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a
Faculty of Applied Sciences, University of West Bohemia in Pilsen, Univerzitnı́ 22, 306 14 Plzeň, Czech Republic
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Abstract

The theory of growth and remodeling is applied to the 1D continuum. This can be mentioned e.g. as a model

of the muscle fibre or piezo-electric stack. Hyperelastic material described by free energy potential suggested by

Fung is used whereas the change of stiffness is taken into account. Corresponding equations define the dynamical

system with two degrees of freedom. Its stability and the properties of bifurcations are studied using multiple-scale

method. There are shown the conditions under which the degenerated Hopf’s bifurcation is occuring.
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1. Introduction

This contribution joins the previous papers of the authors — e.g. [3] — dealing with the appli-

cation of the growth and remodelling theory (GRT) according to DiCarlo et al. — e.g. [1] —

on the muscle fibre modelling. This approach allows to take into account also the change of

the stiffness of the muscle fibre during the time. This effect was experimentally approved and

modeled — see e.g. [2] or [5]. The same approach can be used to model the time evolution

of the piezo-electric stack [6] but this case will not be discussed here. In both cases the final

formulation has the form of the dynamical system with two degrees of freedom. The numerical

experiments have shown the interesting behavior of this system, e.g the existence of some bi-

furcations. This contribution is devoted to the analysis of these properties using the multi-scale

method (MSM). This method is the kind of the perturbation method and in general allows to

decrease the number of degrees of freedom. This will not be the case here but MSM will be

used to model the behavior of this system close to the bifurcation point.

The contribution starts with the short summary of the model development. Then the MSM

will be shortly introduced. The main part will be dedicated to the analysis of the dynamical

system corresponding to the isometric behavior of the muscle fibre. Both Fung’s and quadratic

form of the free energy are discussed.

2. Muscle fibre model based on GRT

In GRT the starting point is the initial configuration B0 that “growths” and “remodels” , i.e.

changes its volume (“growth”), anisotropy (“geometrical remodeling”) or material parameters

(“material remodeling”). This process is expressed at first by the tensor P (further growth
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tensor) that relates the initial configuration to the relaxed one Br with zero inner stress. To the

real configuration Bt where the inner stress invoked by growth, geometrical remodeling and

external loading can already exists, it is related by deformation tensor Fr. According the work

of DiCarlo [1] was in [3] developed the following system of equations describing the behavior

of the muscle fibre

µ =
∂ψ

∂c
; τel =

∂ψ

∂F
; τdis = HḞ; GV = C −E

MK̇ = R − ∂ψ

∂K
; m = −K0Gradµ

(1)

where ψ(F,K, c) is the free energy related to the relaxed volume. K represents the material

parameters, which can be changing during the material remodelling — K̇ is the corresponding

velocity and V = ṖP
−1 is the velocity of growth. The stress τ was decomposed into the elas-

tic part τel and the dissipative part τdis, E is the tensor of the Eshelby’s type (further shortly

Eshelby tensor), M, H ,K0 and G are in the case of passive continua positively definite matri-

ces. In [4] was shown, that in the application on muscle contraction this condition need not be

fullfiled. The cause is the energy supply via ATP→ADP process. C is the generalized external

remodelling force and µ and c are chemical potential and concentration of the relevant compo-

nent respectively (see e.g. [4]). Here we will not deal with the physical interpretation of all these

parameters but we apply the equations (1) on 1D continuum. Let’s the 1D continuum has the

initial length l0. Its actual length after growth, remodeling and loading will be l. The relaxed

length — it means after growth and remodeling — is lr. For the corresponding deformation

gradients we can write

P =
lr
l0

, F =
l

lr
, ∇p =

l

l0
. (2)

In the isometric case is l = const. For the free energy we will use the following form suggested

by Fung:

ψ =
k

µ

(

e
µ
2
(F−1)2 − 1

)

. (3)

For µ → 0 we obtain the common form for linear elastic continuum

ψ =
1

2
k(F − 1)2 (4)

and therefore the further obtained results will have more general meaning and can be interpreted

also e.g. for the mentioned piezo-electric stack. Introducing from (2) and (3) into (1) we obtain

the system of equations for the evolution of relaxed length (after growth), stiffness and stress

