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Abstract

After a brief introduction into the tensor calculus, the thick-walled anisotropic elliptic tube is analyzed. A
procedure of the analysis is described in a stepwise manner. A choice of the appropriate coordinate systems is
the first step. The second step consists of the determination of corresponding metric tensors. Then the elasticity
tensor of a local orthotropy is transformed into a global computational coordinate system. Next the appropriate
Christoffel symbols of the second kind are determined and the total potential energy of the system is expressed. At
the end the solution is approximated by a Fourier series and for given geometrical values and loading the numerical
results are obtained and graphically represented.

It must be said that throughout the calculation the free software only was used and for the numerical operations
an old laptop is sufficient. The author regards both the former and the latter as a great advantage of the demonstrated
method.
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1. Introduction

Elasticity is a branch of physics which studies the properties of materials that are deformed
under stress (or, say, external forces), but then, when the stress is removed, return to its original
shape. The amount of deformation is specified with strain, [2]. The concept of elasticity is build
on the classical works of SIR WILLIAM PETTY (London, 1674) and ROBERT HOOKE (London,
1678/1660), and the state of an elastic body is characterized via stress and strain tensors, [9].
As it is, we must take a glance at the tesor calculus, [13], [10], [5], [6] and [4], and its most
important tensor — the metric tensor,

_ww
Gab = 35“ agaa

6 being the radius vector of a point of the elastic body and £* a curvilinear coordinate system,
[8]. The contravariant metric tensor is defined as, [13], [10],

9* = (gap) ™" (1)
and the derivative of a vector as (g, being a vector base)
da
= Vaabgb, V.,a* = 0,a° + Fgcac
oz
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where the Christoffel symbols of the second kind

0

= 9za

The well known Differential operators are expressed as, [10], [8], [14], [15],

1
ng = gdcé(abgac + 8agcb - acgab); aa

a

grad ¢ = V,pg® = 0,0 9%, dive = Vv = V0%,

rot A =V x A = eV, A, ¢°, V?p = divgrad¢.
Let as state the definition of the Green-Lagrange-St. Venant strain, [1], [8], [4],

€ 1 13 o

Eab: é(gab - gab)a

where gib is a metric of the material coordinate system coincident before the deformation with
the space coordinate system g(;b.

For small deformations the Green-Lagrange-St. Venant strain takes the form of the small
strain tensor, [9], [16], [14],

1 ¢ o 1
Eab= 5( ab — gab) - §(Vaub + vbua)-

lin.

It became commonly known and used, [12], [16], [10], [7], [3],! that the real state of a
deformed body, 1,, minimizes the total potential energy

M(ug) = alug) — Lug)
on a set of admissible states, U, where the elastic strain energy

1

a(ug) = §/Eab0d5ab(ua)scd(ua)dﬂ

Q

and the potential energy of the applied forces

—l(uy) = —/p“uadQ - /t“uadF.

Q 02

Shortly, it holds

i, = arg g}é% (u).

In the case of orthotropic material, for example orthotropic elemantary block (signed as
vth block, as outlined in Figure 1) we may choose the coordinate system, v,, called the main

'The origin of these principles is joined with such names as MAUPERTUIS, 1746, EULER, 1744, and LA-
GRANGE, 1788.
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Fig. 1. Orthotropic block

material frame. The main stand for alined with the major material axes of the orthotropic
material. Then the elasticity tensor has the following entries, [11],

@11 0 0 0 P12 0 0 0 Pyiss
0 G2 0 Gy O 0 0 0 0
0 0 Gz O 0 0 Gz O 0

0 0 0 0

v 0 G 0 G 0
{Eade} =] P O 0 0 @9 O 0 0 Poos3
{abfed 0 0 0 G23 0 G23 0
0 0 Giz3 0 0 0 Giz O 0
0 0
0 0

0 0 0 Gaz 0 Gy 0
3311 0 Pgz0 0 0 0 Psg3s
where
Biirr — 1-— VasVs2 o B — P2 + VasVs1 o, B — 231 + Vsalo1 o,
i = ——— L1, 122 = — L1, 133 = — L1,
N N N
Vig + V13V32 1 — w303 V3g + V3112
Qo211 = TEM, Pozo2 = TE% DPogs3 = TE227
ey, — 13 + V1oV23 o, By — 128 + Va3 o Bonnn — 1— Vst o
3311 = — o Lu33, 3322 = — o Lu33, 3333 = — 133,
N N N
and

N =1 — viav91 — Vaglzg — V3113 — Vi2la3l/31 — V13V32l/21.

The above relations may be readily used in a very large variety of anisotropic materials via
the concept of locally orthotropic material.

The concept of locally orthotropic material is based on the thought that at every point of
a material it is possible to construct a cartesian coordinate system v, such that the material in
(infinitesimal) surrounding behaves orthotropically, i.e., the mentioned relations hold.

