
Applied and Computational Mechanics 3 (2009) 195–204

Crack propagation in the vicinity of the interface in layered

materials
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a
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno, Czech Republic
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Abstract

The paper deals with the problem of crack propagation in the vicinity of the interface in layered materials. Layered

materials are often used in practice, primarily because of their better mechanical properties in comparison with the

properties of individual materials components. The configuration of a crack with its tip at the bi-material interface

can be created during crack propagation in the structure. It is important to decide if the crack propagates into

the second material in this case. The step change of material properties at the bi-material interface means that

classical linear elastic fracture mechanics are not appropriate. A generalized approach has to be applied. In this

paper, two criteria are applied for the determination of the critical value of an applied load. Knowledge of these

values is important for the estimation of the service life time of such structures. The results obtained can be used

especially for multi-layer polymer composites designs. On the basis of the procedures presented, suitable materials

combinations can be suggested for new composite structures.
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1. Introduction

A mathematical description of crack propagation in materials is important for the estimation of

the service life time of structures damaged in this way. Cracks are mostly initiated in defec-

tive locations, i.e. in locations with a high stress concentration. The production of absolutely

homogeneous materials without flaws is difficult, economically inconvenient and sometimes

even impossible. Therefore technologists are trying to find other ways of avoiding failures and

disasters caused by crack propagation and the consequent fracture of structures. It has been

discovered that the lamination of individual materials can improve the fracture mechanics pa-

rameters of these components, e.g. [1, 2]. On the other hand, the existence of interfaces between

individual material layers can play a negative role and can decrease the utility of laminated ma-

terial. To estimate the influence of interfaces on the fracture behaviour of laminated structures,

the interaction between cracks and the interfaces needs to be studied and the threshold stress

values for crack propagating through interfaces estimated.

An analytical expression of the stress distribution around a crack terminating at a bi-material

interface can be found e.g. in [6, 7]. Attempts at a generalization of fracture criteria of classical

linear elastic fracture mechanics, which would be suitable for general singular stress concen-

trators, have also previously been published, e.g. [12, 16]. The general form of fracture criteria
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used for the determination of an influence of material interface on crack propagation is pub-

lished in the paper [9].

The paper presented deals with practical applications of the published criteria and their

common comparison of real engineering structures. The objective of this paper is to extend

and complete the previous analysis, see [17], and to consider configurations with a crack tip

touching the bi-material interface.

A three-layer polyethylene (PE) pipe that is used for gas and water distribution is studied.

The system is formed by two protective layers (inner and outer) made of extremely durable

PE material (XSC 50) and a middle jointing part of PE 100 material (see fig. 1). The second

geometry studied here is a composite plate under tensile load made of the same materials,

(see fig. 2). The real material combination (PE 100/XSC 50) of polyethylene composites is

considered and two model material combinations are supplemented for determination of the

effect of material on crack propagation.

Fig. 1. Three-layer pipe studied

2. Solution methodology

2.1. Stress distribution around a crack tip

In the frame of linear elastic fracture mechanics (LEFM) the perpendicular crack touching the

interface between two dissimilar elastic materials represents a kind of general singular stress

concentrator. The singular stress distribution around the tip of a concentrator of this type can be

expressed in general form as (e.g. [4, 6, 7]):

σij =
HI

(2πr)p
fij(p, α, β), (1)

where fijp, α, β) is a known function of composite parameters α and β [3, 6] and p is the stress

singularity exponent (0 < p < 1 and p 6= 1/2). Composite parameters α and β express the

elastic mismatch of the materials. HI is the generalized stress intensity factor that describes

stress amplitude in the vicinity of the crack tip.

The stress singularity exponent p = 1−λ can be calculated from a characteristic equation [6,

8]:

λ2(−4α2 + 4αβ) + 2α2 − 2αβ + 2α − β + 1 + (−2α2 + 2αβ − 2α + 2β) cos(λπ) = 0. (2)
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The generalized stress intensity factor HI is proportional to the applied load and has to be

estimated numerically. Using direct method, its value is determined by comparison of analytical

expression of stress distribution (1) with values of stress component (the crack opening stress

component is usually used) ahead of crack tip obtained from the numerical solution.

2.2. Stability criteria

Two stability criteria (one based on average stress ahead of the crack tip and the other based

on the strain energy density factor) have been used here for the estimation of the critical value

of an applied load for crack propagation through the interface. Two different geometries are

considered: a three-layer polyethylene pipe with inner crack and cracked composite plate. Both

of the criteria used are based on the phenomenological assumption that the mechanism of the

crack propagation from the bi-material interface into the material “m” is the same as in the case

of the crack propagation in the homogeneous material “m” only.

