
Thick-walled anisotropic elliptic tube analyzed via curvilinear

tensor calculus

T. Mareša,∗
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Abstract

After a brief introduction into the tensor calculus, the thick-walled anisotropic elliptic tube is analyzed. A

procedure of the analysis is described in a stepwise manner. A choice of the appropriate coordinate systems is

the first step. The second step consists of the determination of corresponding metric tensors. Then the elasticity

tensor of a local orthotropy is transformed into a global computational coordinate system. Next the appropriate

Christoffel symbols of the second kind are determined and the total potential energy of the system is expressed. At

the end the solution is approximated by a Fourier series and for given geometrical values and loading the numerical

results are obtained and graphically represented.

It must be said that throughout the calculation the free software only was used and for the numerical operations

an old laptop is sufficient. The author regards both the former and the latter as a great advantage of the demonstrated

method.
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1. Introduction

Elasticity is a branch of physics which studies the properties of materials that are deformed

under stress (or, say, external forces), but then, when the stress is removed, return to its original

shape. The amount of deformation is specified with strain, [2]. The concept of elasticity is build

on the classical works of SIR WILLIAM PETTY (London, 1674) and ROBERT HOOKE (London,

1678/1660), and the state of an elastic body is characterized via stress and strain tensors, [9].

As it is, we must take a glance at the tesor calculus, [13], [10], [5], [6] and [4], and its most

important tensor – the metric tensor,

gab =
∂θ

∂ξa

∂θ

∂ξa
,

θ being the radius vector of a point of the elastic body and ξa a curvilinear coordinate system,

[8]. The contravariant metric tensor is defined as, [13], [10],

gab = (gab)
−1 (1)

and the derivative of a vector as (gggb being a vector base)

∂aaa

∂xa
= ∇aa

bgggb, ∇aa
b = ∂aa

b + Γb
aca

c
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where the Christoffel symbols of the second kind

Γd
ab = gdc1

2
(∂bgac + ∂agcb − ∂cgab), ∂a =

∂

∂xa
.

The well known Differential operators are expressed as, [10], [8], [14], [15],

gradϕ = ∇aϕggga = ∂aϕggga, divvvv = ∇vvv = ∇av
a,

rotAAA = ∇×AAA = ǫabc∇aAb ggg
c, ∇2ϕ = div gradϕ.

Let as state the definition of the Green-Lagrange-St. Venant strain, [1], [8], [4],

ξ

Eab=
1

2
(

ξ
gab −

o
gab),

where
ξ

gab is a metric of the material coordinate system coincident before the deformation with

the space coordinate system
o

gab.

For small deformations the Green-Lagrange-St. Venant strain takes the form of the small

strain tensor, [9], [16], [14],

εab=
1

2
(

ξ
gab −

o
gab)

∣

∣

∣

∣

lin.

=
1

2
(∇aub +∇bua).

It became commonly known and used, [12], [16], [10], [7], [3],1 that the real state of a

deformed body, ûa, minimizes the total potential energy

Π(ua) = a(ua)− l(ua)

on a set of admissible states, U, where the elastic strain energy

a(ua) =
1

2

∫

Ω

Eabcdεab(ua)εcd(ua)dΩ

and the potential energy of the applied forces

−l(ua) = −

∫

Ω

pauadΩ−

∫

∂tΩ

tauadΓ.

Shortly, it holds

ûa = arg min
ub∈U

Π(uc).

In the case of orthotropic material, for example orthotropic elemantary block (signed as

νth block, as outlined in Figure 1) we may choose the coordinate system, νa, called the main

1The origin of these principles is joined with such names as MAUPERTUIS, 1746, EULER, 1744, and LA-

GRANGE, 1788.
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Fig. 1. Orthotropic block

material frame. The main stand for alined with the major material axes of the orthotropic

material. Then the elasticity tensor has the following entries, [11],

{

ν

Eabcd

}

{ab⌈cd

=





























Φ1111 0 0 0 Φ1122 0 0 0 Φ1133
0 G12 0 G12 0 0 0 0 0
0 0 G13 0 0 0 G13 0 0
0 G12 0 G12 0 0 0 0 0
Φ2211 0 0 0 Φ2222 0 0 0 Φ2233
0 0 0 0 0 G23 0 G23 0
0 0 G13 0 0 0 G13 0 0
0 0 0 0 0 G23 0 G23 0
Φ3311 0 0 0 Φ3322 0 0 0 Φ3333





