Thus we only need to perform a transformation from the main frame of orthogonality, v,
into a frame of the computation. In the frame of the computation, the tensor entries are not
necessarily physical quantities.
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Fig. 2. The anisotropic elliptic tube

2. Analysis of the thick-walled anisotropic elliptic tube

Let us focus on the analysis of the deformation of a thick-walled elliptic tube which is
winded of a fiber such as laminated composite (Fig.2). The upper end of the tube is clamped
and a uniformly distributed force, F', is applied on the lower end. The fiber is winded under
an angle, a. The problem is solved using the concept of locally orthotropic material, where
the elasticity tensor is expressed in a local cartesian coordinate system alined with the main
directions of the local orthotropy of the material. A sequence of coordinate transformations
from the local cartesian coordinate systems into a global coordinate system of the computation
is performed. The total potential energy of the problem is expressed in the global coordinate
system. After approximating the dependent variables, representing the displacements, with
Fourier series, the potential energy expression is minimized.

As it has been said, the foremost task rests in a choice of appropriate coordinate systems
and expression of the transformations. In the case of an elliptic tube winded under an angle
we introduce, according to Fig. 3, the global cartesian coordinate system, 0%, the global elliptic
coordinate system, z, the local cartesian coordinate system, £, and the local coordinate system
alined with the main directions of the local orthotropy, v*. The basic advantage of the elliptic
coordinate system lies in the range of the coordinates

2t €[0,t], 2* €[0,27], 2* € [0, /]
and the known relation to the global cartesian coordinate system b*
b' = (a + ') cosz?, b* = (b+ z')sinz?, b’ = 2°.
As the coordinate systems b, £ and v are Cartesian, the metrics are
b & v
Gab= 6ab7 Gab= 5ab7 Gab= 5ab~
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53 v AV3
Fig. 3. Coordinate systems
The following transformation rule
e O P cosz® —(a+a')sina® 0
Jab= ———0cg with — = | sinz® (b+z')cosz®> 0
Oz Oxb Oxb
0 0 1
alb
implies
1 (b — a) sin 2% cos x? 0
gav=| (b—a)sinz?cosaz? (a+a')?sin®2? + (b+ 2')?cos?2? 0
0 0 1

Elasticity tensor in the global computational coordinate system can be expressed via trans-

formation rule

T a b c d v
pabed_ 0x® 0x° 0x¢ Ox Lkl

Qv OvI Ouvk U ’

v
where E“* is the known elasticity tensor in the coordinate system »*. For the transformation
matrix it holds
dz®  Jz® Ob° og?
ovb  Obe 9€d ovb’

where .
dz®  (Ob"\
o\ Oxb ’
ie.
P 1 (b+2')cosx? (a—+ z')sina? 0
= — — sin 22 cos 1 0
Ob* asin®a? + beos® ? + ! 0 0 asin® 2% 4+ bcos? 2% + !
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aba cosyq4 —sinyg 0 o 1 0 0
96 = sinyqy cosya O and BN = 0 cosa —sina
§ 0 0 1 v 0 sina cosa

The determination of cos 4 and sin 4 is the only remaining problem. The Fig. 4 indicates
cosya = (1,0) -m and sinys = £[(1,0) x n|.
From analytical geometry we have

—b! ob®
n' = and n? = L , where 0f = —
(b)? + (b7)? (b)* + (b7)? Oz

and
b' = (a+ ") cosx?, b* = (b+ 2') sina?

Performing the derivatives leads to

1 1 2
n:—< (b+at)cosx >7d:\/(a+x1)28in21‘2+(b+$1)20082$2

d \ (a+ z')sinz?
and hence
+ 7t 5 . a+zt |,
CoSYq = cosx®, sinyy = sin x~.
d d
b3
% 0\t a' b
Y
1_2¢
= 3 Agl
vb2 ,n\,

Fig. 4. Normal to ellipse

From the said above, we have

U, = arg mé% M(ue), M(ug) = alug) — U(ug)

with )
a’(ua) = §/Eab6d€ab<ua)€cd(ua)d97 l(ua) = /pauadﬂ—|— /tauadr'

Q Q 0:Q2

Let us limit ourselves to the case of small deformations, then
1 C
Eab= §(Vaub + Voua), Vauy = Ogup — LSy,
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That means
€T 1 xT T i T xT X X
Eab= 5(@ Uy +0uy —2 T u.), TS, ue= T, uy +T2, uy +T3, us .