The former criterion is based on the average stress ahead of the crack tip [9]. The critical

value of generalized stress intensity factor HIC for a crack perpendicular to and terminating

at the bi-material interface can be estimated from the value of the fracture toughness of the

material to which the crack will propagate as:

HIC = KIC
2dp− 1

2

2 − p + gR
, (3)

where KIC is the fracture toughness of the second material, parameter d relates to the mi-

crostructural characteristic and its choice depends on the crack propagation mechanism and gR

is a known function of the material properties:

gR(λ) = λ − cos λπ −
β[α + 2λ − (1 + 2α − 4αλ2) cos λπ + (1 + α) cos 2λπ]

1 + 2α + 2α2 − 2(α + α2) cos λπ − 4α2λ2
. (4)

The latter criterion is based on generalization of the strain energy density factor concept [14,

15]. Sih introduced the strain energy density factor S for a crack in homogeneous material as:

S = wr = a11K
2

I + 2a12KIKII + a22K
2

II , (5)

where w is strain energy density, a11, a12 and a22 are known functions of polar coordinate θ, KI

and KII are stress intensity factors for mode I and II of loading and r is radial distance from the

crack tip.

The fracture criterion assumes that the direction of the crack propagation coincides with

that of the minimum strain energy density factor S around the crack tip and the crack extension

starts in this direction when S reaches critical value Sc. Sc is a material constant and is usually

correlated with fracture toughness value corresponding to the normal mode of loading:

Sc =
(1 + ν) (1 − 2ν) K2

IC

2πE
for plane strain condition and (6)

Sc =
(1 − ν)K2

IC

2πE
for plane stress condition, (7)

where E is Young’s modulus and ν Poisson’s ratio of the material.
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The relation (5) can be analogically written for a general singular stress concentrator. If the

crack is perpendicular to a bi-material interface and mode I load prevails, the critical value Σc

can be estimated from relation

Σc = A11H
2

IC , (8)

where

A11 =
(1 + ν)(1 − p)2

2πE
· (4(1 − 2ν) + (gR − p)2) (9)

and ν, E are material properties of the material behind the interface (where the crack propa-

gates). Note that contrary to a crack in homogeneous material the strain energy density factor

for a general singular stress concentrator depends on variable r, i.e. Σ = Σ(r) and the criterion

(8) was applied at the distance r = rc. Several approaches exist, e.g. [12, 16], for determination

of the value of rc. In the approach here, the ultimate strength σC is used for the estimation of

the length of the critical ligament:

rc =
1

2π

K2

IC

σ2

C

. (10)

The equality between parameter d (see equation (3)) and rc is assumed for further calculations.

The relation for HIC value can be derived using equation (8) and considering a constant

value of critical strain energy density [13]:

HIC =

√

Sc

A11

· r
p− 1

2

c . (11)

In equation (11), Sc value is determined from equation (6) or (7) for the material that the crack

will propagate to and rc is calculated from (10).

Both mentioned criteria make it possible to estimate the critical value of the generalized

stress intensity factor HIC . Then, from the condition HI(σcrit) = HIC follows the relation for

the critical value of the applied load:

σcrit =
HIC

HI(σappl = 1 MPa)
, (12)

where σappl is the value of the remote applied load.

3. Numerical examples

Two different geometries were considered for numerical calculations. To estimate the influence

of material properties on critical stress, a three-layer plate with the crack perpendicular to and

terminating at interface between two layers and subjected to remote tensile applied stress (see

fig. 2) was modelled first.

Fig. 2. Scheme of the loaded three-layer plate studied
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Fig. 3. Basic geometry of the three-layer pipe studied

Table 1. Young’s moduli of individual layers

Ei, Eo [MPa] 240 600 828

Em [MPa] 1 200 1 200 1 213

The second geometry modeled was that of a three-layer polyethylene pipe, see fig. 3. The

thicknesses of outer layers to and middle layer tm were chosen as the same for both the plate and

the pipe, see figs. 2 and 3, and correspond to the real geometry of the three-layer polyethylene

pipe produced. With regard to the real function of the pipe (water and gas distribution), a

numerical model of the pipe was subjected to inner pressure. Due to the symmetry of the

problem, only one half of the model was modelled.

