
Unsupervised Methods for
Language Modeling

PhD Study Report

Tomáš Brychćın

Technical Report No. DCSE/TR-2012-03
June, 2012

Distribution: Public

Abstract

Language models are crucial for many tasks in NLP1 and N-grams are the
best way to build them. Huge effort is being invested in improving n-gram
language models. By introducing external information (morphology, syntax,
partitioning into documents, etc.) into the models a significant improvement
can be achieved. The models can however be improved with no external
information and smoothing is an excellent example of such an improvement.

Thesis summarizes the state-of-the-art approaches to unsupervised lan-
guage modeling with emphases on the inflectional languages, which are par-
ticularly hard to model. It is focused on methods that can discover hidden
patterns that are already in a training corpora. These patterns can be very
useful for enhancing the performance of language modeling, moreover they
do not require additional information sources.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/

or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitńı 8
30614 Pilsen
Czech Republic

Copyright c© 2012 University of West Bohemia in Pilsen, Czech Republic

1Natural Language Processing

i

http://www.kiv.zcu.cz/publications/

Contents

1 Introduction 1

2 Language models 3
2.1 Statistical language models 3
2.2 Evaluation . 4
2.3 N-gram language models . 5
2.4 Smoothing . 6

2.4.1 Additive smoothing 7
2.4.2 Good-Touring estimation 7

2.5 Model combination . 8
2.5.1 Linear interpolation 8
2.5.2 Bucketed linear interpolation 8
2.5.3 Back-off smoothing . 9
2.5.4 Kneser-Ney smoothing 9
2.5.5 Log-linear interpolation 10

2.6 Other architectures . 10
2.6.1 Class-based n-gram models 10
2.6.2 Maximum entropy . 11
2.6.3 Factored language models 12
2.6.4 Decision trees . 14

2.7 Expectation-maximization algorithm 15

3 Clustering 16
3.1 MMI clustering . 17

4 Word morphology 18
4.1 Morphological based language models 18
4.2 Stemming . 19

5 Word semantic 22
5.1 Topic models . 22

5.1.1 LSA . 23
5.1.2 PLSA . 23
5.1.3 LDA . 24

ii

5.2 Semantic Spaces . 24
5.2.1 HAL . 25
5.2.2 COALS . 25
5.2.3 Random Indexing . 26
5.2.4 BEAGLE . 26
5.2.5 Purandare and Pedersen 27
5.2.6 Vector similarity metrics 27

6 Future work 29

7 Summary 31
7.1 Aims of the PhD thesis . 31

iii

Chapter 1

Introduction

Language modeling is a crucial task in many areas of NLP. Speech recogni-
tion, optical character recognition and many other areas heavily depend on
the performance of the language model that is being used. Each improve-
ment in language modeling may also improve the particular job where the
language model is used.

Research into language modeling started more than 20 years ago and has
evolved into a very mature discipline. Now it is very difficult to outperform
the state of the art. Many studies have been proposed about improving n-
gram language models by adding external information (morphology, syntax,
etc.) about language and significant improvements have been achieved. This
approaches supervised by linguists are likely to be very efficient, because
they are based on the prior knowledge of the language. There are, however,
several disadvantages. There is not always possible to have an expert in
this field. Creation of languages rules or manual annotation of data is an
expensive and time consuming process. Through these facts the benefits
given by the effectiveness are much outweighed especially when we want to
work with additional language.

In last years the unsupervised methods become popular. These meth-
ods require more complex techniques, however they ensure no cost to model
additional language. This thesis concentrates on the unsupervised methods
for improving language modeling. Thesis is also focused on inflectional lan-
guages as we believe that these languages offer some room for improvement.
However, modeling of these languages is more difficult due the significant
data sparsity problem.

Thesis is organized as follows. The state-of-the-art architectures for lan-
guage modeling are discussed in chapter 2. Chapter 3 describes clustering
methods that play the key role in unsupervised techniques. The language
models that use morphology of the language are investigated in chapter 4
and the models that try to bring semantic information into language models
are discussed in chapter 5. Some preliminary ideas to future development

1

2

that imply the aims of doctoral thesis are discussed in chapter 6.

Chapter 2

Language models

The goal of language model is very simple, to estimate probability of any
word occurrence possible in the language. Even the task looks very easy,
the satisfactory solution for natural language is very complicated.

2.1 Statistical language models

In this work we will look at the language as the information source that
produces word sequences from some word vocabulary. Let W denotes the
word vocabulary. The WN is the set of all combination of word sequences
possible to create from the vocabulary W . Let

L ⊆WN (2.1)

is a set of all possible word sequences in a language.
The sequence of words (i.e. sentence) can be expressed as

S = wk1 = w1, · · · , wk, S ∈ L. (2.2)

The language model tries to capture the regularities of a natural lan-
guage by giving constraints on sequences S. These constraints can be either
deterministic (some sequences are possible, some not) or probabilistic (some
sequences are more probable than others).

In this work we will look at the language modeling from the probabilistic
point of view, where the main goal is to estimate the probability P (S) of
occurrence of word string S.

The only way to calculate this probability correctly should be to process
all utterances (that have been ever written, spoken, etc.) of that language
L and calculate the frequency of this sequence over all possibilities. On first
looking this is impossible. This is actually even more complicated, because
the natural language is evolving process. New expressions regularly enter

3

4

the language while others die out. So the word string probabilities also
change across the time.

Through the nature of problems mentioned above it is clear that we can
only estimate these probabilities from the as large training data as possible.
The probability estimation of P (S) will be referred to P̃ (S) in the following
text

P (S) ≈ P̃ (S) . (2.3)

By application of chain rule the probability P (S) can be decomposed
into the product of conditional probabilities

P (S) = P (wk1) = P (w1)P (w2|w1) · · ·P (wk|wk−11) =

k∏
i=1

P
(
wi|wi−11

)
. (2.4)

2.2 Evaluation

To be able to compare two different language models it is required to have
some measure of quality for these language models. Of course, the best
way of language model evaluation is to evaluate the whole system where the
language model is used. However, there is not always possible to measure
performance of the whole system so we must determine a measure for eval-
uation of a stand-alone language model without any other part of the whole
system.

The most often used measures for language models are entropy H and
perplexity PP , which are based on information theory. The information
theory measures the amount of information by entropy of source (i.e. of
modeling language in our case). Entropy of language is defined as

H (P) = − lim
k→∞

1

k

∑
wk

1∈L

P
(
wk1

)
log2 P

(
wk1

)
. (2.5)

In information theory, the term Shannon entropy is sometimes used and
it quantifies the expected value of information contained in a message (if
the base of logarithm is 2, the entropy is measured in bits). In terms of
language modeling, the entropy means the average number of bits needed to
encode each word by word in the text. Entropy is a measure of uncertainty.
Lower entropy means that the following word in the text is more predictable
in average. The bigger the probability is assigned to the text by language
model, the lower the entropy is and the better predictability the language
model has.

There are of course a few problems. We do not know the correct prob-
abilities P (S) of modeling language so we can only estimate entropy. So
called cross entropy is defined as

5

H
(
P, P̃

)
= − lim

k→∞

1

k

∑
wk

1∈L

P
(
wk1

)
log2 P̃

(
wk1

)
. (2.6)

According to Shannon-McMillan-Breiman theorem (Cover and Thomas,
1991), this formula can be simplified into

H
(
P, P̃

)
= − lim

k→∞

1

k
log2 P̃

(
wk1

)
. (2.7)

This says that the estimate of H
(
P, P̃

)
can be obtained from a knowledge

of P on a sufficiently long word sequence. We can again only approximate
this formula on the as large sample of text (as big k) as possible

H
(
P, P̃

)
≈ −1

k
log2 P̃

(
wk1

)
. (2.8)

The cross-entropy H
(
P, P̃

)
is an upper bound estimation on the entropy

of source H (P) that produces the data

H (P) ≤ H
(
P, P̃

)
. (2.9)

It means that it is not possible to create a better language model than the
original source model producing the correct probabilities P (S). The lower
the cross entropy our language model has, the better it approximates the
modeling language.