(eventually force)

k̇ =
1

m

[

r − 1

µ

(

e
µ
2
(F−1)2 − 1

)

]

,

l̇r = l3r

C + k
µ
e

µ
2
(F−1)2

[

µ l
lr

(

l
lr
− 1

)

− 1
]

+ k
µ

gl2r + hl2
, (5)

τ = k

(

l

lr
− 1

)

e
µ
2
(F−1)2 − hllr

C + k
µ
e

µ
2
(F−1)2

[

µ l
lr

(

l
lr
− 1

)

− 1
]

+ k
µ

gl2r + hl2
.

Here m, h and g correspond with the matrices M,H and G in 1D case.
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To be able to analyse the properties of the dynamical system we will rewrite the equations

(5) into the dimensionless form. The values in these equations have the following dimensions:

τ, k, C . . . . . . . . . . . [N]

lr, l . . . . . . . . . . . . . [m]

m . . . . . . . . . . . . [N−1s]

g, h . . . . . . . . . . . . [Ns]

t . . . . . . . . . . . . . . . . . [s]

r, µ . . . . . . . . . . . . . . [1]

We will introduce the following dimensionless variables

k′ = k

√

|m|
g

l′r =
lr
l

t′ =
t

√

g|m|

Then we obtain the following equations:

dl′r
dt′

= l′r
3
C + k′

µ

√

g

|m|
e

µ
2

“

1

l′r
−1

”

2 [

µ 1
l′r

(

1
l′r
− 1

)

− 1
]

+ k′

µ

√

g

|m|
√

g

|m|
l′r

2 + h
, (6)

dk′

dt′
= sgn m

[

r − 1

µ

(

e
µ
2

“

1

l′r
−1

”

2

− 1

)]

. (7)

Further simplification can be achieved introducing new variables

x =
1

l′r
; y = k′; C ′ = C

√

|m|
g

. (8)

For h = 0 we obtain the equations of the autonomous dynamical system

ẋ = −x

{

C ′ +
y

µ
e

µ
2
(x−1)2 [µx(x − 1) − 1] +

y

µ

}

, (9)

ẏ = sgn m

[

r − 1

µ

(

e
µ
2
(x−1)2 − 1

)

]

. (10)

2.1. Analysis of stability

Now we try to analyse the properties of this system which depends only on four parameters

C ′, r, µ and sgn m. Further we will assume C ′ as a main control parameter. At first we find the

coordinates of the equilibrium point

xeq = Θ + 1, (11)

yeq = − C ′µ

(rµ + 1)[µ(Θ + 1)Θ − 1] + 1
(12)
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where

Θ = ±
√

2

µ
ln(rµ + 1). (13)

Equations in variation for the system (9) and (10) are

η̇x = a11ηx + a12ηy (14)

η̇y = a21ηx + a22ηy (15)

where

a11 = −yeq(1 + Θ)2(rµ + 1)(Θ2µ + 1)

a12 = −1 + Θ

µ
{(rµ + 1)[µ(1 + Θ)Θ − 1] + 1} (16)

a21 = −sgn m(rµ + 1)Θ

a22 = 0

Eigenvalues of the corresponding matrix are

λ1,2 =
1

2

[

a11 ±
√

(a11)2 + 4a12a21

]

. (17)

Assuming a11 < 0, a12a21 > 0 the stability can be achieved e.g. for sgn m = −1 and C ′ < 0.

Detailed analysis will be done further for the simpler case µ → 0 — see Fig. 1. For C ′ =
0 ⇒ yeq = 0 ⇒ a11 = 0 we have according to Grobman-Hartman theorem bifurcation (the

equilibrium point is not hyperbolic — real part of the eigenvalue is zero). It can be shown that

the conditions for the existence of the Hopf bifurcation usually cited (e.g. [8]) are fullfiled:

The first condition for the existence of Hopf’s bifurcation

• zero RHS of the equations (9) and (10) for xeq , yeq given by equations (11) and (12) and

C ′ = 0 is obviously satisfied.