,

where

Φ1111 =
1− ν23ν32

N
E11, Φ1122 =

ν21 + ν23ν31

N
E11, Φ1133 =

ν31 + ν32ν21

N
E11,

Φ2211 =
ν12 + ν13ν32

N
E22, Φ2222 =

1− ν13ν31

N
E22, Φ2233 =

ν32 + ν31ν12

N
E22,

Φ3311 =
ν13 + ν12ν23

N
E33, Φ3322 =

ν23 + ν21ν13

N
E33, Φ3333 =

1− ν12ν21

N
E33,

and

N = 1− ν12ν21 − ν23ν32 − ν31ν13 − ν12ν23ν31 − ν13ν32ν21.

The above relations may be readily used in a very large variety of anisotropic materials via

the concept of locally orthotropic material.

The concept of locally orthotropic material is based on the thought that at every point of

a material it is possible to construct a cartesian coordinate system νa such that the material in

(infinitesimal) surrounding behaves orthotropically, i.e., the mentioned relations hold.

Thus we only need to perform a transformation from the main frame of orthogonality, νa,

into a frame of the computation. In the frame of the computation, the tensor entries are not

necessarily physical quantities.
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Fig. 2. The anisotropic elliptic tube

2. Analysis of the thick-walled anisotropic elliptic tube

Let us focus on the analysis of the deformation of a thick-walled elliptic tube which is

winded of a fiber such as laminated composite (Fig. 2). The upper end of the tube is clamped

and a uniformly distributed force, F , is applied on the lower end. The fiber is winded under

an angle, α. The problem is solved using the concept of locally orthotropic material, where

the elasticity tensor is expressed in a local cartesian coordinate system alined with the main

directions of the local orthotropy of the material. A sequence of coordinate transformations

from the local cartesian coordinate systems into a global coordinate system of the computation

is performed. The total potential energy of the problem is expressed in the global coordinate

system. After approximating the dependent variables, representing the displacements, with

Fourier series, the potential energy expression is minimized.

As it has been said, the foremost task rests in a choice of appropriate coordinate systems

and expression of the transformations. In the case of an elliptic tube winded under an angle

we introduce, according to Fig. 3, the global cartesian coordinate system, ba, the global elliptic

coordinate system, xa, the local cartesian coordinate system, ξa, and the local coordinate system

alined with the main directions of the local orthotropy, νa. The basic advantage of the elliptic

coordinate system lies in the range of the coordinates

x1 ∈ [0, t], x2 ∈ [0, 2π], x3 ∈ [0, ℓ]

and the known relation to the global cartesian coordinate system ba

b1 = (a+ x1) cosx2, b2 = (b+ x1) sinx2, b3 = x3.

As the coordinate systems b, ξ and ν are Cartesian, the metrics are

b
gab= δab,

ξ
gab= δab,

ν
gab= δab.
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ϑ
⊗
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x1= t
3x1= 2t
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x3=x3=ξ3=

Aξ1Aξ2

γA

A

Aν2

Aν3

Aξ2

ξ3

⊗Aν1‖ Aξ1
α

α

x1 ∈ [0, t]
x2 ∈ [0, 2π]
x3 ∈ [0, ℓ]

Fig. 3. Coordinate systems

The following transformation rule

x
gab=

∂bc

∂xa

∂bd

∂xb
δcd with

∂ba

∂xb
=





cosx2 −(a+ x1) sinx2 0
sin x2 (b+ x1) cosx2 0
0 0 1





a⌈b

implies

x
gab=





1 (b − a) sinx2 cosx2 0
(b − a) sinx2 cosx2 (a+ x1)2 sin2 x2 + (b+ x1)2 cos2 x2 0

0 0 1



 .

Elasticity tensor in the global computational coordinate system can be expressed via trans-

formation rule
x

Eabcd=
∂xa

∂νi

∂xb

∂νj

∂xc

∂νk

∂xd

∂νl

ν

Eijkl,

where
ν

Eijkl is the known elasticity tensor in the coordinate system νa. For the transformation

matrix it holds
∂xa

∂νb
=

∂xa

∂bc

∂bc

∂ξd

∂ξd

∂νb
,

where
∂xa

∂bb
=

(

∂ba

∂xb

)−1

,

i.e.