Let

PP = 2H(P) ≈ 2H(P,P̃) (2.10)

denotes the perplexity measure, which is essentially 2 powered to entropy.
Similarly to the entropy, in language modeling we try to reduce the per-
plexity as possible. The perplexity expresses the average number of words
(uniformly distributed) that can follow after some history. Again, the less
words may follow, the better predictability our language model has.

2.3 N-gram language models

In previous subsection the formula 2.4 shows that the probability of each
word wi is conditioned by complete history of words wi−11 . However, the
problem is still the same. There is no way how to process all possible histories
of words with all possible lengths k. The number of training parameters
needed to be estimated rises exponentially with extending the history.

According to all problems mentioned above, truncating the word history
is done to decrease the number of training parameters. It means, that the

6

probability of word wi is estimated only by n − 1 preceding words (not by
complete history)

P (S) = P (wk1) ≈
k∏
i=1

P̃
(
wi|wi−1i−n+1

)
. (2.11)

These models are referred to as the n-gram language models. N -gram lan-
guage models have been the most often used architecture for language mod-
eling since a long time. N-grams, where n = 1, are called unigrams. The
most often used are, however, bigrams (n = 2) and trigrams (n = 3).

Note that even for the trigram model of natural language, the number
of training parameters is still enormous. For example, in the case of 65,536
words vocabulary, there is 2.8×1014 potential parameters to train. There will
never be enough data for training all these parameters. Moreover, even if it
could ever be, the storage for parameters and probability estimate retrieval
time will not be satisfactory.

The lack of training data is sometimes referred to as the data sparsity
problem.

2.4 Smoothing

Now, let we try to estimate the probability of word wi conditioned by the
fact that history of n− 1 words corresponds to wi−1i−n+1. Let the c

(
wii−n+1

)
denotes the frequency of n-gram wii−n+1 in training data. Then the so called
maximum likelihood estimation (MLE) is defined as

P
(
wi|wi−11

)
≈ PMLE

(
wi|wi−1i−n+1

)
=

c
(
wii−n+1

)∑
wi∈W

c
(
wii−n+1

) =
c
(
wii−n+1

)
c
(
wi−1i−n+1

) .
(2.12)

Simply, number of times that word wi occurs after the history wi−1i−n+1 over
the frequency of this history.

On first looking, it seems that this method leads to very good probability
estimations, but as it was described earlier, there is a problem with data
sparsity. The probability estimate of word wi that has never be seen after the
history wi−1i−n+1 in the training data, is 0. Even if in the modeling language
the words could follow it this order, the MLE method will still give as zero
probability estimates. This problem is sometimes called the zero problem
and it is solved by smoothing probabilities.

The goal of smoothing is simple. To spread out part of probability
mass of seen events (seen n-grams) to unseen events and eliminate the zero
problem. Detailed overview about smoothing techniques is presented in
(Chen and Goodman, 1998). In following subsections we will describe some
of them.

7

2.4.1 Additive smoothing

Additive smoothing, sometimes also called Laplace smoothing is probably the
simplest and simultaneously the least efficient smoothing technique for lan-
guage modeling. This method is described only for its simplicity to demon-
strate the smoothing principle.

The main idea is to artificially increase the frequency of each n-gram
about some δ > 0

P
(
wi|wi−11

)
≈ P add

(
wi|wi−1i−n+1

)
=

c
(
wii−n+1

)
+ δ

c
(
wi−1i−n+1

)
+ δ |W |

. (2.13)

The smoothed conditional probabilities must sum up to 1

∑
wi∈W

P add
(
wi|wi−1i−n+1

)
=

∑
wi∈W

[
c
(
wii−n+1

)
+ δ
]

c
(
wi−1i−n+1

)
+ δ |W |

=
c
(
wi−1i−n+1

)
+ δ |W |

c
(
wi−1i−n+1

)
+ δ |W |

= 1.

(2.14)

2.4.2 Good-Touring estimation

Good-Touring estimation (Good, 1953) is another smoothing method that
can be applied into language modeling. However, this technique is seldom
used alone, many other methods use it for parameter estimation.

Firstly, let Nr denotes the number of different n-grams that occur in
training data exactly r-times

Nr =
∑

wi
i−n+1:c(w

i
i−n+1)=r

1, 1 ≤ r <∞. (2.15)

This number is sometimes referred to as the frequency of frequency. Es-
pecially, for N0 we must estimate the number of unseen events (n-grams).
Simply, the number of all possible n-grams minus the number of seen n-
grams.

The basic idea of Good-Touring estimation is that the frequencies of
n-grams c(wii−n+1) are modified to cGT (wii−n+1) according the equation

cGT
(
wii−n+1

)
= (r + 1)

Nr+1

Nr
, r = c

(
wii−n+1

)
. (2.16)

The probability P
(
wi|wi−11

)
is than estimated as

P
(
wi|wi−11

)
≈ PGT

(
wi|wi−1i−n+1

)
=
cGT

(
wii−n+1

)
c
(
wi−1i−n+1

) . (2.17)

The proof that the probabilities sum up to 1 can be found in original paper.

8

2.5 Model combination

In this section we will continue with describing different smoothing methods,
but where the smoothing is done by way of combination of several different
language models.

2.5.1 Linear interpolation

The linear interpolation is a simple but a very effective technique for com-
bining different language models. It is defined as follows

PLI
(
wi|wi−1i−n+1

)
=

K∑
k=1

λk · Pk
(
wi|wi−1i−n+1

)
, (2.18)

where λk is the weight of the k-th language model Pk(). To make probability
distribution summing up to 1, it is required

K∑
k=1

λk = 1. (2.19)

The expectation-maximization (EM) algorithm (described in section 2.7)
is used to calculate optimal weights λk by maximization of the probability
of the data.

The linear interpolation can be used as a smoothing method, where we
interpolate the maximum likelihood n-gram language models with different
n. This is sometimes referred to as the deleted interpolation smoothing.

2.5.2 Bucketed linear interpolation

The linear interpolation can be extended to a method called bucketed linear
interpolation, where weights become the function of the frequency of word
history. The main idea is that the weights λk should be different for words
with histories of varying frequencies. The formula then transforms to

PBLI
(
wi|wi−1i−n+1

)
=

K∑
k=1

λk
(
wi−1i−n+1

)
· Pk

(
wi|wi−1i−n+1

)
. (2.20)

The weights λk() certainly cannot be different for each possible frequency
of history. Too many weights would be created and too little data would be
available to train them. Instead, the whole frequency spectrum is divided
into buckets, where each bucket holds some range of frequencies. Histories
in buckets have the same weights. The number of buckets can be tuned in
but it generally depends on the amount of training data available. The more
training data are available, the more buckets can be used.

9

2.5.3 Back-off smoothing

Another architecture for combining different language models is based on so
called back-off principle. It is described by following equation

pBO
(
wi|wi−1i−n+1

)
=

{
α
(
wi|wi−1i−n+1

)
if c
(
wii−n+1

)
> 0

γ
(
wi−1i−n+1

)
PBO

(
wi|wi−1i−n+2

)
otherwise

(2.21)
If an n-gram has nonzero frequency the probability is estimated by the
distribution α

(
wi|wi−1i−n+1

)
. Otherwise, we use the lower-order distribution

PBO
(
wi|wi−1i−n+2

)
. These back-off steps are repeated until it is needed. The

discounting function α
(
wi|wi−1i−n+1

)
is constructed in a way to save some

probability mass for lower-order models. The scaling function γ
(
wi−1i−n+1

)
is chosen to make the probability distribution sum up to 1. Many authors
present different ways to setting appropriate discounting and scaling func-
tions.

