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Abstract

This Bachelor thesis is devoted to study of properties of the function sinp(x). It can be
divided into two original research parts. The first part is devoted to study of the continuity
of the n-th derivative of sinp(x). We discuss several cases depending on the value of the
parameter p and domains of interest in variable x. The second part focuses on a two
ways we can express sinp(x) in terms of power series. One way is to use Bell polynomials
and the other is to use the general figure for the inverse series based on the Cauchy
integral formula. Finally, we present a conjecture concerning the convergence of Taylor
series representing sinp(x). Solving this conjecture will significantly speed up numerical
computations concerning sinp(x) function.
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1 Introduction

Let p > 1,Ω ⊂ R is a bounded domain and λ ∈ R is a parameter. The Dirichlet problem
for p-Laplacian operator (or generalized Laplace operator){

∆pu
def
= div (|∇u|p−2∇u) = g(x, u;λ) for x ∈ Ω ,

u = 0 on ∂Ω .
(1)

arises from various applications in physics and engeneering. To name some of the most
interesting applications (in our opinion), let us mention growing of sandpiles [2],[13] (for
large values of p → +∞) or image processing [14] (for p → 1+). The p-Laplacian with
other boundary conditions (e.g. Neumann, Robin etc.) appears for example in the context
of mathematical models of climate (p=3), [4].

As an extensive bibliography (see e.g. [8] for further reference) shows, the existence results
for (1) are closely related to the asymptotic properties of g(x, u;λ) for n → +∞ and to
the properties of (in general) nonlinear eigenvalue problem{

−∆pu = λ|u|p−2u in Ω ,
u = 0 on ∂Ω .

(2)

We say, that λ ∈ R is an eigenvalue of (2) if there is a nonzero function u that satisfy (2)
(possibly in a weak sense or some generalised sense).

In any dimension n ≥ 2, there are only few results concerning higher eigenvalues for (2),
see e.g. Anane [1]. In dimension n = 1 the eigenvalue problem (2) is reduced to an ODE
problem {

− (|u′|p−2u′)
′ − λ|u|p−2u = 0 in (0, πp) ,

u(0) = u(πp) = 0 ,
(3)

where

πp = 2

∫ 1

0

1

(1− sp)1/p
ds =

2π

p sin(π/p)

Let us note, that the problem can be considered on any bounded open interval, but the
choice (0, πp) significantly simplifies the calculations.

The eigenvalue problem has been studied in many papers, see e.g. Elbert[12], Lindqvist[16]
and references therein. It follows from these works that the eigenvalues of (2) form a se-
quence

λk = kp(p− 1), k ∈ N
and corresponding eigenfunctions are functions sinp(kx).

Here the function sinp x is defined as the solution 1 to

− (|u′|p−2u′)
′ − (p− 1)|u|p−2u = 0 ,

u(0) = 0 ,
u′(0) = 1 ,

 (4)

1Note that (4) has a unique solution by [10]
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which is equivalent to
u′ = ϕp′(v) ,
v′ = −(p− 1)|u|p−2u ,

}
(5)

where

ϕp(z) =

{
|z|p−2z for z 6= 0 ,
0 for z = 0 .

It means that u must be absolutly continuous by the Carathéodory definition of solution
of (5). It was shown in [11] that sinp(x) can be expressed on [0, πp

2
] (using the first integral

of (4)) as the inverse of

arcsinp(x) =

∫ x

0

(1− sp)−
1
pds , (6)

which is extended to [0, πp] by reflection sinp(x) = sinp(πp− x) and to [−πp, πp] as the odd
function. Finally, it is extended to R as the 2πp-periodic function. For p = 2,

arcsin2(x) =

∫ x

0

1√
1− s2

dx = arcsin(x) , (7)

thus ∀x ∈ R : sin2(x) = sin(x). The properties of functions sinp(x) were studied extensively
in the last 30 years. Indenpendenty, Elbert [12] and Lindqvist [16] discovered remarkable
identity

∀x ∈ R : | sinp(x)|p + | sin′p(x)|p = 1 (8)

valid for any p > 1 (for p = 2, it reduces to the famous trigonometric identity sin2(x) +
cos2(x) = 1). For this reason, the following definition

cosp(x)
def
= sin′p(x)

makes sence. It is interesting fact, that similar functions to sinp, cosp were studied in a very
different context in a work of Swedish mathematician Erik Lundberg in 1879. In [17]
Lundberg defined a family of functions y = Sm

n
(x) that satisfy formula

x =

∫ y

0

1

(1− yn)
m
n

dy ,

where m,n ∈ N,m < n. He called these functions sinualis and studied series expansions.
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2 Some facts of used theory

2.1 Power series

The power series are the first tool, which we will use in this work. They are given by
following definition.

Definition 2.1 A power series is a function series of the form

+∞∑
n=0

an(x− x0)n = a0 + a1(x− x0) + a2(x− x0)2 + . . .+ an(x− x0)n + . . . ,

where x ∈ R is the variable. x0 , a1 , . . . , an , . . . are real numbers. Number x0 is called the
centre of the power series. Numbers an are called the coefficients of the power series.

In [19] Morse and Feshbach deal with the problem of inverting the power series. If
a1 6= 0, then for the function

f(y) = f(0) +
+∞∑
n=1

an(y − y0)n

the inverse function exists and it takes form

y(x) = y(0) +
+∞∑
n=1

bn(x− x0)n .

Coefficients

bn =
1

n · an1

∑
s,t,u,...

(−1)s+t+u+... · n(n+ 1) · . . . · (n− 1 + s+ t+ u+ . . .)

s!t!u! . . .

(
a2

a1

)s(
a3

a1

)t
. . . ,

(9)
where the sumation is over all s , t , u , . . . ∈ N such that s + 2t + 3u + . . . = n − 1. This
relationship is derived in [19] by using Cauchy’s integral formula.

2.2 Bell polynomials

Here we define the Bell polynomials, which Bell introduce in his work [3]. They can be
useful to inverting of power series and to finding domain of convergence of this inversion,
but it is not topic of this work. The idea of using the Bell polynomials was suggested
by Dr. Oleg Marichev [18] to Petr Girg during his visit at Wolfram research Inc.
Dominici [9] deals with asymptotic behavior of Bell polynomials.
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Definition 2.2 The polynomials defined for c1 , c2 , c3 , . . . , cn−k+1 ∈ N0 such that
c1 + 2c2 + 3c3 + . . .+ (n− k + 1)cn−k+1 = n and c1 + c2 + c3 + . . .+ cn−k+1 = k as the sum

Bn,k(x1, x2, . . . , xn−k+1)
def
=
∑ n!

c1!c2! . . . cn−k+1!

(x1

1!

)c1 (x2

2!

)c2
. . .

(
xn−k+1

(n− k + 1)!

)cn−k+1

,

(10)
are called Bell polynomials.

In Wheeler [24] there is given the theorem (p. 50, Theorem 6.), which shows how we can
invert a formal Taylor series, i.e. Taylor series for which the problem of convergence is not
considered and it has form

g(t) =
+∞∑
k=0

gk
tk

k!
,

where gk = g(k)(t) at t = 0. Other information about formal power series can be found in
[20]. Let us denote [·]k a falling factorial function, i.e.