∂xa

∂bb
=

1

a sin2 x2 + b cos2 x2 + x1





(b+ x1) cosx2 (a+ x1) sinx2 0
− sin x2 cosx2 0
0 0 a sin2 x2 + b cos2 x2 + x1



 ,
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∂ba

∂ξb
=





cos γA − sin γA 0
sin γA cos γA 0
0 0 1



 and
∂ξa

∂νb
=





1 0 0
0 cosα − sinα

0 sinα cosα



 .

The determination of cos γA and sin γA is the only remaining problem. The Fig. 4 indicates

cos γA = (1, 0) · nnn and sin γA = ±|(1, 0)× nnn|.

From analytical geometry we have

n1 =
b2t

√

(b1t )
2 + (b2t )

2
and n2 =

−b1t
√

(b1t )
2 + (b2t )

2
, where ba

t =
∂ba

∂x2

and

b1 = (a+ x1) cosx2, b2 = (b+ x1) sinx2.

Performing the derivatives leads to

nnn =
1

d

(

(b+ x1) cosx2

(a+ x1) sinx2

)

, d =
√

(a+ x1)2 sin2 x2 + (b+ x1)2 cos2 x2

and hence

cos γA =
b+ x1

d
cosx2, sin γA =

a+ x1

d
sin x2.

b1

b2

⊗
b3

x1= 2t
3

x1= 2t
3

x10 t

nnn

Aξ1

γA

A

Fig. 4. Normal to ellipse

From the said above, we have

ûa = arg min
ub∈U

Π(uc), Π(ua) = a(ua)− l(ua)

with

a(ua) =
1

2

∫

Ω

Eabcdεab(ua)εcd(ua)dΩ, l(ua) =

∫

Ω

pauadΩ +

∫

∂tΩ

tauadΓ.

Let us limit ourselves to the case of small deformations, then

εab=
1

2
(∇aub +∇bua), ∇aub = ∂aub − Γ

c
abuc.
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That means

x
εab=

1

2
(∂a

x
ub +∂b

x
ua −2 Γc

ab

x
uc), Γ

c
ab

x
uc= Γ

1
ab

x
u1 +Γ

2
ab

x
u2 +Γ

3
ab

x
u3 .

Using GNU MAXIMA2 we readily obtain (in the coordinate system xa)

Γ1ab =
1

J





0 (a − b) cosx2 sin x2 0
(a − b) cosx2 sin x2 −((x1)2 + x1(a+ b) + ab) 0

0 0 0



 ,

Γ2ab =
1

J





0 1 0
1 (a − b) cosx2 sin x2 0
0 0 0



 , Γ3ab = 0,

where

J = (b − a) cos2 x2 + x1 + a.

Now, as

Eabcd = Ebacd

we can replace
x

εab with ∂a

x
ub − Γ

c
ab

x
uc and write the total potential energy at the form

a =
1

2

∫

Ω

(

∂a

x
ub − Γ

p
ab

x
up

) x

Eabcd
(

∂c

x
ud − Γp

cd

x
up

) ∣

∣

∣

x
gab

∣

∣

∣

1

2

d3x.

The elasticity tensor at the x-coordinates

x

Eabcd=
∂xa

∂νi

∂xb

∂νj

∂xc

∂νk

∂xd

∂νl

ν

Eijkl

can be very easily performed in GNU OCTAVE3 syntax as (the following examples of the codes
are presented just to demonstrate the simplicity of the numerical realisation of the solution)

xnu=xb*bxi*xinu
Ex=kron(xnu,xnu)*Enu*kron(xnu’,xnu’)

Let us approximate the solution by a Fourier series that satisfies boundary conditions

x3 = 0 :
x
u1= 0,

x
u2= 0,

x
u3= 0.