In the previous section the linear interpolation of models was described.
However, both architecture of combining models (linear interpolation, back-
off) used lower-order distributions to determine probability of unseen n-
grams, there is one big difference between them. Interpolated models use
information from lower-order distributions for calculating probability of n-
grams with nonzero frequency, while back-off models do not.

2.5.4 Kneser-Ney smoothing

Authors in (Kneser and Ney, 1995) have introduced improved back-off smooth-
ing. It is derived by

PKN
(
wi|wi−1i−n+1

)
=

c(wi

i−n+1)−D∑
wi

c(wi
i−n+1)

if c
(
wii−n+1

)
> 0

γ
(
wi−1i−n+1

)
PKN

(
wi|wi−1i−n+2

)
otherwise

(2.22)
where 0 < D ≤ 1 is a fixed coefficient subtracted from frequency of seen
n-grams, that save part of probability mass for unseen n-grams.

The main advantage of Kneser-Ney smoothing is the clever way it cal-
culates the unigram probability distribution

P (wi) =
N1+ (•wi)
N1+ (••)

, (2.23)

where symbol • means an arbitrary word and N1+(wii−n+1) is the number
of n-grams with frequency 1 and more (i.e. the number of such n-grams,
where c(wii−n+1) ≥ 1). In different words, the unigram probability of wi is

10

given by the number of different bigrams ending in wi divided by the total
number of different bigrams.

In (Chen and Goodman, 1998) this smoothing was upgraded to so called
modified Kneser-Ney interpolation, which at present is the state-of-the-art
approach for smoothing methods. Firstly, instead of using the back-off prin-
ciple, the linear interpolation is used. Secondly, the discounting coefficient
becomes the function of n-gram frequency.

The formula for smoothing of word probabilities is

PMKN (wi|wi−1i−n+1) =

c(wi
i−n+1)−D(c(wi

i−n+1))∑
wi

c(wi
i−n+1)

+ γ
(
wi−1i−n+1

)
PMKN

(
wi|wi−1i−n+2

)
.

(2.24)

The definitions and derivations of functions D(), γ() may be founded in the
original paper.

2.5.5 Log-linear interpolation

The log-linear interpolation is another method for combining models. It has
been show in (Klakow, 1998) that this method is likely to be more effective
than the linear interpolation (see subsection 2.5.1). Log-linear interpolation
is given by equation

PLLI
(
wi|wi−1i−n+1

)
=

1

Z
(
wi−1i−n+1

) K∏
k=1

Pk
(
wi|wi−1i−n+1

)λk , (2.25)

where Z
(
wi−1i−n+1

)
is normalization function that ensures that probabilities

of words wi after each history wi−1i−n+1 sum up to 1. Note that there is a big
problem with this normalization, because we must normalize probabilities
over all words, which could follow after history.

The parameters λk of log-linear interpolation can be optimized again
by some variation of expectation-maximization algorithm such as improved
iterative scaling1.

2.6 Other architectures

2.6.1 Class-based n-gram models

Class-based modeling is the most popular technique used for reducing the
huge vocabulary-related sparseness of statistical language models (Brown

1Improved iterative scaling (IIS) is a hill-climbing algorithm for finding optimal para-
meters in log-likelihood space. Algorithm is described for example in (Darroch and Ratcliff,
1972, Berger et al., 1996)

11

et al., 1992). Individual words are clustered into a much smaller number
of classes. As a result, less data are required to train a robust class-based
language model. Both manual and automatic word-clustering techniques are
being used. Standalone class-based models usually perform poorly, which is
the reason why they are usually combined with other models.

LetW denotes the set of possible words (word vocabulary) and C denotes
a class vocabulary. Then we can define a mapping function m : W → C,
which maps every word wi ∈W to some class ci ∈ C.

The probability estimation of word wi conditioned by its history wi−1i−n+1

(where n is the length of the n-gram) is given by the following formula

P̃
(
wi|wi−1i−n+1

)
= P̃ (wi|ci) · P̃

(
ci|ci−1i−n+1

)
. (2.26)

The probability estimate of the word occurrence given by its class is calcu-
lated as follows

P̃ (wi|ci) =
c (wi, ci)

c (ci)
, (2.27)

where c(wi, ci) is the number of times the word wi is mapped to the class ci
over the frequency of class ci.

2.6.2 Maximum entropy

Maximum entropy models have been successfully applied into language mod-
eling in (Berger et al., 1996, Rosenfeld, 1996). Maximum entropy is used
in such a way of smoothing that combines a various language constrains in
fundamentally different way than the above described techniques. Instead
of combining models themselves, their features are combined into one new
model.

Firstly, we describe the maximum entropy framework from a general
point of view and then the application into language modeling is specified.
Goal is to estimate the conditional probability p(y|x) of y as the observation
on the output of the process given by the knowledge x about y. The y is an
event that is being predicted, a member of a finite set Y . The event y could
be predicted by some knowledge x, the member of a finite set X.

The training data is used to set constraints on the conditional distri-
bution. Each constraint expresses a characteristic (knowledges) about the
training data that we also want to present in the final probability distribu-
tion.

To express these facts (the knowledges) about training data we denote
m real valued feature functions fi(x, y) ∈ 〈0, 1〉.

The final model distribution should be restricted to have the same ex-
pected values for all features as it was seen in the training data. We denote
this idea as

E (fi (x, y)) = Ẽ (fi (x, y)) , 1 ≤ i ≤ m, (2.28)

12

where Ẽ (fi (x, y)) is an expectation value of feature fi (x, y) estimated from
training data and E (fi (x, y)) is an expectation value of this feature given
by the final model. This formula can be expressed in details as

∑
x,y

p̃ (x) p(y|x)fi(x, y) =
∑
x,y

p̃ (x, y) fi(x, y), 1 ≤ i ≤ m, (2.29)

where p(y|x) is given by probability distribution of final model and p̃ (x) and
p̃ (x, y) are estimations of probabilities from training data.

According to all these constraints on final distribution, the last question
need to be answered. What is the best distribution of p among the feature
functions fi(x, y) that are available? The maximum entropy philosophy says
the best is the most uniform distribution that satisfied the constraints (the
one with the greatest entropy).

According to (Berger et al., 1996), the model that maximizes entropy of
p has the exponential form

p(y|x) =
1

Z(x)

m∏
i=1

eλifi(x,y), (2.30)

where Z(x) is a normalization function. The parameters λi of maximum
entropy model could be estimated for example by OWL-GN2 procedure, or
another algorithm for finding global maximum of the function such as IIS.

To apply maximum entropy approach into language modeling the fea-
tures need to be defined. As it was described above, the features represent
the knowledge about data so the features could be defined for example as

f
(
wi−1i−n+1, wi

)
=

{
1 if wi follows after wi−1i−n+1

0 otherwise
(2.31)

where the word wi represents the output y and word history wi−1i−n+1 repres-
ents the knowledge x about y.

2.6.3 Factored language models

In factored language model (FLM) (Bilmes and Kirchhoff, 2003, Kirchhoff
et al., 2006, 2008) the word is viewed as a vector of K factors

wi ≡
{
f1i , f

2
i , . . . , f

K
i

}
= f1:Ki (2.32)

2OWL-GN (Orthant-Wise Limited-memory Quasi-Newton) described in (Andrew and
Gao, 2007) is an algorithm for efficient optimization a huge number of parameters in
log-linear models. It is based on L-BFGS (Limited-memory variation of the Broyden-
Fletcher-Goldfarb-Shanno) algorithm, however authors present that OWL-GN is much
faster than other algorithms.

13

where each factor can be any knowledge about the word such as word classes,
stem, root, part-of-speech etc. even the word itself.