Plane strain conditions were considered for numerical calculations. It was assumed further

that the material interfaces were of welded type (ideal adhesion). Both of the materials used

are homogenous, isotropic and linear elastic. The mechanical properties of the layer materials

are characterised by values of the Young’s moduli Ei (inner), Eo (outer) and Em (middle) in

the case of pipe and Eo (outer) and Em (middle) in the case of the layered plate. The values of

material parameters used are summarized in tab. 1. In the first and the second column in tab. 1

Young’s moduli of model material are written and in the third column values corresponding to

the three-layer produced pipe at room temperature are presented. These values were determined

from standard tensile tests, see [10] for details.

The entire numerical simulations were performed by finite element method (FEM) in soft-

ware ANSYS 10.0.

4. Results and discussion

The solution procedure was the same in the case of the three-layer plate and in that of the three-

layer pipe. In the case of a cracked three-layer pipe, two configurations were considered, see

fig. 4. Note that the case of a crack terminating at the inner interface is more important from the

practical point of view than the second one.

Firstly, the stress singularity exponent for each configuration was established as the solution

of the characteristic equation (2). Then the generalized stress intensity factor was estimated
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a) b)

Fig. 4. Two modelled configurations of cracked pipe: a) crack terminating at inner interface, b) crack

terminating at outer interface

from the numerical solution by the help of the direct method [5, 11]. The results obtained are

summarized in tab. 2 for the three-layer plate and in tables 3 and 4 for the pipe. The case of a

crack in homogeneous material is also introduced in these tables for comparison.

Table 2. Estimations of generalized stress intensity factors for the first interface of three-layer plate

Eo − Em − Eo Eo/Em p HI

[MPa] [–] [–] [MPa · mp]

240 − 1 200 − 240 0.20 0.380 68 16.27

600 − 1 200 − 600 0.50 0.438 74 15.29

828 − 1 213 − 828 0.68 0.464 54 14.53

homogeneous plate, 1 213 1.00 0.500 00 13.27

Table 3. Estimations of generalized stress intensity factor for the inner interface of three-layer pipe

Ei − Em − Eo Ei/Em p HI

[MPa] [–] [–] [MPa · mp]
240 − 1 200 − 240 0.20 0.380 68 75.75

600 − 1 200 − 600 0.50 0.438 74 63.47

828 − 1 213 − 828 0.68 0.464 54 57.71

homogeneous pipe, 1 213 1.00 0.500 00 49.88

Table 4. Estimations of generalized stress intensity factor for the outer interface of three-layer pipe

Ei − Em − Eo Em/Eo p HI

[MPa] [–] ][–] [MPa · mp]

240 − 1 200 − 240 5.00 0.679 27 110.05

600 − 1 200 − 600 2.00 0.573 29 211.87

828 − 1 213 − 828 1.46 0.539 14 260.51

homogeneous pipe, 1 213 1.00 0.500 00 316.75
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Fig. 5. Extrapolation of H∗

I values into the crack tip r = 0

The principle of the direct method lies in the extrapolation of the linear part of dependence

H∗

I = H∗

I (r) into the crack tip (r = 0), see fig. 5 for clarity’s sake. This method requires a

very fine mesh and some experience of how to estimate a suitable distance of the linear part

of dependence HI − r for extrapolation. Values of H∗

I in the nearest vicinity of the crack tip

should not be considered in extrapolation because of substantial numerical errors.

When the values of generalized stress intensity factors for the applied load chosen (σappl =
100 MPa) are known, it is possible to calculate the critical value of the applied load by substitu-

tion equations (3) or (11) in equation (12). The obtained value of the critical applied load will

cause further crack propagation through the interface into the second material, see tabs. 5 to 7

for resultant critical stresses for crack propagation through the material interface.

In tables 5 to 7, νm and νo represent values of Poisson’s ratios of middle and outer layers,

respectively. KIC,m is the fracture toughness of the middle layer material and KIC,o is the

fracture toughness of the outer layer material. Note that all values of σcrit were determined for

parameter d = rc = 1 mm, see equation (10). As mentioned in chapter 2, these two quantities

are related to the mechanism of crack propagation.