• pure imaginary eigenvalues for C ′ = 0 exist if

−4a12a21 > (a11)
2 (18)

• condition of transversality for the real part of the eigenvalues has the form

∂a11

∂C
=

∂

∂C

[

Cµ
(1 + Θ)2(rµ + 1)(Θ2µ + 1)

(rµ + 1)[µ(Θ + 1)Θ − 1] + 1

]

6= 0 (19)

and it is fulfiled for µ 6= 0,−1
r
,− 1

Θ2 . The experimental results did not confirm the existence of

the non-degerated Hopf’s bifurcation and therefore the deeper analysis is necessary. We will do

it for the following two cases:

• At first we will analyse the above mentioned system with the Fung’s formula (µ 6= 0)

using multiple scale method when the control parameter C ′ in the neighbourhood of zero

is depending on ε2 according to the recommendation in [8].

• Then we apply the limit procedure µ → 0 which corresponds to the quadratic form of the

free energy and after detailed analysis of the stability conditions we use again the multiple

scale method comparing the dependence of C ′ on ε2 as in previous case and on ε.
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2.2. Multiple-scale analysis — µ 6= 0, C ′ = ε2C2

We assume the following form of the solution

x = x0 + εx1 + ε2x2 + ε3x3 (20)

y = y0 + εy1 + ε2y2 + ε3y3 (21)

where 0 < ε ≪ 1 is the scalar parameter. All variables in (20) and (21) are function of T0, T1, T2

where

T0 = t, T1 = εt, T2 = ε2t. (22)

Before substituting from (20) and (21) into (9) and (10) we find the approximation for the

exponential function

e
µ
2
(x−1)2 ∼= e

µ
2
(x0−1)2

[

1 + µ(x0 − 1)(εx1 + ε2x2 + ε3x3)
]

. (23)

Further we introduce the following expression for C ′

C ′ = ε2C2. (24)

x0 and y0 are the fix point coordinates given in (11) and (12). For y0 we can write

y0 = ε2C2J (25)

where

J =
−µ

(rµ + 1)[µ(Θ + 1)Θ − 1] + 1
(26)

Substituting now from (20) and (21) into (9) and (10) respecting the scaling of time (22) and

neglecting the terms with exponent of ε greater then 3, we obtain

∂x0

∂T0

+ ε
∂x0

∂T1

+ ε2∂x0

∂T2

+ ε
∂x1

∂T0

+ ε2 ∂x1

∂T1

+ ε3 ∂x1

∂T2

+ ε2 ∂x2

∂T0

+ ε3∂x2

∂T1

+ ε3 ∂x3

∂T0

=

= −ε2x0
C2J

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

− ε3x0C2Je
µ
2
(x0−1)2〈a2〉 − εx0

[

y1

µ
e

µ
2
(x0−1)2〈a1〉 +

y1

µ

]

−

− x0ε
2

[

C2 + y1e
µ
2
(x0−1)2〈a2〉 +

y2

µ
e

µ
2
(x0−1)2〈a1〉 +

y2

µ

]

−

− x0ε
3

[

y1e
µ
2
(x0−1)2〈a3〉 + y2e

µ
2
(x0−1)2〈a2〉 +

y3

µ
e

µ
2
(x0−1)2〈a1〉 +

y3

µ

]

− (27)

− ε3x1
C2J

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

− ε2x1

[

y1

µ
e

µ
2
(x0−1)2〈a1〉 +

y1

µ

]

−

− ε3x1

[

C2 + y1e
µ
2
(x0−1)2〈a2〉 +

y2

µ
e

µ
2
(x0−1)2〈a1〉 +

y2

µ

]

− ε3x2

[

y1

µ
e

µ
2
(x0−1)2〈a1〉 +

y1

µ

]

where

〈a1〉 = µx2
0 − µx0 − 1 (28)

〈a2〉 = 2x0x1 − x1 + (x0 − 1)x1(µx2
0 − µx0 − 1) (29)

〈a3〉 = 2x0x2 + x2
1 − x2 + µ(x0 − 1)x1(2x0x1 − x1) + (x0 − 1)x2(µx2

0 − µx0 − 1) (30)