Probability of word wi conditioned by history wi−1i−n+1 can be expressed
by factored language model and by application a chain rule as

PFLM
(
wi|wi−1i−n+1

)
≡ P

(
f1:Ki |f1:Ki−1 , . . . , f1:Ki−n+1

)
=

K∏
k=1

P
(
fki |f

1:k−1
i , f1:Ki−1 , . . . , f

1:K
i−n+1

) (2.33)

Note that certainly not all factors have to be used to effectively estimate
the probability. For notation simplicity, let the conditional probabilities in
equation above are expressed as P (F |F1, F2, . . . , FN), where each F repres-
ents some factor f . The goal of FLM is then to estimate these conditional
probabilities.

In standard back-off language models (see subsection 2.5.3) probability
of unseen events is estimated by lower-order distribution. This process can
be visualized as a back-off path on figure 2.1.

For smoothing of factored language models the similar idea to the back-
off scheme is used, but there is not clear in witch order we should drop the
variables. This is caused by the fact that in FLM the conditional variable
are not exclusively words and so there is not clear witch variable should
contain more mutual information about the word that is being predicted.

Through these facts, so called generalized parallel back-off scheme is used.
Figure 2.2 shows all possible back-off paths for 4-gram factored language
model.

Wi | Wi-1 Wi-2 Wi-3

Wi | Wi-1 Wi-2

Wi | Wi-1

Wi

Figure 2.1: Back-off path in stand-
ard 4-gram language model.

F | F1F2F3

F | F1F2 F | F1F3 F | F2F3

F | F1 F | F2 F | F3

F

Figure 2.2: Back-off graph for a
factored 4-gram language model.

There are many possibilities to selecting appropriate back-off path. Se-
lection can be based on linguistic knowledge, can be made automatically
according some statistical criteria, even the multiple paths can be selec-
ted to interpolate their probability estimates. The formula for generalized
back-off smoothing is

14

PGBO (F |F1, . . . , FN) ={
α (F |F1, . . . , FN) if c (F, F1, . . . , FN) > τ
γ (F1, . . . , FN) g (F, F1, . . . , FN) otherwise

(2.34)

where α (F |F1, . . . , FN) is a discounting function that saves part of probab-
ility mass for unseen events. The γ (F1, . . . , FN) is a normalization function.
The function g (F, F1, . . . , FN) determines a back-off strategy (choose a path)
and τ is a count threshold. Definition and derivation of these functions can
be found in original papers.

2.6.4 Decision trees

Language models can be seen as a classification problem where we want to
classify the history of words wi−11 to some word wi (we want to estimate the
probability that this word wi follows after this history).

A decision tree language models (Bahl et al., 1989, Xu and Jelinek, 2007,
Oparin, 2008) attempt to classify all histories into equivalence classes and
each history in the same equivalence class shares the same probability dis-
tribution over the predicted words wi, which could follow.

A decision tree T consists of a finite set of internal nodes N and finite
set of leaf nodes L. In a decision tree we ask questions about histories
of the word we try to predict. These questions are associated with each
internal node p ∈ N. According to the answer we choose the path to another
node that follows in the tree T. For simplicity only yes/no questions are
considered so it is the binary decision tree we are talking about. Questions
can be anything and can use any knowledge about word history. The leaf
nodes l ∈ L represent the equivalence classes of histories. Clustering of word
histories is a key idea why the decision trees became popular in language
modeling, because it particularly solves the problem of data sparsity that
the language models fight with.

The selection of questions and decision tree construction play the key
role in a decision tree language modeling. There are two possible strategies.
The tree construction can be manually created by linguist or can be done
automatically. In original papers an efficient algorithm can be found, where
the entropy on held-out data is used as a goodness measure for tree building.

Decision tree language models can be extended to so called random forest
language models (Xu and Jelinek, 2007, Oparin, 2008). Random forest is
a collection of decision trees that includes randomization in the process of
building the tree. The underlying assumption is that the randomization
should generalize the decision trees to perform better on unseen data. More
information about the construction of random forests can be found in ori-
ginal papers.

15

2.7 Expectation-maximization algorithm

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is an
iterative process for finding maximum likelihood estimations of parameters
in statistical models (this is an equivalent to minimizing the entropy). Im-
portant is the fact, that the parameters need to be tuned on the so called
held-out data. The held-out data are different from the training data as well
as from the data used for evaluation of performance.

Imagine the case where we want to linearly interpolate the trigram, bi-
gram and unigram language model to achieve smoothed probabilities (as
it is describe in subsection 2.5.1). If we estimate the parameters of linear
interpolation on the same data that the sub-models were trained on, the
trigram model receives the parameter equal to 1 and other models equal to
0. This would be caused by the fact, that the trigram model provides the
most appropriate probability estimations on this data.

We demonstrate the EM algorithm on the problem of optimizing para-
meters of linear interpolation of language models:

1. At first, the initial estimation of parameters λ0k for all 1 ≤ k < K need
to be done. Initial parameters must satisfy the equation 2.19 as well
as λ0k > 0. At second, the stopping threshold ε is defined.

2. E-step: The expected parameters λ̂tj are calculated by

λ̂tj =
∑

wi
i−n+1

λtj · P̃j
(
wi|wi−1i−n+1

)
PLI

(
wi|wi−1i−n+1

) =
∑

wi
i−n+1

λtj · P̃j
(
wi|wi−1i−n+1

)
K∑
k=1

λtk · P̃k
(
wi|wi−1i−n+1

) ,
where t denotes the number of iteration.

3. M-step: the λt+1
j are obtained by normalization

λt+1
j =

λ̂tj
K∑
k=1

λ̂tk

.

4. If the condition ∣∣∣λt+1
j − λtj

∣∣∣ < ε

is satisfied, than the iterative process ends. Otherwise, the process
continues with point number 2.

Chapter 3

Clustering

The goal of clustering is simple; to find an optimal grouping in a set of
unlabeled data. There are, however, two problems. Firstly, the optimality
criterion must be defined. This criterion depends on the task that is being
solved. The second problem is the complexity of the problem. The number
of possible partitioning rises exponentially1 with the number of elements in
the set. It is therefore impossible to examine every possible partitioning of
even a decently large set. The task is then to find a computationally feasible
algorithm that would be as close to the optimal partitioning as possible.

The optimality criterion can be supplied for example from a semantic
space (section 5.2) and an appropriate similarity metric (subsection 5.2.6).

The type of algorithm plays a key role. Hierarchical methods go from the
bottom (they start with many classes and join them together) and that is
problematic in our case. We need relatively few classes and so a lot of joining
operations must be executed. On the contrary, the partitioning methods go
from the top (they start with one class and split it repeatedly).

A useful guide can be was found in the article by (Zhao and Karypis,
2002) where a comparison of clustering methods was presented. Many clus-
tering methods are implemented in the CLUTO software package (Karypis,
2003).

The clusters given by some clustering method can be used to build the
class-based language models (subsection 2.6.1). Note that the clustering of
words in natural language can be very time consuming process, because it
deals with really large quantities of data.

Many researchers have demonstrated that the combination of a stand-
alone class-based language model and a standard word n-gram model reduces
the model perplexity (Maltese et al., 2001, Whittaker, 2000, Whittaker and
Woodland, 2003).

1To be exact, the number of possible partitioning of a n-element set is given by the
Bell number, which is defined recursively: Bn+1 =

∑n
k=0

(
n
k

)
Bk.

16

17

3.1 MMI clustering

In (Brown et al., 1992) the MMI2 clustering algorithm was introduced. The
idea is simple. What if we cluster together the words in such way of max-
imizing average mutual information between word classes on training data?
These clusters than use for the class-based language models training to de-
crease well known data sparsity problem. However, there is no way how to
find partitioning that maximizes average mutual information over so many
possibilities (see previous section). In original paper the greedy algorithm
is described, which performs very well and in clever way decrease the com-
plexity to order of |W |3. This complexity is however still very problematic.
The algorithm is based upon the principle of merging a pair of words into
one class according to the minimal mutual information loss principle.