[x]k = x · (x− 1) . . . (x− k + 1)

Theorem 2.1 Let g(t) be a formal Taylor series, with Taylor coefficients {gn}+∞
n=0 such

that g0 = 0 and g1 6= 0, and let g(−1)(t) be its inverse series, then

(i)

Bn,k

(
g(−1)(t)

)
=

(
n− 1
k − 1

) n−k∑
i=0

[−n]i · g−n−i1 Bn−k,i(
g2

2
,
g3

3
,
g4

4
, . . .)

(ii)

Bn,k

(
g(−1)(t)

)
=

(
n− 1
k − 1

) n−k∑
i=0

(−1)i · g−n−i1 Bn−k+i,i(0, g2, g3, g4, . . .)

Of course, the Taylor coefficients g
(−1)
n of g(−1)(t) can be obtain from these formulas by

setting k = 1.
Further information about Bell polynomials, especially many identities, can be found in[6],
[7], [21], [22] or [23].

2.3 p-trigonometric functions

Many definitions and basic properties of p-trigonometric functions are given in introduction
of this work. Here we bring out a few other properties, which are important in following
sections.
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Theorem 2.2 The power series expansion of arcsinp(x) have form

arcsinp(x) =
+∞∑
n=0

Γ(n+ 1
p
)

Γ(1
p
)(n · p+ 1)

xnp+1

n!
for x ∈ (0, 1) . (11)

Here Γ denotes the Euler Gamma function (see e.g. [19], p. 394). This formula is derived
in [5] or [15].

Lemma 2.1 Let p ∈ R, p > 1. Functions sinp(x) and cosp(x) have following basic proper-
ties.

1. sinp(x) > 0 on (0, πp), sinp(0) = 0 and sinp(x) < 0 on (−πp, 0).

2. sinp(x) is strictly increasing on (−πp
2
, πp

2
).

3. cosp(x) > 0 on (−πp
2
, πp

2
), cos(−πp

2
) = cosp(

πp
2

) = 0 and cosp(x) < 0 on (−πp,−πp
2

) ∪
(πp

2
, πp).

4. The (2n−1)-th derivative of sinp(x) is even on (−πp
2
, πp

2
) wherever it exists for n ∈ N

given.

5. The 2n-th derivative of sinp(x) is odd on (−πp
2
, πp

2
) wherever it exists for n ∈ N given.

Proof: Lemma 2.1 contains basic facts that can be easily obtained and/or found in the
literature. Therefore, the proof is ommited.

Lemma 2.2 For all p ∈ R, p > 1

sin′′p(x) = − sinp−1
p (x)sin′p

2−p
(x) for x ∈ (0,

πp
2

) (12)

sin′′p(x) = sinp−1
p (x)

(
− sin′p(x)

)2−p
for x ∈ (

πp
2
, πp) (13)

and
sin′′p(x) = sinp−1

p (−x)sin′p
2−p

(x) for x ∈ (−πp
2
, 0) (14)

Proof: For x ∈ [0, πp
2

] the identity (8) has form

sinp(x)p + sin′p(x)p = 1. (15)

Taking (15) into derivative we get

sinp−1
p (x) sin′p(x) + sin′p

p−1
(x) sin′′p(x) = 0 .

Since sin′p(x) is nonzero on (0, πp
2

)

sin′′p(x) = − sinp−1
p (x)sin′p

2−p
(x) for x ∈ (0,

πp
2

) .
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For x ∈ [πp
2
, πp] we get from (8) following identity

sinp(x)p + (− sin′p(x))p = 1 ,

which gives by analogy as in the previous case (sin′p(x) is nonzero on (πp
2
, πp) because of

evenness)

sin′′p(x) = sinp−1
p (x)(−sin′p(x))2−p for x ∈ (

πp
2
, πp) .

At least for x ∈ (−πp
2
, 0) we get from odness and (8)

| − 1|p| sinp(−x)|p + | sin′p(x)|p = sinp(−x) + sin′p
p
(x) = 1 ,

which gives by similar arguments as above

sin′′p(x) = sinp−1
p (−x)(sin′p(x))2−p for x ∈ (−πp

2
, 0) ,

and Lemma 2.2 is proved.

�
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The statement of Lemma 2.2 for x ∈ (0, πp
2

) is also adduced in [5], [11] or [15], where many
other properties of p-trigonometric functions can be found.
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3 The existence and the continuity of the n-th deriva-

tive of sinp(x)

Theorem 3.1 For all p ∈ R , p > 1 the first derivation of function sinp(x) is continuous
on R.

Proof: The function sinp(x) satisfies the identity

| sinp(x)|p + | sin′p(x)|p = 1 on R . (16)

Considering Lemma 2.1

sin′p(x) = p

√
1− | sinp(x)|p on

(
−πp

2
,
πp
2

)
and

sin′p(x) = − p

√
1− | sinp(x)|p on

(
−πp,−

πp
2

)
∪
(πp

2
, πp

)
.

By the continuity of sinp(x) on R, the fact that range of the | sinp(x)| is [0, 1] and the
continuity of z 7→ p

√
1− zp on [0, 1] for p > 1 we find that

sin′p(·) ∈ C
(
−πp

2
,
πp
2

)
,

sin′p(·) ∈ C
(
−πp,−

πp
2

)
,

and
sin′p(·) ∈ C

(πp
2
, πp

)
.

Since sinp(x) is continuous on R and | sinp(−πp
2

)| = | sinp(πp2 )| = 1 we get from (16)

lim
x→−πp

2

−
sin′p(x) = lim

x→πp
2

−
sin′p(x) = lim

x→πp
2

+
sin′p(x) = lim

x→−πp
2

+
sin′p(x) = 0 .

Hence sin′p(x) is continuous on (−πp, πp). From (16), the continuity of sinp(x) and

sinp(−πp) = sinp(πp) = 0

we obtain that
lim

x→−π−p
sin′p(x) = lim

x→π+
p

sin′p(x) = −1 ,

which implies (considering 2πp-periodicity) the continuity of sin′p(x) on R.

�
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Theorem 3.2 Let p ∈ R \ {2} such that p > 1.

1. If p > 2, then the function sinp(·) ∈ C1(R) and sinp(·) /∈ C2(R).

2. If p ∈ (1, 2), then the function sinp(·) ∈ C2(R) and sinp(·) /∈ C3(R).

Proof: Since by definition sinp(·) ∈ C(R) and by Theorem 3.1 sin′p(x) is continuous on
R, sinp(·) ∈ C1(R) for all given p. For x ∈ [0, πp

2
] the identity (8) has form

sinp(x)p + sin′p(x)p = 1 . (17)

Taking into derivative equation (17) we get

sinp−1
p (x) sin′p(x) + sin′p

p−1
(x) sin′′p(x) = 0 .