〈a4〉 = 2x0x3 − 2x1x2 − x3 + µ(x0 − 1)x1(2x0x2 + x2
1 − x2) + (31)

+ µ(x0 − 1)x2(2x0x1 − x1) + (x0 − 1)x3(µx2
0 − µx0 − 1)
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and similarly for y

∂y0

∂T0
+ ε

∂y0

∂T1
+ ε2 ∂y0

∂T2
+ ε

∂y1

∂T0
+ ε2 ∂y1

∂T1
+ ε3 ∂y1

∂T2
+ ε2 ∂y2

∂T0
+ ε3 ∂y2

∂T1
+ ε3 ∂y3

∂T0
=

= −
[

r − 1

µ

(

e
µ
2
(x0−1)2 − 1

)

]

+ (32)

+ ε(x0 − 1)x1e
µ
2
(x0−1)2 + ε2(x0 − 1)x2e

µ
2
(x0−1)2 + ε3(x0 − 1)x3e

µ
2
(x0−1)2

Now we compare the members with the same exponent of ε. We obtain three following systems

of equations (remember that x0 and y0 are constants!).

For ε1:

∂x1

∂T0

+ y1
x0

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

= 0, (33)

∂y1

∂T0
= x1(x0 − 1)e

µ
2
(x0−1)2 . (34)

For ε2:

∂x2

∂T0
+ y2b4 = −∂x1

∂T1
− x0C2b1 − y1x1b2 + y1x

2
1b3, (35)

∂y2

∂T0
− x2(x0 − 1)e

µ
2
(x0−1)2 = −∂y1

∂T1
. (36)

where

b1 =
J

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

+ 1, (37)

b2 = x0e
µ
2
(x0−1)2

[

2x0 − 1 + x0(µx2
0 − µx0 − 1)

]

, (38)

b3 = x0e
µ
2
(x0−1)2(µx2

0 − µx0 − 1), (39)

b4 =
x0

µ

[

e
µ
2
(x0−1)2〈a1〉 − 1

]

. (40)

For ε3:

∂x3

∂T0

+
∂x1

∂T2

+
∂x2

∂T1

= −x0C2Je
µ
2
(x0−1)2〈a2〉 −

− x0

[

y1e
µ
2
(x0−1)2〈a3〉 + y2e

µ
2
(x0−1)2〈a2〉 +

y3

µ
e

µ
2
(x0−1)2〈a1〉 +

y3

µ

]

−

− x1
C2J

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

− (41)

− x1

[

y1e
µ
2
(x0−1)2〈a2〉 +

y2

µ
e

µ
2
(x0−1)2〈a1〉 +

y2

µ

]

−

− x2

[

y1

µ
e

µ
2
(x0−1)2〈a1〉 +

y1

µ

]

,

∂y3

∂T0
+

∂y1

∂T2
+

∂y2

∂T1
= (x0 − 1)x3e

µ
2
(x0−1)2 . (42)
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From (33) and (34) we obtain the second order equation for x1:

∂2x1

∂T 2
0

+ Ω2x1 = 0 (43)

where

Ω2 = (x0 − 1)
x0

µ
e

µ
2
(x0−1)2

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

. (44)

The solution is then

x1 = K1 cos ΩT0 − K2 sin ΩT0 (45)

y1 = D(K1 sin ΩT0 + K2 cos ΩT0) (46)

where K1(T1, T2), K2(T1, T2) and

D =
Ω

x0

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

] . (47)

Now we will put this solution into (35) and (36). We can see, that the so called secular terms

(terms containing sin ΩT0 cos ΩT0) are only the derivatives on the right sides of these equa-

tions (other terms contain products of x1, y1 and therefore goniometric functions with 2ΩT0 and

higher). The secular terms have to be zero and the sufficient condition for this is

∂K1

∂T1
=

∂K2

∂T1
= 0 ⇒ K1(T2), K2(T2) (48)

The solution of the remaining system of equations x2, y2 are the periodical function with the

frequency 2ΩT0. Next step would be inserting x1, y1 from (45) and (46) and x2, y2 into (41) and

(42):
∂x3

∂T0

+
∂x1

∂T2

= −x0C2Je
µ
2
(x0−1)2〈a2〉 −

− x0
y3

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

− x1
C2J

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

−
(49)

– . . . terms with frequency 2Ω or higher

∂y3

∂T0
+

∂y1

∂T2
= (x0 − 1)x3e

µ
2
(x0−1)2 .