Using GNU MAXIMA? we readily obtain (in the coordinate system x%)

1 0 (a — b) cos 2 sin x* 0
I, = 5 (a —b)cosa?sina? —((z})>+ 2t (a+0b)+ab) 0 |,
0 0 0
1 0 1 0
2, = 3 1 (a—0b)cosx®sina® 0 |, T3 =0,
0 0 0
where
J = (b—a)cos’z* + 2" +a.
Now, as

Eabcd — Ebacd

we can replace ¢, with 0, wy — szac and write the total potential energy at the form

1 X X z x xX
a= 5/ <8a Up — ngup> Fabed <8C Uy — cm’dup>
Q

1
3
A3z,

xr
Gab

The elasticity tensor at the xz-coordinates

E;fbcd_ Ox? Oz’ Ox° Ox?

= oA it
vt Ovi vk oVl

can be very easily performed in GNU OCTAVE? syntax as (the following examples of the codes
are presented just to demonstrate the simplicity of the numerical realisation of the solution)

xnu=xb*xbxi*xinu
Ex=kron (xnu, xnu) *Enuxkron (xnu’ , xnu’)

Let us approximate the solution by a Fourier series that satisfies boundary conditions
SCS =0: %le 0, 132: 0, 13,;63: 0.
Such series is, for example,

K
x ; o127 2 327
U= 2 : ajlkmxSGz(jx Ltk +ma® 5 )

jkm=—K

)

K
x ; (o127 2 327
Uy= 2 : ankmx{%ez(gx Ltk +ma® 5 )

j7k7m:7K

)

Zhttp://sourceforge.net/projects/maxima
Shttp://www.octave.org/
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K
T 12w 327
Us= E ékm 3 z( T +kz?24+ma 7 )

jkm=—K

)

where, ideally, K = oo and, practically, K = 3.
Provided that we denote

Z1,2,3= Sagse (p=1%9)

we can write

Oy Ug= R SaypifF Tasypik Tay (pimF +¢)
Sazpij® Tazpik Saz(pimiE + ¢)
As 2 2
. 127 2 imaxS 2X
@ = M = gBelT T L gtk L gimat

we can, in GNU OCTAVE syntax, write
j=(-3:1:3); k=(-3:1:3); m=(-3:1:3);
phi=x3xkron (kron (exp (1*j*xX1*x2+pi/t) ,exp (ixk*x2)) ,exp (i mxx3x2xpi/ell)) ;
=[phi, zeros(1l,686) ;zeros (1,343) ,phi, zeros (1,343) ;zeros(1,686) ,phi] *A;

where A is a vector of unknown coefficients a/* and ux stands for

T

Uy

xT
ux = | s

X

Ug

Writing
o u
— = BxA
oxb
ab[

the matrix B is computed very easily via a few lines of the syntax. As the part of the deformation
gradient containing the Christoffel symbols

L5, o= T4yt +T5, Uy +T%5, U
is expressible in the form
{ng ﬁp}ab[: {Ftlzb}ab[ * [phi, zeros (1,686) ] *A+{F3b}ab[ * [zeros (1,343) ,phi, zeros(1,343)]1+A
we may for the whole deformation gradient write

(E?alwtb — ngﬁp> = (B-Gam) *A
where

J=(b-a) x (cos (x2) ) »*x2+x1+a;
Gl=1/Jx [0, (a-b) xcos (x2) xsin(x2),0;
(a-b) xcos (x2) ¥sin (x2) , - ((x1) **2+{x1} (a+b)+axb) ,0;0,0,0] ;
G2=1/J%[0,1,0;1, (a-b) xcos (x2) *sin(x2),0;0,0,0] ;
Gam:vec(Gl’)*[phi,zeros(1,686)]+vec(G ) *x [zeros (1,343) ,phi,zeros(1,343)];
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Fig. 5. deformation of the elliptic tube

3. Results

Thus, we can write for the elastic energy

1
a=-ATKA
2

with the stiffness matrix

{ 2w t

K:/// (B—Gam)I*Ex*(B—Gam)*sqrt(det(gx))d$1dx2dm3
0 0 0

where gx= (xb** (-1) ) ' *xb* (-1) and the integration is performed numerically.

The work of the applied force

F 2
= gUgdS
S

may be expressed as

=P xA
with

zeros (363)

zeros (363)
P: 27t

[ [ £phi’*sqgrt (det (gx))dz'da?
00
the integration being once more performed numerically.
The resulting displacements, ub, in the global coordinate system, b, obtained easily, at a
given point (x1,x2,x3), via a few lines at GNU OCTAVE syntax
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A=Kxx (-1) P
phi=x3xkron (kron (exp (ixj*x1%2%pi/t), ...
ux=real ( [phi, zeros (1,siz), zeros (1, ...
xb=1/(a* (sin (x2) ) **x2+bx (cos (x2) ) **2+. ..
ub=xb*ux

are demonstrated at Fig. 5.
All the calculations were performed using only the free software installed on an old laptop.
The author considers this to be a proof of the great advantage of the demonstrated method.
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