It is evident that if sin′p
p−1

(x) 6= 0

sin′′p(x) = − sinp−1
p (x)sin′p

2−p
(x) . (18)

From Lemma 2.1 cosp(x) > 0 on (0, πp
2

) and there is a difficulty at x = πp
2

. Due to

lim
x→πp

2

−
sin′′p(x) = −∞ for p > 2 ,

the continuity of sin′′p(x) falls at x = πp
2

for p > 2.
Vice versa for p ∈ (1, 2)

lim
x→πp

2

−
sin′′p(x) = 0 for p ∈ (1, 2) . (19)

For x ∈ [πp
2
, πp] we get from (8) following identity

sinp(x)p + (− sin′p(x))p = 1 ,

which by analogy to the case p > 2 gives

sin′′p(x) = sinp−1
p (x)(−sin′p(x))2−p

and
lim

x→πp
2

+
sin′′p(x) = 0 for p ∈ (1, 2) . (20)

From (19) and (20) we can define sin′′p(
πp
2

) = 0 and for p ∈ (1, 2) the function

sin′′p(x) =


− sinp−1

p (x)sin′p
2−p

(x) x ∈ [0, πp
2

) ,
0 x = πp

2
,

sinp−1
p (x)− sin′p

2−p
(x) x ∈ (πp

2
, πp] ,
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is continuous on [0, πp]. Due to the 2π-periodicity and the odness of sin′′p(x) (by Lemma
2.1), which also implies the fact that

− sin′′p(−π) = 0 = sin′′p(π) ,

we get continuity on R.
Taking into derivative (18) we obtain for x ∈ [0, πp

2
)

sin′′′p (x) = −(p− 1) sinp−2
p (x)sin′p

3−p
(x) + (2− p) sinp−1

p (x)sin′p
1−p

(x) sin′′p(x) .

By substitution (18) for sin′′p(x) we get

sin′′′p (x) = −(p− 1) sinp−2
p (x)sin′p

3−p
(x) + (2− p) sin2p−2

p (x)sin′p
3−2p

(x) .

Due to sinp(0) = 0 which implies cosp(0) = 1

lim
x→0+

sin′′′p (x) = −∞+ 0 = −∞ for p ∈ (1, 2) .

It follows sinp(·) /∈ C3(R) for p ∈ (1, 2) and the proof is complete.

�

Lemma 3.1 Let p ∈ R such that p > 1 and let k ∈ N. For all k = 1 , 2 , 3 , 4 , . . . , k0,
rk , qk ∈ R

k0∑
k=1

ak sinqkp (x) cosrkp (x)

is continuous on (0, πp
2

) .

Proof: If any function f(x) is continuous, then for all real constant α function α · f(x)
is also continuous. Thus we can consider simplifying assumption ak = 1. We choose any
q , r ∈ R. By the continuity of sinp(x) on (0, πp

2
) , the fact that sinp(x) ∈ (0, 1) for x ∈ (0, πp

2
)

and the continuity of z → zq on (0, 1) we have the continuity of sinqp(x) on (0, πp
2

).
Similarly by the continuity of cosp(x) on (0, πp

2
), the fact that cosp(x) ∈ (0, 1) on (0, πp

2
) and

the continuity of z → zr on (0, 1) we find that cosrp(x) is continuous on (0, πp
2

). The proof
is completed by notation that sum or product of finite number of continuous functions is
continuous function, too.

�

Lemma 3.2 Let p ∈ R such that p > 1 and let k0 ∈ N , k = 1 , 2 , 3 , 4 , 5 , . . . , k0 , rk ∈ R ,
qk > 0 , ak , bk ∈ R .
For

f1(x) =

k0∑
k=1

ak sinqkp (x) cosrkp (x)
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defined on (0, πp
2

) and

f2(x) =

k0∑
k=1

bk sinqkp (−x) cosrkp (x)

defined on (−πp
2
, 0) the function

f(x) =

{
f1(x) x ∈ (0, πp

2
) ,

f2(x) x ∈ (−πp
2
, 0)

is continuous on (−πp
2
, πp

2
) .

Proof: By Lemma 3.1 the function f1(x) is continuous on (0, πp
2

). Since (−1) · sinp(−x)
for x ∈ (−πp

2
, 0) is equal to sinp(x) for x ∈ (0, πp

2
), the function f2(x) is also continuous by

Lemma 3.2 and since sinqp(0) = 0 for any q > 0 and cosrp(0) = 1 for all r ∈ R

0 = lim
x→0−

f2(x) = lim
x→0+

f1(x) = 0 ,

we get desired continuity on (−πp
2
, πp

2
), which conclude the proof.

�

Theorem 3.3 Let p ∈ R , p > 1 , n = 2 , 3 , 4 , . . . then sin(n)
p (x) exists on (0, πp

2
), it is

continuous and there exists k = 1 , 2 , . . . , 2n−2 , ak ∈ R , lk , mk ∈ Z such that

sin(n)
p (x) =

2n−2∑
k=1

ak sinlkp+mkp (x) cos1−lkp−mk
p (x). (21)

Proof: We proceed by induction.

Step 1: By Theorem 3.2 sinp(·) ∈ C1(R) and thus sinp(·) ∈ C1(0, πp
2

). By Lemma 2.2

sin′′p(x) = − sinp−1
p (x) cos2−p

p (x) for x ∈ (0,
πp
2

) (22)

It is clear that k = 1 , a1 = −1 , l1 = 1 , m1 = 1. By Lemma 3.1 sinp−1
p (x) cos2−p

p (x) is
continuous on (0, πp

2
) for given all p and the statement of Theorem 3.3 is true for n = 2 .

Step 2: Let us assume that statement of Theorem 3.3 is true for n , i.e.

sin(n)
p (x) =

2n−2∑
k=1

ak sinlkp+mkp (x) cos1−lkp−mk
p (x)

Due to the fact that the function z 7→ zq , z > 0 , q ∈ R belongs to C∞(0,+∞) considering
Lemma 2.1 and Theorem 3.2 is sin(n)

p (x) differentiable function. The chain rule and the
product rule we apply and we get from (21)

sin(n+1)
p (x) =

2n−2∑
k=1

ak(lkp+mk) sinlkp+mk−1
p (x) cosp(x) cos1−lkp−mk

p (x) +

+ ak(1− lkp−mk) sinlkp+mkp (x) cos1−lkp−mk−1
p (x) sin′′p(x) .

12



Subtitue (22) for sin′′p(x) from

sin(n+1)
p (x) =

2n−2∑
k=1

ak(lkp+mk) sinlkp+mk−1
p (x) cos1−lkp−mk+1

p (x)−

− ak(1− lkp−mk) sin(lk+1)p+mk−1
p (x) cos1−(lk+1)p−mk+1

p (x) .

By the fact that the function z 7→ zq , z > 0 , q ∈ R belongs to C∞(0,+∞) and Lemma 2.1
again, sin(n+1)

p (x) is continuous.
Denoting

ā2k−1 = ak(lkp+mk) ,

ā2k = −ak(1− lkp−mk) ,

l̄2k−1 = lk , (23)

m̄2k−1 = mk − 1 , (24)

l̄2k = lk + 1 , (25)

m̄2k = m2k − 1 . (26)

Thus we have

sin(n+1)
p (x) =

2n−1∑
k=1

āk sinl̄kp+m̄kp (x) cosl̄kp+m̄kp (x) ,

which concludes the proof by induction.

�

Let us mention that the similar statement works for x ∈ (−πp
2
, 0) and x ∈ (πp

2
, πp), but the

series have form

sin(n)
p (x) =

2n−2∑
k=1

bk sinlkp+mkp (−x) cos1−lkp−mk
p (x) , (27)

and

sin(n)
p (x) =

2n−2∑
k=1

bk sinlkp+mkp (x) (− cosp(x))1−lkp−mk . (28)

The proofs are analogous, if the appropriate form of (8) from Lemma 2.2 is used, i.e.
equation (14) and (13). The other important fact is that (in general) ak 6= bk, but |ak| = |bk|.
It is easy corollary of the oddness of sinp(x).
Let us establish the following notation:

sinp(x) = Sp ,

sin′p(x) = Cp .