Such series is, for example,

x
u1=

K
∑

j,k,m=−K

a
jkm
1 x3ei(jx1 2πt +kx2+mx3 2π

ℓ ),

x
u2=

K
∑

j,k,m=−K

a
jkm
2 x3ei(jx1 2πt +kx2+mx3 2π

ℓ ),

2http://sourceforge.net/projects/maxima
3http://www.octave.org/
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x
u3=

K
∑

j,k,m=−K

a
jkm
3 x3ei(jx1 2πt +kx2+mx3 2π

ℓ ),

where, ideally, K =∞ and, practically, K = 3.
Provided that we denote

x
u1,2,3= Σ a1,2,3 ϕ (ϕ = x3φ)

we can write

∂b

x
ua=

∂
x
ua

∂xb
=





Σ a1 ϕ ij 2π
t
Σ a1 ϕ ik Σ a1 (ϕ im2π

ℓ
+ φ)

Σ a2 ϕ ij 2π
t
Σ a2 ϕ ik Σ a2 (ϕ im2π

ℓ
+ φ)

Σ a3 ϕ ij 2π
t
Σ a3 ϕ ik Σ a3 (ϕ im2π

ℓ
+ φ)



 .

As

ϕ = ϕjkm = x3eijx1 2π
t · eikx2 · eimx3 2π

ℓ

we can, in GNU OCTAVE syntax, write

j=(-3:1:3); k=(-3:1:3); m=(-3:1:3);
phi=x3*kron(kron(exp(i*j*x1*2*pi/t),exp(i*k*x2)),exp(i*m*x3*2*pi/ell));
ux=[phi,zeros(1,686);zeros(1,343),phi,zeros(1,343);zeros(1,686),phi]*A;

where A is a vector of unknown coefficients ajkl
a and ux stands for

ux =







x
u1
x
u2
x
u3






.

Writing
{

∂
x
ua

∂xb

}

ab⌈

= B*A

the matrix B is computed very easily via a few lines of the syntax. As the part of the deformation

gradient containing the Christoffel symbols

Γc
ab

x
uc= Γ

1
ab

x
u1 +Γ

2
ab

x
u2 +Γ

3
ab

x
u3

is expressible in the form
{

Γ
p

ab

x
up

}

ab⌈
=

{

Γ
1

ab

}

ab⌈ *[phi,zeros(1,686)]*A+
{

Γ
2

ab

}

ab⌈ *[zeros(1,343),phi,zeros(1,343)]*A

we may for the whole deformation gradient write

(

∂a

x
ub − Γ

p
ab

x
up

)

= (B-Gam)*A

where

J=(b-a)*(cos(x2))**2+x1+a;
G1=1/J*[0,(a-b)*cos(x2)*sin(x2),0;

(a-b)*cos(x2)*sin(x2),-((x1)**2+{x1}*(a+b)+a*b),0;0,0,0];
G2=1/J*[0,1,0;1,(a-b)*cos(x2)*sin(x2),0;0,0,0];

Gam=vec(G1’)*[phi,zeros(1,686)]+vec(G2’)*[zeros(1,343),phi,zeros(1,343)];
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b1

b2

⊗
b3

F

Fig. 5. deformation of the elliptic tube

3. Results

Thus, we can write for the elastic energy

a =
1

2
AT KA

with the stiffness matrix

K =

ℓ
∫

0

2π
∫

0

t
∫

0

(B-Gam)’*Ex*(B-Gam)*sqrt(det(gx))dx
1dx2dx3

where gx=(xb**(-1))’*xb**(-1) and the integration is performed numerically.

The work of the applied force

l =

∫

S

F

S

x
u3 dS

may be expressed as

l = P′ ∗ A

with

P =









zeros(363)
zeros(363)

2π
∫

0

t
∫

0

F
S
phi’*sqrt(det(gx))dx

1dx2









,

the integration being once more performed numerically.
The resulting displacements, ub, in the global coordinate system, b, obtained easily, at a

given point (x1,x2,x3), via a few lines at GNU OCTAVE syntax
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A=K**(-1)*P
phi=x3*kron(kron(exp(i*j*x1*2*pi/t),...
ux=real([phi,zeros(1,siz),zeros(1,...
xb=1/(a*(sin(x2))**2+b*(cos(x2))**2+...
ub=xb*ux

are demonstrated at Fig. 5.

All the calculations were performed using only the free software installed on an old laptop.

The author considers this to be a proof of the great advantage of the demonstrated method.
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