The algorithm gives very satisfactory results and it is completely un-
supervised. This method of word clustering is possible only on very small
corpora and is not suitable for large vocabulary applications. The authors
in (Yokoyama et al., 2003) used the MMI algorithm to build class-based
language models. Their linear interpolation with the word N-gram model
was applied to speech recognition of Japanese. The authors showed a 2%
improvement in word accuracy but only in very small corpora.

Several authors have tried to approximate the MMI algorithm to reduce
computational requirements and to make it more suitable for large vocab-
ulary language models (Bai et al., 1998, Yamamoto and Sagisaka, 1999).
Automatically derived clusters have been used for class-based language mod-
els of Japanese and Chinese (Gao et al., 2002). The authors concentrated
on the best way of using the clusters; however, they did not focus on how
to get them.

2Maximum Mutual Information

Chapter 4

Word morphology

During investigation of language modeling it is natural to talk about mor-
phology of the language. As it was said at the beginning of the thesis,
we are focused on modeling of inflectional languages. These languages are
characterized by rich inflection. The inflection of words in natural language
is caused by some linguistic rules of this language. By adding inflectional
morphemes to the base form of the word or sometimes by changing entire
term, the new inflection may be formed. In many languages this could lead
to many different word forms with the same base form.

For example, Czech, which belongs to the group of Slavic languages, is
highly inflectional. Czech language has seven cases and three genders. It
has a relatively free word order (from the purely syntactic point of view):
words in a sentence can usually be ordered in several ways, which carry a
slightly different meaning.

These properties of inflectional languages complicate the language mod-
eling task. High number of word forms and more sequences of words that
are possible in the language lead to a higher number of n-grams. In chapter
2 the data sparsity problem was emphasized. In inflectional languages this
problem is much more evident.

Some earlier works on application of morphology analysis into language
modeling are summarizer in section 4.1. However, there are exist even un-
supervised methods for morphology learning mainly focused on stemming
of words. Stemming can play a key role especially when we work with in-
flectional languages. These methods are summarized in section 4.2.

4.1 Morphological based language models

An effective solution for language modeling is to use information about the
morphology of the language. In (Oparin, 2008) experiments with morpho-
logical random forests (subsection 2.6.4) in the Czech and Russian language
are shown with the conclusion that they can be used effectively for inflec-

18

19

tional languages. Authors of (Vaiciunas et al., 2004) describe the language
modeling of Lithuanian by means of class-based language models derived
by word clustering and morphological word decomposition and their linear
interpolation with the baseline word N-gram model. The authors present a
perplexity reduction of 8-13% depending on the size of the corpora. A simil-
arly effective solution is to use class-based language models where classes are
derived from lemmas and morphological categories (Brychćın and Konoṕık,
2011). The article shows a perplexity reduction of 10-30% in corpora in
the Czech and Slovak languages. A comparative study of several methods
(such as class-based models, factor based models, etc.) using morphological
information for modeling conversational Arabic can be found in (Kirchhoff
et al., 2006). The usage of morphological information seems to be very
effective for inflectional languages; however, it requires a huge number of
manually annotated texts.

4.2 Stemming

The word stemming is one of the basic preprocessing techniques in NLP.
Information retrieval (IR) tasks, the machine translations systems and many
applications in NLP use stemming. Every improvement in word stemming
may also improve the particular job where the stemmer is used. Stemmers
attempt to reduce a word to its base form (to stem or root form).

The stemming algorithms can be divided into two categories (the rule
based stemmers and statistical ones). Rule based stemmers attempt to
transform the word form to its base form using the set of language-specific
rules manually created by linguists.

The most known and most often used is the Porter’s algorithm (Porter,
1980) that was evolved into whole stemming framework called Snowball1.

In (Dolamic and Savoy, 2009) two rule based stemmers (light and ag-
gressive) for Czech are introduced2. Both stemmers work approximately
equally well. Authors present retrieval improvement about 45% by using
this stemmers in IR systems.

These approaches supervised by linguists are likely to be more effective
than the statistical ones, because they are based on the prior knowledge of
the language. However, they have many disadvantages. There is not always
possible to have an expert in this field. The benefits given by the effective-
ness are much outweighed by the time necessary to morphological analysis
especially when we want to work with completely new language. Through
these facts the unsupervised methods to word stemming are expanding and

1Snowball is a string-handling programming language developed by M.F. Porter. The
stemming algorithms can be easily defined in this language. In addition, ANSI C or Java
programs can be automatically generated. It is briefly described at http://snowball.

tartarus.org together with stemmers for several languages available here.
2Available at http://members.unine.ch/jacques.savoy/clef/index.html

http://snowball.tartarus.org
http://snowball.tartarus.org
http://members.unine.ch/jacques.savoy/clef/index.html

20

they became crucial in present. These methods try to statistically infer some
formation rules from latent patterns in text corpora, without any knowledge
about language. These methods require more complex techniques, however
they ensure no cost to model additional language. Many studies about
the unsupervised learning of morphology of language were presented earlier.
The exhausting survey about this problem is discussed in (Hammarström
and Borin, 2011).

Interesting method for unsupervised morphological analysis was described
in (Goldsmith, 2001). This method is based on MDL (Minimum Descrip-
tion Length) principle. The algorithm tries to find the optimal breakpoint
for each word. Each instance of a word in a corpus uses the same break-
point, which splits this word into stem and suffix. The optimal distribution
of breakpoints is modeled in such a way of minimizing number of bits to
encode whole collection of words (it is equal to minimizing entropy of this
collection). The MDL criterion leads to intuition that breakpoints should
segment the word into relative common stems as well as common suffixes.
This method is implemented as framework called Linguistica3 (Goldsmith,
2006).

In (Majumder et al., 2007) the YASS4 stemmer was introduced. It is
very simple approach based on words clustering. The only information that
is used is the lexical form of the words (the word lexicon). The set of string
distance measures between word pairs is defined. These measures should
simulate the morphological similarity between words. The lexicon is than
clustered to discover morphological related words (the equivalence classes).
Authors present comparable results with rule based stemmers (Porter or
Lovins stemmers for English) from retrieval effectiveness point of view. Also
for French and Bengali language this approach improves performance against
no stemming.

The novel graph based stemmer GRAS5 was introduced in (Paik et al.,
2011). Similarly to the YASS approach, the GRAS is focused only on lexical
information about words. The stemmer also works only with the collection
of distinct words (given by the text collection). The morphological rela-
tionship is represented by a graph, where the words become the nodes and
potentially related word pairs are connected by edges. Then the pivot nodes
are identified. The idea is that pivots having many neighbors are likely to be
potential root. Authors perform retrieval experiments on seven languages.
According the results presented in this article, GRAS outperforms the YASS,
Linguistica as well as the rule based stemmer on all seven languages in terms
of retrieval effectiveness. For some of these languages, GRAS provides more
than 50% performance improvement against no stemming.

3Available at http://linguistica.uchicago.edu
4YASS (Yet Another Suffix Stripper) available at http://www.isical.ac.in/~clia/

resources.html
5GRAS (GRAph-based Stemmer)

http://linguistica.uchicago.edu
http://www.isical.ac.in/~clia/resources.html
http://www.isical.ac.in/~clia/resources.html

21

In (Oikonomidis and Digalakis, 2003) authors present the two different
application of stemming into language modeling. As a base-line they choose
the language model with modified Kneser-Ney smoothing (subsection 2.5.4).
At first, they build class-based language models from stems of words and
interpolate it (subsection 2.5.1) with the base-line model. Secondly, they
build the maximum entropy model (subsection 2.6.2) from constraint given
by the base-line model and information about stems. Both methods bring
at least some improvement against the base-line.

Chapter 5

Word semantic

Another way of improving language models is to use semantic information.
This idea is based on the assumption that words with lexically different
forms usually share similar meanings in cases where that they frequently
occur in similar contexts.