13



Remark 3.1 We express first four derivatives of sinp(x) for p ∈ N, p > 1 and x ∈ (−πp
2
, πp

2
).

From the oddness of sinp(x) (by definition) for x < 0

| sinp(x)|p = | − sinp(−x)|p = | − 1|p · | sinp(−x)|p = sinpp(−x)

and we can rewrite identity (8) for x on (−πp
2
, 0)

sinpp(−x) + cospp(x) = 1 .

Moreover by the evenness of cosp(x) on (−πp
2
, πp

2
)

cosp(−x) = cosp(x) .

If p ≥ n, then for n-th derivative of sinp(x) (n = 1 , 2 , 3 , 4) holds

x ≥ 0 or p even for x ∈ (−πp

2 , πp

2 ) x < 0

1 = Spp(x) + Cp
p (x) 1 = Spp(−x) + Cp(x)

p

0 = Sp−1
p (x)Cp(x) 0 = −Sp−1

p (−x)Cp(x)

+ Cp−1
p (x)S′′p (x) + Cp−1

p (x)S′′p (x)

S′′p = −Sp−1
p (x)C2−p

p (x) S′′p = Sp−1
p (−x)C2−p

p (x)

S′′′p = −(p− 1)Sp−2
p (x)C3−p

p (x) S′′′p = (p− 1)Sp−2
p (−x)C3−p

p (x)

+ (2− p)Sp−1
p (x)C1−p

p (x)S′′p (x) + (2− p)Sp−1
p (−x)C1−p

p (x)S′′p (x)

= −(p− 1)Sp−2
p (x)C3−p

p (x) = (p− 1)Sp−2
p (−x)C3−p

p (x)

+ (2− p)S2p−2
p (x)C3−2p

p (x) + (2− p)S2p−2
p (−x)C3−2p

p (x)

SIV
p = −(p− 1)(p− 2)Sp−3

p (x)C4−p
p (x) SIV

p = (p− 1)(p− 2)Sp−3
p (−x)C4−p

p (x)

− (p− 1)(3− p)Sp−2
p (x)C2−p

p (x)S′′p (x) + (p− 1)(3− p)Sp−2
p (−x)C2−p

p (x)S′′p (x)

+ (2− p)(2p− 2)S2p−3
p (x)C4−2p

p (x) + (2− p)(2p− 2)S2p−3
p (−x)C4−2p

p (x)

+ (2− p)(3− 2p)S2p−2
p (x)C2−2p

p (x)S′′p (x) + (2− p)(3− 2p)S2p−2
p (−x)C2−2p

p (x)S′′p (x)

= −(p− 1)(p− 2)Sp−3
p (x)C4−p

p (x) = (p− 1)(p− 2)Sp−3
p (−x)C4−p

p (x)

+ (p− 1)(3− p)S2p−3
p (x)C4−2p

p (x) + (p− 1)(3− p)S2p−3
p (−x)C4−2p

p (x)

+ (2− p)(2p− 2)S2p−3
p (x)C4−2p

p (x) + (2− p)(2p− 2)S2p−3
p (−x)C4−2p

p (x)

− (2− p)(3− 2p)S3p−3
p (x)C4−3p

p (x) + (2− p)(3− 2p)S3p−3
p (−x)C4−3p

p (x)

We consider the case p = 3. By Theorem 3.2 we know that sin3(x) belongs C1(−π3
2
, π3

2
).

For second derivate we have continuity on both intervals by Lemma 3.1 (q = 2, r = −1)

14



and for x = 0 we have

sin2
3(0) · sin′3

−1
(0) = 0 · 1 = 0 ,

lim
x→0−

sin2
3(x) · sin′p

−1
(x) = 0 ,

and it follows that sin3(·) ∈ C2(−π3
2
, π3

2
). Likewise all addends of the third derivative on

both intervals satisfies the conditions of Lemma 3.1 (so it is sum of continuous functions)

and

(−2) sin3(0) · 1 + (−1) sin4
3(0) · sin′3

−3
(0) = 0 ,

lim
x→0−

(
2 sin3(x) · 1 + (−1) sin4

3(x) · sin′3
−3

(x)
)

= 0 .

Hence sin′′′3 (x) is also continuous on (−π3
2
, π3

2
). On the other hand the fourth derivative is

not continuous. We can obtain sinIV3 (x) easily taking sin′′′3 (x) into derivative and we get

sinIV3 (x) = −2 sin′3(x)− 4 sin3
3(x) · sin′3

−2
(x)− 3 sin6

3(x) · sin′3
−5

(x) x ∈ (0, π3
2

) ,

sinIV3 (x) = 2 sin′3(x)− 4 sin3
3(x) · sin′3

−2
(x) + 3 sin6

3(x) · sin′3
−5

(x) x ∈ (−π3
2
, 0) .

The conditions of Lemma 3.1 holds for all addens of the fourth derivative on both intervals

except the first members. There are members including sin0
3(x) which is on (−π3

2
, 0)∪(0, π3

2
)

equal to one and here Lemma 3.1 for sin′3(x) holds. It remains the task of continuity at

x = 0. We evaluate following limits

lim
x→0+

(
−2 sin′3(x)− 4 sin3

3(x) · sin′3
−2

(x)− 3 sin6
3(x) · sin′3

−5
(x)
)

= −2 ,

lim
x→0−

(
2 sin′3(x)− 4 sin3

3(x) · sin′3
−2

(x) + 3 sin6
3(x) · sin′3

−5
(x)
)

= 2 ,

which implies that sin3(·) /∈ C4(−π3
2
, π3

2
).

Main results of this section are Theorem 3.4 and Theorem 3.5.

Theorem 3.4 Let p = 2(i+ 1) , i ∈ N. Then

sinp(·) ∈ C∞(−πp
2
,
πp
2

).

Proof: By Theorem 3.2 it is clear that sinp(·) ∈ C1(−πp
2
, πp

2
) for p > 1 . From Theorem 3.3

and by equation (27) we get for any n ∈ N , n ≥ 2

sin(n)
p (x) =

{ ∑2n−2

k=1 bk,n sin
lk,np+mk,n
p (−x) cos

1−lk,np+mk,n
p (x) for x ∈ (−πp

2
, 0) ,∑2n−2

k=1 ak,n sin
lk,np+mk,n
p (x) cos

1−lk,np+mk,n
p (x) for x ∈ (0, πp

2
) .

(29)
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To make the idea of proof more apparent, we introduce the following substitution

qk,n = lk,np+mk,n . (30)

Since for all k and n , are lk,n , mk,n ∈ Z and p ∈ N exponent qk,n ∈ Z. We also define

sin0
p(x)

def
= 0 for all x on (−πp

2
, πp

2
). Our proof proceeds by induction in n.

Step 1: For n = 2 the continuity of sin′′p(x) is simple application of Lemma 3.2 on (29),
because q1,2 = p− 1 ≥ 3.