Table 5. Values of critical load determined for the first interface of three-layer plate by: σ1
crit – criterion

based on average stress ahead of the crack tip, σ2
crit – criterion based on the generalized strain energy

density factor

Eo − Em − Eo νm gR KIC,m HI σ1

crit σ2

crit

[MPa] [–] [–] [MPa · m1/2] [MPa · mp] [MPa] [MPa]

240 − 1 200 − 240 0.35 0.444 31 3.0 16.27 40.76 33.89

600 − 1 200 − 600 0.35 0.456 24 3.0 15.29 29.70 26.68

828 − 1 213 − 828 0.35 0.470 45 3.0 14.53 26.31 24.64

homogeneous plate, 1 213 0.35 0.500 00 3.0 13.27 22.61 22.61
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Table 6. Values of critical load determined for the inner interface of three-layer pipe by: σ1
crit – criterion

based on average stress ahead of the crack tip, σ2
crit – criterion based on the generalized strain energy

density factor

Ei − Em − Eo νm gR KIC,m HI σ1

crit σ2

crit

[MPa] [–] [–] [MPa · m1/2] [MPa · mp] [MPa] [MPa]

240 − 1 200 − 240 0.35 0.470 45 3.0 75.75 8.75 7.28

600 − 1 200 − 600 0.35 0.476 90 3.0 63.47 7.15 6.43

828 − 1 213 − 828 0.35 0.481 66 3.0 57.71 6.62 6.20

homogeneous pipe, 1 213 0.35 0.500 00 3.0 49.88 6.01 6.01

Table 7. Values of critical load determined for the outer interface of three-layer pipe by: σ1

crit – criterion

based on average stress ahead of the crack tip, σ2
crit – criterion based on the generalized strain energy

density factor

Ei − Em − Eo νo gR KIC,o HI σ1

crit σ2

crit

[MPa] [–] [–] [MPa · m1/2] [MPa · mp] [MPa] [MPa]

240 − 1 200 − 240 0.35 0.809 66 3.5 110.05 0.86 1.43

600 − 1 200 − 600 0.35 0.597 72 3.5 211.87 0.98 1.17

828 − 1 213 − 828 0.35 0.546 26 3.5 260.51 1.02 1.11

homogeneous pipe, 1 213 0.35 0.500 00 3.0 316.75 0.95 0.95

By comparison of the two last columns in tables 5 and 6, i.e. values of critical applied load,

it can be concluded that both criteria give similar results. All of the σcrit values introduced in

tab. 7 are very small and close to 1 MPa stress, but it is not probable that this configuration (an

inner crack terminating at the outer interface) will occur in real cases.

The results of the critical stresses obtained make it possible to assess the influence of more

compliant protective layers on the fracture behaviour of the structures studied. It can be con-

cluded that the three-layer structures (plate or pipe) considered in this paper have better fracture

properties than the structure made only of homogeneous material with properties of the middle

layer. The increase of critical value of an applied load in the case of three-layer plate subjected

to tensile applied stress for Eo/Em = 0.2 is nearly 50 % compared to the homogeneous case.

The increase of critical stress in the three-layer pipe is due to different geometry and loading

conditions less than in the case of the plate. The results obtained have an important practical

effect, i.e. the material with worse mechanical properties (Young’s modulus) can be used for

the inner surface of pipes (plates) without decrease of their fracture resistance or can be used for

the design of new layered structures with better fracture properties, which will be safer during

their service life.

5. Conclusion

A three-layer polyethylene pipe used for gas and water distribution is studied in this paper.

Specifically, the configuration of a pipe with a perpendicular inner crack terminating at either of

both bi-material interfaces is analyzed. A similar problem is studied in the case of a three-layer
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plate subjected to a remote tensile applied load. Calculations of the values of generalized stress

intensity factors that are essential for the estimation of the value of the critical load σcrit were

performed by means of the finite element method.

Two fracture criteria were chosen for the assessment of the stability of a crack of mentioned

type, with its tip at the bi-material interface (the first criterion was based on the average stress

ahead of the crack tip and the second criterion was based on the generalized strain energy den-

sity factor). Based on criteria used, the effect of bi-material interface on the crack propagation

can be determined and the value of critical stress σcrit for crack propagation through material

interface can be estimated. The values of parameters d and rc, which are involved in the criteria

used, were chosen in compliance with the assumed mechanism of failure.

Although each of the criteria is based on different physical principles, the results of σcrit

established by the help of both procedures are in quite good agreement and give qualitatively

similar critical values for the applied load causing the crack propagation through the interface

into the second material layer.

The results obtained are particularly relevant to multi-layer polymer composites design. On

the basis of the procedures presented here, a suitable combination of materials can be suggested

for composite structures.
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