There are two main views on semantic modeling that can be used to
improve language modeling: to focus on topic (context) (section 5.1) or to
focus on word alone (section 5.2).

5.1 Topic models

In NLP the topic model refers to statistical model for discovering the latent
topics in collection of text documents. The most known topic models are
the LSA (subsection 5.1.1), PLSA (subsection 5.1.2) and LDA (subsection
5.1.3) that are based on so called bag of words model. This model assumes
that the document is a collection of words where the word order has no
significance.

It is assumed that documents may vary in domain, topic and styles,
which means that they also differ in the probability distribution of n-grams.
This assumption is used for adapting language models to the long context
(domain, topic, style of particular documents). LSA (or similar methods) are
used to find out, which documents are similar and which are not. This long
context information is added to standard n-gram models to improve their
performance. A very effective group of models (sometimes called topic-based
language models) work with this idea for the benefit of language modeling.
In (Bellegarda, 2000) a significant reduction in perplexity (down to 33%)
and WER1 (down to 16%) in the WSJ2 corpus was shown. Many other
authors have obtained good results with PLSA (Gildea and Hofmann, 1999,
Wang et al., 2003) and LDA (Tam and Schultz, 2005, 2006) approaches.

1The Word Error Rate (WER) measure is often used in Speech recognition
2Wall Street Journal (WSJ)

22

23

In (Liu and Liu, 2007, 2008), the named entity recognition technique
was applied to topic modeling. The topic modes were based upon LDA
and clustering. The authors tested the hypothesis that named entities carry
valuable information, which can be useful for latent topic analysis. The
authors presented a 14% perplexity reduction as their best result.

Some comparisons between PLSA and LDA as well as some clustering
methods can be found in (Hahn et al., 2008). The authors present their
results in English and Arabic broadcast news.

An investigation into Topic Tracing Language Models (TTLM) and their
application in speech recognition is presented in (Watanabe et al., 2011).
The TTLM is based on LDA and PLSA and integrates the ability to dy-
namically track changes in topics. The tracking is based upon focused text
information and previously estimated topics.

5.1.1 LSA

Latent Semantic Analysis (LSA) (Deerwester et al., 1990, Landauer and
Dumais, 1997, Landauer et al., 1998) is a method that uses a collection of
documents to building semantic space.

This algorithm construct |W | × |D| matrix M, where |W | is number of
unique words and |D| is number of documents. Each row correspond to
unique word (term) and each column corresponds to a document. Typ-
ical example of term weighing is tf-idf (term frequency – inverse document
frequency). It means, the value at each position of matrix M (the weight
of term) is proportional to frequency the row’s term appear in a column’s
document.

LSA assumes that there is some latent relationship between words in the
same document. At final stage, the Singular Value Decomposition (SVD) is
applied to the matrix M in order to reduce the dimensionality of the vector
space (typically, dimension about 300 is used). The SVD reduction has the
effect of bringing out the latent semantic relationships between words so it
can discover transitive relations between words.

The LSA method has been successfully applied in many areas of NLP
such as language models, text summarization, information retrieval...

5.1.2 PLSA

Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999) is
a probabilistic variant of LSA. This method is often prioritized because of
its probabilistic output.

Algorithm starts similarly to LSA by building |W | × |D| matrix M. The
PLSA does not use the SVD to discover latent topics, but offers different
solution.

24

The PLSA adds latent topic variable (denoted as Z) into semantic model.
The PLSA assumes that the probability of word appearing in a document
is related to the probability that this word is produced by each topic z ∈ Z,
and the probability of this topic is relevant to the document. It means
P (w|d) =

∑
z∈Z

P (w|z)P (z|d), where w ∈W and d ∈ D.

The probabilities are estimated by the expectation-maximization algorithm
(Dempster et al., 1977) to maximize likelihood of the data.

5.1.3 LDA

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is essentially the
Bayesian version of the PLSA model. Each document d ∈ D is expected
to be represented by a mixture of topics. The topics is assumed to have a
Dirichlet distribution and each of topics is modeled as a Dirichlet distribution
over words w ∈W .

Similarly to the PLSA, the LDA also uses the expectation-maximization
algorithm to estimate the optimal parameters of Dirichlet distributions.

5.2 Semantic Spaces

The semantic models investigated in this section are based upon the idea
that the word meaning is related to the context, in which the word is usu-
ally used. The assumption is that two (lexically) different words share a
similar meaning if they occur in similar contexts. Some studies (Rubenstein
and Goodenough, 1965, Charles, 2000) have confirmed this assumption by
empirical tests carried out on human test groups. The implication of the
studies is that it is possible to compute the semantic similarity of words by
a statistical comparison of their contexts.

In semantic spaces, each word is represented as a highly dimensional
vector. The vectors are derived from the statistical properties of words and
their contexts in a plain text corpus. The vectors are constructed in such a
way that words similar in meaning should have a similar vector. The meth-
ods to calculate the vectors differ. The fact that a word is characterized by
a vector opens up the opportunity to easily compare two words. The ability
to compare two words enables us to use a clustering method. Similar words
can be clustered into bigger groups of words (clusters) (more information
about clustering can be found in chapter 3).

Note that the LSA method (subsection 5.1.1) presented in section about
topic models (5.1) also belongs to the semantic spaces because each word
is also represented by a vector. Bellegarda and his team were the first
to introduce LSA into language modeling (Bellegarda et al., 1996). Their
approach consisted in using LSA to derive word clusters for class-based
language models. However, there are many novel methods (namely HAL

25

(subsection 5.2.1), COALS (subsection 5.2.2), random indexing (subsection
5.2.3), BEAGLE (subsection 5.2.4), P&P (subsection 5.2.5),...) for word
semantic modeling that have never been tested in language modeling before.

5.2.1 HAL

Hyperspace Analogue to Language (HAL) (Lund and Burgess, 1996,
Burgess and Lund, 1997) creates a semantic space from word co-occurrences.
Each word in the training data is examined and those words nearer than a
fixed distance are recorded as co-occurring. Such a group of words is called a
”window”. The words in the window are weighted according to the distance
from the examined word. It is assumed that the closer the word is, the
greater the impact it has on the focused word semantic. The co-occurring
words are therefore inversely weighted according to their distance from the
examined word.

These windows are used to construct the |W |×|W | co-occurrence matrix
M (|W | is the number of words being analyzed) in the following way. When
a word wj is found in the window of the examined word wi then a value
is added to the mi,j element in the matrix M. The value depends on the
distance of the word wj from the word wi. The exact formula to calculate
the value is defined in (Lund and Burgess, 1996). The row and column
vectors of the matrix M contain co-occurrence information on words that
appeared before and after respectively. HAL therefore also records simple
word-ordering information. Naturally, many words do not appear in the
vicinity of each other and the matrix M tends to be very sparse.

For each word (meaning), certainly not all columns (co-occurred words)
provide an equal amount of information. The entropy can be used to retain
only a given number of significant columns. In this way, the dimensionality
of the matrix M can be reduced.

5.2.2 COALS

Correlated Occurrence Analogue to Lexical Semantic (COALS)
(Rohde et al., 2004) is a semantic space model based upon HAL and LSA
ideals. The process of building the matrix starts almost identically to the
HAL methods but COALS adds some tweaks.

The algorithm constructs the matrix M in a similar way as HAL does.
It however do not distinguish whether a co-occurred word comes before or
after the focused word. The window that is used has the same length in both
directions. The matrix is also normalized using correlation. Any negative
values are set to zero and all other values are replaced by the square root.

The final part of the algorithm is inspired by the LSA method. The
SVD is applied to the matrix M to achieve similar effects to LSA method.
Dimensionality of the vector space is reduced to the dimension typically 800.

26

This final stage is not mandatory for the COALS method and is sometimes
skipped.