Step 2: Let us assume that for n sin(n)
p (x) is continuous on (−πp

2
, πp

2
). Since for q < 0,

sinqp(0) is not defined, for k = 1 , 2 , 3 , 4 , . . . , 2n−2 in (29)

qk,n ≥ 0 .

By equations (23)-(26) and by

(
N∑
j=1

uj · vj)′ =
N∑
j=1

u′j · vj +
N∑
j=1

uj · v′j

for derivative of (29) (considering the subtitution (30))

q2k−1,n+1 = qk,n − 1 from d
dx

sin
qk,n
p (x) ,

q2k,n+1 = qk,n + p− 1 from d
dx

cos
1−qk,n
p (x) ,

}
(31)

Since p > 1 in the case that qk,n ≥ 2 for all k = 1 , 2 , 3 , 4 , . . . , 2n−2, qk,n+1 > 0 for all
k = 1 , 2 , 3 , 4, . . . , 2n−1 and sin(n+1)

p (x) is well-defined and continuous by Lemma 3.2.
In the next case there is at least one k0 for which qk0,n = 1. Corresponding members
(cosp(x) 6= 0 on (−πp

2
, πp

2
)) are

ak0,n sin
qk0,n
p (x) cos

1−qk0,n
p (x) = ak0,n sin1

p(x) · 1 for x ∈ (0, πp
2

) ,

bk0,n sin
qk0,n
p (−x) cos

1−qk0,n
p (x) = bk0,n sin1

p(−x) · 1 for x ∈ (−πp
2
, 0) .

}
(32)

in the series for n-th derivative of sinp(x). The derivatives of members (32)

d
dx

(
ak0,n sin1

p(x) · 1
)

= ak0,n cosp(x) · 1 + ak0,n sinp(x) · 0 for x ∈ (0, πp
2

) ,
d
dx

(
bk0,n sin1

p(−x) · 1
)

= −bk0,n cosp(x) · 1 + bk0,n sinp(−x) · 0 for x ∈ (−πp
2
, 0) ,

}
(33)

appears the series for (n+ 1)-th derivative of sinp(x). Thus these members are well-defined
on (−πp

2
, πp

2
). Setting

a2k0−1,n+1 := ak0,n ,
a2k0,n+1 := 0 · ak0,n = 0 ,
b2k0−1,n+1 := −bk0,n ,
b2k0,n+1 := 0 · bk0,n = 0 ,
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and observing that cosp(x) is even, we can rewrite (33) as

d
dx

(
ak0,n sin1

p(x) · 1
)

= a2k0−1,n+1 sin0
p(x) cosp(x) + a2k0,n+1 sin1

p(x) cos0
p(x) ,

d
dx

(
bk0,n sin1

p(−x) · 1
)

= b2k0−1,n+1 sin0
p(−x) cosp(x) + bk0,n+1 sinp(−x) cos0

p(x) ,

which formally satisfies (29).
In the last case there is at least one k0 for which qk0,n = 0. From the previous cases, the
corresponding members of (29) are

ak0,n · 1 · cosp(x) for x ∈ (0, πp
2

) ,
bk0,n · 1 · cosp(x) for x ∈ (−πp

2
, 0) ,

The derivatives of these members for x on (0, πp
2

) and x on (−πp
2
, 0) are, respectively

d
dx

(ak0,n · 1 · cosp(x)) = ak0,n · 0 · cosp(x) + ak0,n · 1 · sin′′p(x)
= ak0,n · 0 · sin0

p(x) cosp(x)− ak0,n sinp−1
p (x) cos2−p

p (x) ,
d
dx

(bk0,n · 1 · cosp(x)) = bk0,n · 0 · cosp(x) + bk0,n · 1 · sin′′p(x)
= bk0,n · 0 · sin0

p(x) cosp(x) + bk0,n sinp−1
p (−x) cos2−p

p (x) ,

where we substitue (12) for sin′′p(x) on (0, πp
2

) and (14) for sin′′p(x) on (−πp
2
, 0) . It is obvious

that these members are well defined on (−πp
2
, πp

2
) .

Setting
a2k0−1,n+1 := 0 · ak0,n = 0 ,
a2k0,n+1 := −ak0,n ,
b2k0−1,n+1 := 0 · bk0,n = 0 ,
b2k0,n+1 := bk0,n ,

we get

d
dx

(ak0,n · 1 · cosp(x)) = a2k0−1,n+1 sin0
p(x) cos1

p(x) + a2k0,n+1 sinp−1
p (x) cos2−p

p (x) ,
d
dx

(bk0,n · 1 · cosp(x)) = b2k0−1,n+1 sin0
p(x) cos1

p(x) + b2k0,n+1 sinp−1
p (−x) cos2−p

p (x) ,

which formally satisfies (29).
Considering these three cases and Lemma 3.2 if qk,n 6= 1 the (n+1)-th derivative of sinp(x)
is continuous on (−πp

2
, πp

2
).

It remains a question of continuity in the case there is at least one qk0,n = 1. Without loss
of generality we may assume there is exactly one such k0, because if there is more then
one, we can add all coefficients ak0,n. The members corresponding to (n+ 1)-th derivative

a2k0−1,n+1 cosp(x) for x ∈ (0, πp
2

) ,
b2k0−1,n+1 cosp(x) for x ∈ (−πp

2
, 0) ,

}
(34)

are formed by taking sinqp(x) (or cosrp(x)) into derivative finitely many times. By (31) the
appropriate q2k0−1,n+1 = 0. Let j ∈ N is the number of derivatives of cosrp(x) needed to
obtain (34) from sin′′p(x). Considering (31) exponent qk,n depens on j

q2k0,n+1 = j(p− 1) + (n+ 1− 2− j)(−1) + q1,2 = (j + 1)p− n . (35)
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It follows that for p even and q2k0−1,n+1 = 0

n = (j + 1)p

is also even and sin(n+1)
p (x) is even function by Lemma 2.1. Due to evenness and the facts

that
lim
x→0

ak,n+1 sin
qk,n+1
p (x) cos

1−qk,n+1
p (x) = 0

for all k 6= 2k0 − 1 and

b2k0−1,n+1 = lim
x→0−

sin(n+1)
p (x) = lim

x→0+
sin(n+1)

p (x) = a2k0−1,n+1

function sin(n+1)
p (x) is continuous on (−πp

2
, πp

2
). The proof is completed.

�

Theorem 3.4 allows us develop sinp(x) in the Taylor series for even p, but computing of its
coefficients is left as open problem.

Lemma 3.3 Let f(x) and g(x) belongs Cm(a, b). Then

(f · g)(m) =
m∑
j=0

(
m

j

)
f (j) · g(m−j) . (36)

Proof: We proof this lemma by recursion on n.

Step 1: We use the well-known formula (uv)′ = u′v+uv′ for the first derivative and we get

(f · g)′ = f ′ · g + f · g′ =
1∑
j=0

(
1

j

)
f (j) · g(1−j)

Thus the statement of Lemma 3.3 is true for n = 1.

Step 2: Assuming (36) to hold for n, we will prove it for n+ 1.
From (36) and the linearity of derivative ((u+ v)′ = u′ + v′) we have

d

dx
(f · g)(n) =

n∑
j=0

d

dx

(
n

j

)
f (j) · g(n−j).