The corresponding equation of the second order is

d2x3

dT 2

0

+ Ω2x3 = x0

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

∂y1

∂T2

− x0C2Je
µ
2
(x0−1)2 ∂x1

∂T0

[2x0 − 1 + (x0 − 1)〈a1〉] −
− ∂x1

∂T0

C2J
µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

− ∂2x1

∂T2∂T0

± . . .

(50)

The secular terms on the RHS of (50) should be equal to zero. Inserting from (45) and (46) and

comparing the coefficients by sin ΩT0, cos ΩT0 we obtain the equations for Ki

K ′
iA + KiB = 0 (51)

where K ′
i = ∂Ki/∂T2; i = 1, 2 and

A = Ω + D x0

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

,

B = ΩC2J
{

x0e
µ
2
(x0−1)2 [2x0 − 1 + (x0 − 1)〈a1〉] + 1

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]} (52)
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(51) is the special form of the so called reconstituted amplitude equations [7] which is an

asymptotic representation of a reduced dynamical system
[

K̇1

K̇2

]

= K̇ = G(K(ε), C(ε)). (53)

The reconstituted amplitude equations allow generally to reduce the number of freedom to the

codimension (that is the number of the pure imaginary and zero eigenvalues of (14), (15)). In

this way this approach is equivalent to other reduction methods e.g. center manifold method.

The condition (51) can be integrated and finally we obtain

Ki = Ki0e
−B

A
T2. (54)

1. If the exponent is negative then Ki tend to zero and the equilibrium point is stable.

2. If the exponent is positive then Ki growth and the equilibrium point is unstable.

3. If the exponent is zero (e.g. for C2 = 0) than the solution can be approximated by

x = x0 + x1 = x0 + K1 cos ΩT0 − K2 sin ΩT0, (55)

y = y0 + y1 = y0 + D(K1 sin ΩT0 + K2 cos ΩT0). (56)

This corresponds with the numerical experiments as will be shown further.

2.3. Stability analysis for µ → 0

Applying the limit procedure µ → 0 on (9) and (10) we obtain the equations

ẋ = −x
[

C ′ +
y

2

(

x2 − 1
)

]

(57)

ẏ = sgn m

[

r − 1

2
(x − 1)2

]

(58)

The equilibrium point has the coordinates

x0 = 1 + Θ, y0 = − 2C ′

2Θ + Θ2
where Θ = ±

√
2r. (59)

Equations in variations have the form (14) and (15) where

a11 = 2C ′ (1 + Θ)2

Θ(2 + Θ)
, (60)

a12a21 =
1

2
sgn mΘ2(1 + Θ)(2 + Θ). (61)

Stability conditions a11 < 0, a12a21 < 0 — see (17) — are fullfiled if

Θ > 0 and sgn m < 0 and C ′ < 0;
−1 < Θ < 0 and sgn m < 0 and C ′ > 0;
−∞ < Θ < −1 and sgn m < 0 and C ′ < 0;
−1 < Θ < 0 and sgn m > 0 and C ′ > 0;

(62)

The situation in the parameter space is shown on Fig. 1. Non-hyperbolicity condition — that is

zero real part of at least one of the eigenvalues (17) — is fullfiled for a11 = 0 ∧ a12a21 ≤ 0 or

a12a21 = 0 that is for C ′ = 0 or Θ = −1 ∧ Θ = 0 or Θ = −1 or Θ = −2. While the variables

x0, y0 have to be positive, we will concentrate our attention on the neiboroghood of the point A
for sgn m = −1.
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Fig. 1. Parameter space with the areas of the orbital and structural stability
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2.4. Multiple-scale analysis for µ → 0, C ′ = ε2C2

We apply the limit procedure µ → 0 on the above procedure and we obtain the reconstituted

amplitude equations in form

2ΩK ′
i +

1

2

3Θ2 + 6Θ + 2

Θ(Θ + 1) − r
Ki = 0 (63)

which is the limit of (51). The discussion leads to the same consequences as above.