5.2.3 Random Indexing

Random Indexing (RI) (Sahlgren, 2005) is based on the process of the
accumulation of context vectors of words that are co-occurring. This incre-
mental technique is used to construct the semantic space in a completely
different way from the above-described models. Instead of constructing a
word by word matrix and then deriving the context vectors, the process is
reversed. First, vectors are generated and then the matrix is calculated.

The Random Indexing method can be described in two step. In the first
step, a randomly generated high-dimensional vector is assigned to each word.
The dimensionality of vectors typically reaches thousands of dimensions.
The vectors consist of a small number of randomly distributed nonzero vec-
tor values (-1, +1). In this way it is ensured that two vectors do not overlap
very often. The generated vector is known as the index vector. During the
second step, the algorithm scans the text and updates the context vectors
by summing up all the index vectors of co-occurring words.

This method does not require the dimension reduction phase as in the
case of HAL and COALS. Here the dimension is set at the beginning and is
much lower that in the case of HAL and COALS.

In (Sahlgren et al., 2008) the Random Indexing method is extended
to keep the word-order information. The modification is inspired by the
BEAGLE method (subsection 5.2.4), but instead of using convolution op-
eration this method is based upon the permutation of vector coordinates.
While both methods are approximative, the permutation is more simple to
calculate.

5.2.4 BEAGLE

Bound Encoding of the AggreGate Language Environment
(BEAGLE) (Jones and Mewhort, 2007) is a computational model that
builds a semantic space in a similar way to Random Indexing (subsection
5.2.3). During the first phase, a high-dimensional index vector is also ran-
domly generated; however, the values are given according to the Gaussian
distribution. The mean value is set to 0 and the variance is set to 1/D,
where D is the dimension (by default, D = 1024).

The meaning of words in the final semantic space is compounded from the
co-occurrence information and word order information. The co-occurrence
information is calculated as in Random Indexing by summing the vectors
of the co-occurring words to the vector of the focused word. The word
order information is calculated by convolution of the n-gram vectors that
contain the focused word. The final semantic vector is then constructed as

27

a combination of the co-occurrence vector and the word order vector and is
sensitive to both the neighboring words and word order.

5.2.5 Purandare and Pedersen

The Purandare and Pedersen (P&P) (Purandare and Pedersen, 2004)
model is another form of word sense induction, in which word meaning is
inducted from different usages in training data.

The process of building the semantic space is divided into two stages.
First, the training data are processed and features most likely correlated
with focused words are identified. The model uses two kinds of features: co-
occurring words (similarly to HAL (subsection 5.2.1) or the COALS model
(subsection 5.2.2)) and co-occurring bigrams. The features are selected from
a close distance to the focused word (e.g. five-word distance). Features,
which are statistically significant are kept, others are removed. This leads
to the removal of words, which possibly frequently co-occur with the focused
word, but which do not have a significant impact on the semantics of the
focused word.

In the second stage, the algorithm tries to construct the meaning of
words from longer contexts (e.g. 20 words on both sides of the focused
word). Only words that are in the features of the focused word are included
in the longer context vectors, while others are removed. It is expected that
these context vectors represent different usages of the focused word in the
corpus. These vectors (usages) are then clustered into a predefined number
of clusters. Each of the final clusters receive its own semantic vector and
represent one of the meaning of the word. In the final semantic space, each
word is described by n meanings. Its final semantic vector is created as a
combination of clustered vectors.

5.2.6 Vector similarity metrics

The distance (similarity) between two words can be calculated by a vector
similarity function. Let ~a and ~b denote the two vectors to be compared

and S
(
~a,~b
)

denote their similarity measure. Such a metric needs to be

symmetric: S
(
~a,~b
)

= S
(
~b,~a
)

.

There are many methods to compare two vectors in a multi-dimensional
vector space. Probably the simplest vector similarity metrics are the familiar
Euclidean (r = 2) and city-block (r = 1) metrics

Smink

(
~a,~b
)

= r

√∑
|ai − bi|r, (5.1)

that come from the Minkowski family of distance metrics.

28

Another often used metric characterizes the similarity between two vec-
tors as the cosine of the angle between them. The cosine similarity is defined
as follows:

Scos

(
~a,~b
)

= cos (θ) =
~a ·~b

‖~a‖ ·
∥∥∥~b∥∥∥ =

∑
aibi√∑
a2i
∑
b2i

. (5.2)

In statistics, the Pearson product-moment correlation coefficient (some-
times referred to as the PPMCC) is a measure of the correlation (linear
dependence) between two variables, X and Y, giving a value between +1
and –1 inclusive. Pearson’s correlation coefficient between two variables is
defined as the covariance of the variables divided by the product of their
standard deviations

Scorr

(
~a,~b
)

=
E
[
(~a− µa)

(
~b− µb

)]
σaσb

=

∑
(ai − µa) (bi − µb)√∑

(ai − µa)2
∑

(bi − µb)2
,

(5.3)
where µa is the mean value of the vector ~a and σa is the standard deviation
of the vector ~a.

This metric is often used in semantic spaces for dense matrixes, while
the cosine metric is used for sparse matrixes.

Chapter 6

Future work

This chapter describes preliminary ideas for future work that imply the aims
of PhD thesis. The three main directions are indicated: the morphological
analysis, semantic analysis and OOV word analysis.

In chapter 4 the problems with morphologically rich languages were stud-
ied. Many authors successfully deal with these problems by using morpho-
logical information about these languages. For example, in Brychćın and
Konoṕık (2011) we investigate the language modeling of inflectional lan-
guages enriched about morphological analysis. The performance was signi-
ficantly enhanced on these languages, but it was done by supervised training
on manually annotated data. In section 4.2 several unsupervised stemming
algorithms were described. We suppose that some of these algorithms could
be also very useful to dealing with rich morphology and its associated data-
sparseness problem.

In chapter 5 the unsupervised methods that capture semantic proper-
ties of language were described. Some of these methods have already been
applied into language modeling with successful results. We believe there is
a big potential to research. There are many novel methods for semantic
analysis and some of them should be potentially useful also in language
modeling.

Working with out-of-vocabulary or low occurred words is a standard
problem in many NLP tasks. In language modeling there is also hard to
work with them, because they simply did not occur in training data (or
occur a too few times). In common smoothing techniques for language
modeling the OOV word always receives the same probability estimation
(OOV words are uniformly distributed). This is evidently wrong, but how
to estimate these probabilities better?

If we think about this problem, the only information we have about
OOV word, is the word itself and the context of this word. We suppose that
some kind of morphological analysis should particularly solve this problem.
Stemming or segmentation into morphemes should discover already seen

29

30

patterns and this information can be used for more accurate probability
estimations.

Another idea is to use the context of this word. In some cases the
occurrence of OOV word can be more probable than in others. Moreover,
as it was described in section 5.2 the context of the word is related to the
meaning of that word. So we suppose the context information can be used
to give a simple estimate of OOV word semantic.

Chapter 7

Summary

This thesis presents overview of the current state-of-the-art in unsupervised
approaches for language modeling.

The performance of language models strongly depends on properties
of the language and their associated data-sparseness problem. Supervised
methods are likely to be very efficient. Data annotation or creating lin-
guistically motivated rules trying to consider specific properties of modeling
language is an expensive and time consuming process. Due to these facts,
the unsupervised methods become very popular and for poor-resources lan-
guages it is unique and easy way to improving performance.

As a future work we choose to reach a hard target. We will try to
beat n-gram language models merely with better probability estimations
and without any external knowledge (morphology, syntax, partitioning into
documents, etc.). My research will be mainly focused on inflectional lan-
guages, their modeling efficiency is far worse than efficiency of modeling
of low inflectional languages such as English. This thesis is a theoretical
preparation for the future development.

7.1 Aims of the PhD thesis

The goal of doctoral thesis is to propose novel unsupervised methods for
improving performance of language models with special emphasis on inflec-
tional languages. The work will be focused on the following research tasks:

• Deal with specific properties of Czech language and other inflectional
languages. Study the relationship between morphology and language
modeling.