Derivative of the j-th and (j + 1)-th member of the series are

d

dx

(
n

j

)
f (j) · g(n−j) =

(
n

j

)
f (j+1) · g(n−j) +

(
n

j

)
f (j) · g(n−j+1)

and

d

dx

(
n

j

)
f (j+1) · g(n−j−1) =

(
n

j + 1

)
f (j+2) · g(n−j) +

(
n

j + 1

)
f (j+1) · g(n−j−1+1).
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It is easily seen, that the sum over all j ∈ N is

f · g(n+1) +
n−1∑
j=0

((
n

j + 1

)
+

(
n

j

))
f (j+1) · g(n−j) + f (n+1) · g.

Thus we have (after reindexation)

(f · g)(n+1) =
n+1∑
j=0

(
n+ 1

j

)
f (j) · g(n−j+1).

Step 3: The recursion stop when n+ 1 = m.

�

Theorem 3.5 Let p = 2i+ 1 , i ∈ N. Then

sinp(·) ∈ Cp(−πp
2
,
πp
2

) , but sinp(·) /∈ Cp+1(−πp
2
,
πp
2

) .

Proof: We use (29) with the substitution (30) again. By Lemma 3.2 the n-th derivative of
sin2i+1(x) can by discontinuous only if there is a k0 ∈ N , k ≤ 2n−2 for which qk0,n ≤ 0 . By
(31) we know that q decreasing if we taking into derivative by sinq2i+1(x) and it decreasing
by one per derivative. We begin with second derivative of sinp(x)

sin′′2i+1 = − sin2i
2i+1 sin′2i+1

1−2i
for x ∈ [0, π2i+1

2
) ,

sin′′2i+1 = sin2i
2i+1 sin′2i+1

1−2i
for x ∈ (−π2i+1

2
, 0) ,

which we taking into derivative. By Lemma 3.3 we show that the highest derivative of
sin2i+1(x) is at member f(x)(t) ·g . For f(x) = sin2i

2i+1(x), g(x) = sin′2i+1
1−2i

(x) and t = 2i−1
it is obvious that from chain rule we get for x ∈ [0, π2i+1

2
)

d2i−1

dx2i−1

(
− sin2i

2i+1(x)
)

= (2i)(2i− 1) · . . . · 2 · sin1
2i+1(x) · sin′2i+1

0
(x)

and for x ∈ (−π2i+1

2
, 0)

d2i−1

dx2i−1
sin2i

2i+1(x) = (2i)(2i− 1) · . . . · 2 · sin1
p(x) · sin′2i+1

0
(x) .

The member with the highest derivative of sinq2i+1(x), which is for the minimum of all
qk,n has after 2i + 1 derivatives following form for x ∈ [0, π2i+1

2
) and for x ∈ (−π2i+1

2
, 0),

respectively

sin
(2i+1)
2i+1 (x) = −(2i)(2i− 1) · . . . · 2 · sin1

2i+1(x) · sin′2i+1
0
(x) ,

sin
(2i+1)
2i+1 (x) = (2i)(2i− 1) · . . . · 2 · sin1

2i+1(x) · sin′2i+1
0
(x) ,
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which can be rewritten (sin′p(x) ∈ (0, 1] on (−πp
2
, πp

2
)) as

sin
(2i+1)
2i+1 (x) = −a2i+1 · sin2i+1(x) for x ∈ [0, π2i+1

2
) ,

sin
(2i+1)
2i+1 (x) = a2i+1 · sin2i+1(x) for x ∈ (−π2i+1

2
, 0) .

(37)

By further taking (37) into derivative we obtain

sin2i+2
2i+1(x) = −a2i+1 · sin′2i+1(x) for x ∈ [0, π2i+1

2
) ,

sin2i+2
2i+1(x) = a2i+1 · sin′2i+1(x) for x ∈ (−π2i+1

2
, 0) ,

It remains to evaluate limits

limx→0+ sin2i+2
2i+1(x) = limx→0+ −a2i+1 · sin′2i+1(x) = −a2i+1 ,

limx→0− sin2i+2
2i+1(x) = limx→0− a2i+1 · sin′2i+1(x) = a2i+1 ,

which follows that sin2i+1(·) /∈ C2i+2(−π2i+1

2
, π2i+1

2
). That sin2i+1(·) ∈ C2i(−π2i+1

2
, π2i+1

2
)

follows from Lemma 3.2, because q > 0 and proof is complete.

�

Theorem 3.6 Let p ∈ R \ N such that p > 1. Then sinp(·) belongs C [p]+1(−πp
2
, πp

2
) , but it

does not belong C [p]+2(−πp
2
, πp

2
) .

Proof: We use (29) with the substitution (30) again. By Theorem 3.2 sinp(·) ∈ C1(−πp
2
, πp

2
).

Considering (35) we get for all n ≤ [p] + 1

q1,n = p− n+ 1 ≥ q1,[p]+1 = p− [p] > 0 ,

and other qk,n for k = 2 , 3 , 4 , . . . , 2n−2 are bigger than q1,n since j 6= 0 in these coefficients
and we add j(p− 1) + j > 0. Thus sinp(·) belongs C [p]+1(−πp

2
, πp

2
) by Lemma 3.2 apply on

(29). If we taking sinp(x) into derivative [p] + 1-times, we get for k = 1

f(x) = a1,[p]+1 sinp−[p]
p (x) cos1−p+[p]

p (x) .

Taking f(x) into derivative again, we get for k = 1

f ′(x) = a1,[p]+2 sinp−[p]−1
p (x) cos−p+[p]

p (x) ,

which is cleary undefined at x = 0. Since cos
−p+[p]
p (0) = 1 and

lim
x→0+

sinp−[p]−1
p (x) = +∞

the function sin([p]+2)
p (x) has the infinite discontinuity at x = 0, which implies that sinp(·) /∈

C [p+2](−πp
2
, πp

2
). Hence for p ∈ R \ N, p > 1

sinp(·) ∈ C [p]+1(−πp
2
,
πp
2

) ,

and Theorem 3.6 is proved.

�
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Lemma 3.4 Let p ∈ R such that p > 1 and let k ∈ N. For all k = 1 , 2 , 3 , 4 , . . . , k0,
rk , qk ∈ R

k0∑
k=1

ak sinqkp (x) cosrkp (x)

is continuous on (πp
2
, πp) .

Proof: If the function f(x) is continuous, then for all real constant α function α·f(x) is also
continuous. Thus we can consider simplifying assumption ak = 1. We choose any q , r ∈ R .
By the continuity of sinp(x) on (πp

2
, πp) , the fact that sinp(x) ∈ (0, 1) for x ∈ (πp

2
, πp) and

the continuity of z → zq on (0, 1) we have the continuity of sinqp(x) on (πp
2
, πp) .

Similarly by the continuity of cosp(x) on (πp
2
, πp), the fact that − cosp(x) ∈ (0, 1) on (πp

2
, πp)

and the continuity of z → zr on (0, 1) we find that (− cosp(x))r is continuous on (πp
2

) . The
proof is comleted by notation that sum or product of finite number of continuous functions
is continuous function.