2.5. Multiple-scale analysis for µ → 0, C ′ = εC1

We try now to analyse the influence of the order of C ′ and insert C ′ = εC1. The corresponding

equations are

∂x0

∂T0

+ ε
∂x0

∂T1

+ ε2∂x0

∂T2

+ ε
∂x1

∂T0

+ ε2 ∂x1

∂T1

+ ε3 ∂x1

∂T2

+ ε2 ∂x2

∂T0

+ ε3∂x2

∂T1

+ ε3 ∂x3

∂T0

=

= −εx
0

C1J

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

− ε2x0C1Je
µ
2
(x0−1)2〈a2〉 −

− εx0C1 − εx0

[

y1

µ
e

µ
2
(x0−1)2〈a1〉 +

y1

µ

]

−

− x0ε
3C1Je

µ
2
(x0−1)2〈a3〉 − x0ε

2

[

y1e
µ
2
(x0−1)2〈a2〉 +

y2

µ
e

µ
2
(x0−1)2〈a1〉 +

y2

µ

]

−

− x0ε
3

[

y1e
µ
2
(x0−1)2〈a3〉 + y2e

µ
2
(x0−1)2〈a2〉 +

y3

µ
e

µ
2
(x0−1)2〈a1〉 +

y3

µ

]

− (64)

− ε2x1
C1J

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

−

− ε2x1C1 − ε2x1C1Je
µ
2
(x0−1)2〈a2〉 − ε2x1

[

y1

µ
e

µ
2
(x0−1)2〈a1〉 +

y1

µ

]

−

− ε3x1

[

y1e
µ
2
(x0−1)2〈a2〉 +

y2

µ
e

µ
2
(x0−1)2〈a1〉 +

y2

µ

]

− ε3x2
C1J

µ

[

e
µ
2
(x0−1)2〈a1〉 + 1

]

−

− ε3x2C1 − ε3x2

[

y1

µ
e

µ
2
(x0−1)2〈a1〉 +

y1

µ

]

Using the similar approach as in the previous case we obtain the reconstituted amplitude equa-

tion in form:

K ′
i(1 + DΩ) − C1Ki[. . .] = 0; [. . .] = 2

x0(x0 − 1)

Θ(Θ + 2)
. (65)

Integrating equation (65) we obtain

Ki = Ki0 exp

{

C1
[. . .]

1 + DΩ
T1

}

. (66)

We can see, that in this problem the result does not depend on the order of C ′.

3. Numerical experiments

On the following figures we can observe the influence of C on the phase portrait in the neigh-

bourhood of the bifurcation point C = 0.

Fig. 2b corresponds to the bifurcation point. The limit cycle on the figure corresponds to the

equations (55) and (56).
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a) b)

c) d)

Fig. 2. Phase portrait for C = {0.001, 0,−0.001,−0.01}; starting point x0 = 1.2, y0 = 0.02, µ = 0.1,

r = 0.02

4. Conclusion

From the above demonstrated analysis we can extract conclusions:

1. In the presented cases the conditions (18), (19) do not justified the existence of the non-

degenerated Hopf’s bifurcation. This was proved via multiple-scale method and con-

firmed in numerical experiments. The reason is that also the fourth condition for the

existence of this bifurcation has to be fulfilled: The bifurcation point should to be asymp-

totically stable — see e.g. [9]. We have shown that this is not the case.

2. The order of the approximation of the control parameter in this case did not influence

the qualitative description of the system behaviour in the neiborough of the equilibrium

points.

3. Both studied cases — with Fung’s formula for the free energy potential and with the

quadratic one — have the same qualitative properties.

4. The generalized external remodelling force influences essentially the phase portrait of the

both dynamical systems. Especially interesting is the stable periodic motion for the zero

value of this remodeling force.

5. On the other side it is necessary to stress that this phenomenon can be observed only if

the change of stiffness is assumed!

Important task in future will be to try to find the real example of this periodic motion, e.g. in

the muscle modeling where the external remodelling force corresponds to the outer control of

the muscle contraction.
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