních tvarů?

Str. 28: „Programový balík OpenFOAM využívá objektově orientované programování...“ Má být „objektové“?

Rozumím dobře, že OpenFOAM umí jak kontinuální tak molekulární režim? Uživatel si vybere? DSMC je diskrétní metoda?

Na str. 18 píšeš, že diskretizační metody jsou založeny na buněčných automatech a nehodí se pro inženýrské výpočty. Navíc co zmíněna stři pro pohybuji nečástice?

„Program poskytuje také nástroje pro tvorbu geometrie a výpočetní sítě, ty jsou ale vhodné pro tvorbu jednodušší geometrie. Pro tuto práci byla použita možností importu sítě generované v programu Gms h.“ Má být „geometrie“ a „možnost“?

„....nebo je možné si vytvořit vlastní pomocí programovacího jazyka Python.“ Má být „možné“?

Co je výpočetní vlákno? Porovnávání se těžko dělá v ParaView, tak jsi ho četla v Matlabu?

Str. 30: „Byla Předpokládána trubka o délce 1 metru a průměru 10 cm. Má být „předpokládána“. Možná dobře sjednotit označení jednotek, zda zkratka nebo celé slovo.

Dobré, že jsi napřed simulovala něco, pro co je analytické řešení, tj. trubka.

Str. 31: Co je referenční teplota v Larsen-Borgnakke modelu? Souvisí nějak s referenční rychlostí v (3.13)? Jaký je vztah mezi Relaxation collision numer a podílem neelastické složky? Podíl = (E_r-E_p)/E_p, Pak nemůže být 5, tj. větší než 1.

Též str. 38: vysvětlí nulovou rychlost proudění na stěně.

Str. 33: dobré, že jsi uvedla předpoklady pohromadě.

*Str. 34: proč jsi využila rovinu symetrie kolmou na trubku a ne rovnoběžnou? Dály by se využít obě?

Rozšířená geometrie: zvětšení poloměru o 2cm a dékly pod terá a nad substrát taky o 2 cm? Ale na obr. 5.6 vyjadřuje ty vzdálenosti jako různé. Na obr. 5.7 vyjadřují jako stejně.

Str. 35: Jak jsi zvolila číslice za desetinnou čárkou v kótách? Kvůli odmocnění z pí?

Str. 40: Proč tlak vychází systematicky vyšší v simulaci než v teorii, kdežto pro rychlost a prátop se to otočí někde kolem 0,2Pa?

Proč může v rovnici (6.4) obyčejnou derivaci podle x a v dodatku A parcíální?

Proč je zkrácen graf teorie, kde spočteš derivace přesně?
„...kde p a v jsou teoretické průběhy tlaku a teploty...“ Myslíš „tlaku a rychlostí“?

Str. 43: „Při porovnání obrázků 6.13a a 6.4b (zaměřeně zvolená stejná barevná škála) můžeme vidět výrazný rozdíl v parciálních tlacích kyslíku, což odpovídá navýšení průtoku z 0,5 na 10 sccm.“ Je 6.13a tentýž jako 6.4a? V tom případě není lepší se odvolat na 6.4a? Ale asi nejsou stejné, protože 6.13a je rozšířená oblast.

Jaký má vliv přítomnost Ar na výsledky? Stálo by zato zkusit výpočet jen s kyslíkem bez argonu?

Str. 44: je obr. 6.7 dán obr. 6.4 + 2PA? Tj. je parciální tlak argonu konstantní?