�

Lemma 3.5 Let p ∈ R such that p > 1 and let k0 ∈ N , k = 1 , 2 , 3 , 4 , 5 , . . . , k0 , qk ∈ R ,
rk > 0 , ak , bk ∈ R.
For

f1(x) =

k0∑
k=1

ak sinqkp (x) cosrkp (x)

defined on (0, πp
2

) and

f2(x) =

k0∑
k=1

bk sinqkp (x) (− cosp(x))rk

defined on (πp
2
, πp) the function

f(x) =

{
f1(x) x ∈ (0, πp

2
) ,

f2(x) x ∈ (πp
2
, πp)

is continuous on (−πp
2
, πp

2
) .

Proof: By Lemma 3.1 the function f1(x) is continuous and by Lemma 3.4 the function
f2(x) is continuous. Since cosrkp (πp

2
) = 0 for any r > 0 and sinqp(

πp
2

) = 1 for all r ∈ R

0 = lim
x→πp

2

−
f1(x) = lim

x→πp
2

+
f2(x) = 0 ,

and function f(x) is continuous, which conclude the proof.

�
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Theorem 3.7 Let p ∈ (1, 2). If p′ /∈ N, then sinp(·) belongs C [p′](0, πp), but it does not
belong C [p′]+1(0, πp).

Proof: By Theorem 3.2 sinp(·) belongs C1(0, πp) ⊂ C1(R). Using Theorem 3.3 and (28)
and considering the substitution (30)

sin(n)
p (x) =

{ ∑2n−2

k=1 ak,n sin
qk,n
p (x) cos

1−qk,n
p (x) for x ∈ (0, πp

2
) ,∑2n−2

k=1 bk,n sin
qk,n
p (x) (− cosp(x))1−qk,n for x ∈ (πp

2
, πp) .

(38)

By Lemma 3.5 if 1 − qk,n > 0, then sin(n)
p (x) is continuous. Modify (35) for n instead of

n+ 1, i.e.
qk,n = j(p− 1) + (n− 2− j)(−1) + q1,2 = (j + 1)p− n+ 1 ,

where j ∈ N denotes number of taking cosqp(x) into derivative to obtain k-th member of
(38) from sin′′p(x). It is obvious that j ≤ n− 2. Since 1 > qk,n

1 > (n− 2 + 1)p+ 1− n > (j + 1)p+ 1− n ,
n > (n− 1)p ,

n− np > −p ,
n(1− p) > −p .

Since p ∈ (1, 2)

n <
p

p− 1
= p′ .

If p′ /∈ N, then sinp(·) ∈ C [p′](0, πp) by Lemma 3.5. If we taking sin([p′])
p (x) into derivative

again, we get certainly for some k0 j = [p′]− 1

qk0,[p′]+1 = ([p′])p− [p′] = [p′](p− 1) >
p

p− 1
(p− 1) = p > 1 ,

which means cos
1−qk0,[p′]+1
p (πp

2
) is not defined and since sin

qk0,[p′]+1
p (πp

2
) = 1

lim
x→πp

2

+
sin

qk0,[p′]+1
p (x) cos

1−qk0,[p′]+1
p (x) = +∞ .

Hence sin([p′]+1)
p (x) can not be defined at x = πp

2
and proof is complete.

�
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p x in (0, πp
2

) (−πp
2
, πp

2
) R (0, πp)

p = 2 C∞ C∞ C∞ C∞

p = 2k k ∈ N \ {1} C∞ C∞ C1 C1

p = 2k + 1 k ∈ N C∞ Cp C1 C1

p ∈ (1, 2) p′ /∈ N C∞ C2 C2 C [p′]

p ∈ R \ N p > 2 C∞ C [p]+1 C1 C1

Table 1: The continuity of n-th derivative of sinp(x)

4 Explicit expression of sinp(x)

This section is devoted to a few ways of expression sinp(x) in the term of power series.
We use inverting of power series of arcsinp(x), i.e. (11) for this purpose. Since this series is
defined only on (0, 1), function sinp(x) is defined only on (0, πp

2
). In whole section we will

consider p ∈ N such that p > 1.
Using (9) to invert power series (11) for p ∈ N such that p > 1 and for x ∈ (0, 1)

bnp+1 =
1

(np+ 1) · anp+1
1

∑
s,t,u,...

(−1)σ · (np+ 1)(np+ 2) · . . . · (np+ σ)

s!t!u! . . .

(
a2

a1

)s(
a3

a1

)t
. . . ,

(39)
where σ = s+ t+ u+ . . . . For n ∈ N if k 6= np+ 1 then ak = 0 and if k = np+ 1 then

anp+1 =
Γ
(
n+ 1

p

)
Γ
(

1
p

)
(n · p+ 1) · n!

. (40)

Since Γ(z + 1) = z · Γ(z) for n ∈ N

anp+1 =

(
n− 1 + 1

p

)(
n− 2 + 1

p

)
. . .
(

1 + 1
p

)
1
p
· Γ
(

1
p

)
Γ
(

1
p

)
(n · p+ 1) · n!

=
(p(n− 1) + 1)(p(n− 2) + 1) . . . 1

(p · n+ 1)pn · n!
.

(41)

Theorem 4.1 Let an0 = 0 is n0-th coefficient of (11), then bn0 = 0 in the power series for
sinp(x) .

Proof: Let us assume that for any n0 ∈ N is an0 = 0 . From (11) if for all i ∈ N the index
l 6= i · p+ 1, then al = 0. Now we use a condition from (9), i.e.

1 · s+ 2 · t+ 3 · u+ . . . = n− 1 , (42)

where we denote m1 = s, m2 = t, m3 = u , . . . . If an1 = 0 , then the corresponding member
of (9) is equal to zero since we multiply by an1 . It follows that we must not consider such
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ml for which al+1 = 0. Thus we can rewrite (42) as

p ·mp + 2p ·m2p + 3p ·m3p + . . . = n0 − 1 .

Divide this equation by p > 1

mp + 2 ·m2p + 3 ·m3p =
n− 1

p
. (43)

Since an0 = 0 for all i ∈ N , n0 6= i · p+ 1 and

n0 − 1

p
/∈ Z .

But for all i ∈ N , mip ∈ N, which implies that there is no acceptable member combination
for condition of (9). Hence bn0 = 0 and proof is complete.

�

Let us note that since bn are Taylor coefficients, it correspond to the fact, that if for all
k ∈ N , k < 2n−2 is qk,n > 0, then

sin(n)
p (0) =

∑2n−2

k=1 ak,n sin
qk,n
p (0) cos

1−qk,n
p (0) = 0 ,

Due to Theorem 4.1 we can compute only coefficients bip+1 for i ∈ N. Let us express few
coefficients. From (39), (40) and (41) it is easily seen that

b1 = 1
a1

= 1 ,

bp+1 = 1

(p+1)·ap+1
1

(
−p+1

1!

(
ap+1

a1

)1
)

= − 1
p(p+1)

,

b2p+1 = 1

(2p+1)·a2p+1
1

(
(2p+1)(2p+2)

2!

(
ap+1

a1

)2

− (2p+1)
1!

(
a2p+1

a1

)1
)

= 1
p2(p+1)

− p+1
2!(2p+1)p2

= − p2−2p−1
4p4+6p3+2p2

,

which are also given in [15]. Further two coefficients are

b3p+1 = 1

(3p+1)a3p+1
1

·
(
− (3p+1)(3p+2)(3p+3)

3!

(
ap+1

a1

)3

+ (3p+1)(3p+2)
1!1!

(
ap+1

a1

)(
a2p+1

a1

)
− 3p+1

1!

(
a3p+1

a1

))
= − (3p+2)(p+1)

2!
· 1
p3(p+1)3

+ (3p+ 2) · 1
p(p+1)

p+1
2!(2p+1)p2

− (2p+1)(p+1)
3!(3p+1)p3

= − 4p5+11p4+2p3−13p2−7p−1
36p7+102p6+102p5+42p4+6p3

and

b4p+1 = 1

(4p+1)a4p+1
1

·
(

(4p+1)(4p+2)(4p+3)(4p+4)
4!

(
ap+1

a1

)4

− (4p+1)(4p+2)(4p+3)
2!1!

(
ap+1

a1

)2 (
a2p+1

a1

))
+

+ 1

(4p+1)a4p+1
1

·
(

(4p+1)(4p+2)
2!

(
a2p+1

a1

)2

+ (4p+1)(4p+2)
1!1!

(
ap+1

a1

)(
a3p+1

a1

)
− 4p+1

1!

(
a4p+1

a1

))
= (2p+1)(4p+3)(p+1)

3
· 1
p4(p+1)4

− (2p+ 1)(4p+ 3) · 1
p2(p+1)2

· p+1
2!(2p+1)p2

+

+ (2p+ 1) · (p+1)2

(2p+1)2p4(2!)2
+ (4p+ 2) · 1

p(p+1)
· (2p+1)(p+1)

(3p+1)p3(3!)
− (3p+1)(2p+1)(p+1)

(4p+1)p4(4!)

= − 36p8−124p7+27p6+206p5−15p4−140p3−71p2−14p−1
576p10+2352p9+3816p8+3120p7+1344p6+288p5+24p4
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Computing of these coefficients is quite difficult. In section 2 we introduce Bell polynomials,
which we use to express coefficients bnp+1. Comparing (10) and (9) we get following theorem

Theorem 4.2 Let p ∈ N such that p > 1, n ∈ N and bnp+1 is coefficient of series expansion
of sinp(x). Then

bnp+1 =
n∑
k=1

(np+ k)!

(np+ 1)!
· (−1)k

n!
Bn,k(

ap+1

1!
,
a2p+1

2!
, . . . ,

anp+1

n!
) .

Proof: We use formula (9) and we get considering (43) with substitution σ = mp +m2p +
m3p + . . .

bnp+1 =
1

(np+ 1)anp+1
1

∑
mp,m2p,...

(−1)σ
(np+ 1)(np+ 2) · . . . · (np+ σ)

mp!m2p! . . .

(
ap+1

a1

)mp (a2p+1

a1

)m2p

. . . .

Since a1 = 1 for all p ∈ N such that p > 1

bnp+1 =
1

np+ 1

∑
mp,m2p,...

(−1)σ
(np+ 1)(np+ 2) · . . . · (np+ σ)

mp!m2p! . . .
(ap+1)mp (a2p+1)m2p . . . .

For any given σ = σ0 we denote

L(mp,m2p, . . . ,mnp) = Boolean [mp+2m2p+. . .+n·mnp = n∧mp+m2p+. . .+mnp = σ0] ,

which ensures compliance with (42) and we obtain

1

np+ 1

∑
mp,m2p,...

(−1)σ0
(np+ 1)(np+ 2) · . . . · (np+ σ0)

mp!m2p! . . .

n∏
s=1

(asp+1)msp

=
n∑

mp=0

n∑
m2p=0

. . .

n∑
mnp=0

L(mp, . . . ,mnp)
(np+ σ0)!

(np+ 1)!
· (−1)σ0

n!
· n!

mp!m2p! . . .

n∏
s=1

(asp+1)msp

=
(np+ σ0)!

(np+ 1)!
· (−1)σ0

n!
·Bn,σ0(

ap+1

1!
,
a2p+1

2!
. . .

anp+1

n!
) .

Sum over all σ ∈ N such that σ ≤ n gives us desired formula, e.g.

bnp+1 =
n∑
σ=1

(np+ σ)!

(np+ 1)!
· (−1)σ

n!
·Bn,σ(

ap+1

1!
,
a2p+1

2!
. . .

anp+1

n!
) ,

which complete the proof.

�
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There is also other way to invert power series by using Bell polynomias. Directly by The-
orem 2.1 we get for k = 1

g(−1)
n =

(
n− 1

0

) n−1∑
i=0

(−1)ig−n−i1 Bn−1+i,i(0, g1, g2, g3, g4 . . .) .

Hence

g
(−1)
1 =

∑0
i=0(−1)ig−i−1

1 Bi,i(0, g2, g3, . . .) = 1
g1
,

g
(−1)
2 =

∑1
i=0(−1)ig−2−i

1 B1+i,i(0, g2, g3, . . .) = g−2
1 · 0 + (−1)g−3

1 B2,1(0, g2, g3, . . .)
= − 1

g31
· 2!

1!
· g2

2!
= − g2

g31
,

g
(−1)
3 =

∑2
i=0(−1)ig−3−i

1 B2+i,i(0, g2, g3, . . .)
= g−3

1 · 0 + (−1)g−4
1 B3,1(0, g2, g3, . . .) + (−1)2g−5

1 B4,2(0, g2, g3, . . .)

= − 1
g41
· 3!

1!
· g3

3!
+ 1

g51

(
4!
2!
·
(
g2
2!

)2
+ 4!

1!1!
· 0

1!
· g3

3!

)
= − g3

g41
+ 2

g22
g51
.

For inversion of arcsinp(x) we have for g1 = a1 , g2 = a2 , g3 = a3 ,

b1 = 1
a1

= 1 ,

b2 = −a2
a31

= −a2 = 0 ,

b3 = −a3
a41

+ 2
a22
a51

= −a3 .

In the same way we can compute other coefficient. Let us note, that Theorem 4.1 hold here
too, but theire aplication is more complicated because of properties of Bell polynomials.
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5 Conclusion

The main motivation for this work is to show that power series expansion of function
sinp(x) is convergent on some neighborhood of x0 = 0. Section 4 deals with a number of
ways we can express sinp(x) in the term of power series without considering the domain
of convergence of these series. The most natural way is using Taylor series expansion, but
we need sinp(·) ∈ C∞. In section 3 is given Theorem 3.4, which allows us to realize the
expansion at x = 0 for even p, such that p 6= 2. It does not solve problem of convergence
too, but let us mention a hypothesis.

Hypothesis 5.1 Let p = 2(i + 1) , i ∈ N. Then we can expand sinp(x) into Taylor series
at x = 0, i.e.

f(x) = sinp(0) +
sin′p(0)

1!
(x− x0) +

sin′′p(0)

2!
(x− x0)2 + . . .+

sin(n)
p (0)

n!
(x− x0)n ,

which converges for n→ +∞ to sinp(x) at least on (−1, 1) and at most on (−πp
2
, πp

2
).

The maximal interval (−πp
2
, πp

2
) follows from the fact that Theorem 3.4 holds only on

(−πp
2
, πp

2
). The minimal interval is given by the fact that by Theorem 3.4 sin(n)

p (0) can be

express in form P (pα)
n!

, where α ≤ n − 2 and P (pα) denote a polynomial in p, which have
degree α.
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