• Use semantic information to improve language modeling. Unsuper-
vised training is preferred.

• Focus on the analysis of out-of-vocabulary words. Explore both the
unsupervised morphological analysis and the analysis of the context.

31

Bibliography

Andrew, G. and Gao, J. (2007). Scalable training of l1-regularized log-linear
models. In Proceedings of the 24th international conference on Machine
learning, ICML ’07, pages 33–40, New York, NY, USA. ACM.

Bahl, L., Brown, P., de Souza, P., and Mercer, R. (1989). A tree-based
statistical language model for natural language speech recognition. IEEE
Transactions on Acoustics, Speech and Signal Processing, 37:1001–1008.

Bai, S., Li, H., Lin, Z., and Yuan, B. (1998). Building class-based lan-
guage models with contextual statistics. In Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing, pages
173–176.

Bellegarda, J. R. (2000). Exploiting latent semantic information in statistical
language modeling. Proceedings of the IEEE, 88(8):1279 –1296.

Bellegarda, J. R., Butzberger, J. W., Chow, Y. L., Coccaro, N. B., and
Naik, D. (1996). A novel word clustering algorithm based on latent se-
mantic analysis. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 172–175.

Berger, A. L., Pietra, V. J. D., and Pietra, S. A. D. (1996). A maximum
entropy approach to natural language processing. Computational Lin-
guistics, 22:39–71.

Bilmes, J. A. and Kirchhoff, K. (2003). Factored language models and
generalized parallel backoff. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics
on Human Language Technology: companion volume of the Proceedings of
HLT-NAACL 2003–short papers - Volume 2, pages 4–6, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Blei, D. M., Ng, A. Y., Jordan, M. I., and Lafferty, J. (2003). Latent dirichlet
allocation. Journal of Machine Learning Research, 3:2003.

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C.
(1992). Class-based n-gram models of natural language. Computational
Linguistics, 18:467–479.

32

33

Brychćın, T. and Konoṕık, M. (2011). Morphological based language models
for inflectional languages. In Proceedings of IEEE International Confer-
ence on Intelligent Data Acquisition and Advanced Computing Systems.

Burgess, C. and Lund, K. (1997). Modelling parsing constraints with high-
dimensional context space. Language and Cognitive Processes, 12:177–210.

Charles, W. G. (2000). Contextual correlates of meaning. Applied Psycho-
linguistics, 21(04):505–524.

Chen, S. F. and Goodman, J. T. (1998). An empirical study of smoothing
techniques for language modeling. Technical report, Computer Science
Group, Harvard University.

Cover, T. M. and Thomas, J. A. (1991). Elements of information theory.
Wiley-Interscience, New York, NY, USA.

Darroch, J. N. and Ratcliff, D. (1972). Generalized Iterative Scaling for Log-
Linear Models. The Annals of Mathematical Statistics, 43(5):1470–1480.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harsh-
man, R. (1990). Indexing by latent semantic analysis. Journal of the
American Society for Information Science, 41:391–407.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likeli-
hood from incomplete data via the em algorithm. Journal of the Royal
Statistical Society. Series B, 39(1):1–38.

Dolamic, L. and Savoy, J. (2009). Indexing and stemming approaches for the
czech language. Information Processing and Management, 45:714–720.

Gao, J., Goodman, J. T., and Miao, J. (2002). The use of clustering tech-
niques for language modeling – application to asian languages. Computa-
tional Linguistics.

Gildea, D. and Hofmann, T. (1999). Topic-based language models using em.
In Proceedings of Eurospeech, pages 2167–2170.

Goldsmith, J. (2001). Unsupervised learning of the morphology of a natural
language. Computational Linguistics, 27:153–198.

Goldsmith, J. (2006). An algorithm for the unsupervised learning of mor-
phology. Natural Language Engineering, 12:353–371.

Good, I. J. (1953). The population frequencies of species and the estimation
of population parameters. Biometrika, 40(3/4):237–264.

Hahn, S., Sethy, A., Kuo, H. J., and Ramabhadran, B. (2008). A study of
unsupervised clustering techniques for language modeling. Proceedings of
Interspeech, pages 1598–1601.

34

Hammarström, H. and Borin, L. (2011). Unsupervised learning of morpho-
logy. Computational Linguistics, 37:309–350.

Hofmann, T. (1999). Probabilistic latent semantic analysis. In Proceedings of
15th Conference on Uncertainty in Artificial Intelligence, pages 289–296.

Jones, M. N. and Mewhort, D. J. K. (2007). Representing word meaning
and order information in a composite holographic lexicon. Psychological
Review, 114:1–37.

Karypis, G. (2003). Cluto - a clustering toolkit.

Kirchhoff, K., Bilmes, J. A., and Duh, K. (2008). Factored language models
tutorial. Technical report, Department of Electrical Engineering, Univer-
sity of Washington, Seattle, Washington, USA.

Kirchhoff, K., Vergyri, D., Bilmes, J., Duh, K., and Stolcke, A. (2006).
Morphology-based language modeling for conversational Arabic speech
recognition. Computer Speech and Language, 20(4):589–608.

Klakow, D. (1998). Log-linear interpolation of language models. In Pro-
ceedings of the International Conference on Spoken Langauge Processing,
Sydney, Australia.

Kneser, R. and Ney, H. (1995). Improved backing-off for M-gram language
modeling. In Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP-95), volume 1, pages 181–
184.

Landauer, T. K. and Dumais, S. T. (1997). Solution to Plato’s Problem:
The Latent Semantic Analysis Theory of Acquisition, Induction and Rep-
resentation of Knowledge. Psychological Review, (104).

Landauer, T. K., Foltz, P., and Laham, D. (1998). An Introduction to Latent
Semantic Analysis. Discourse Processes, (25):259–284.

Liu, F. and Liu, Y. (2007). Unsupervised language model adaptation in-
corporating named entity information. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics, pages 672–679.
Association for Computational Linguistics.

Liu, Y. and Liu, F. (2008). Unsupervised language model adaptation
via topic modeling based on named entity hypotheses. In Proceedings
of IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, pages 4921–4924.

Lund, K. and Burgess, C. (1996). Producing high-dimensional semantic
spaces from lexical co-occurrence. Behavior Research Methods Instru-
ments and Computers, 28(2):203–208.

35

Majumder, P., Mitra, M., Parui, S. K., Kole, G., Mitra, P., and Datta, K.
(2007). Yass: Yet another suffix stripper. ACM Transactions on Inform-
ation Systems, 25.

Maltese, G., Bravetti, P., Crepy, H., Grainger, B. J., Herzog, M., and Palou,
F. (2001). Combining word and class-based language models: a comparat-
ive study in several languages using automatic and manual wordclustering
techniques. In Proceedings of 7th European Conference on Speech Com-
munication and Technology, pages 21–24. Eurospeech.

Oikonomidis, D. and Digalakis, V. (2003). Stem-based maximum entropy
language models for inflectional languages. In 8th European Conference
on Speech Communication and Technology. ISCA.

Oparin, I. (2008). Language Models for Automatic Speech Recognition of
Inflectional Languages. PhD thesis, University of West Bohemia, Pilsen.

Paik, J. H., Mitra, M., Parui, S. K., and Järvelin, K. (2011). Gras: An
effective and efficient stemming algorithm for information retrieval. ACM
Transactions on Information Systems, 29:19:1–19:24.

Porter, M. F. (1980). An Algorithm for Suffix Stripping. Program, 14(3):130–
137.

Purandare, A. and Pedersen, T. (2004). Word sense discrimination by clus-
tering contexts in vector and similarity spaces. Proceedings of 8th Con-
ference on Computational Natural Language Learning, pages 41–48.

Rohde, D. L. T., Gonnerman, L. M., and Plaut, D. C. (2004). An improved
method for deriving word meaning from lexical co-occurrence. Cognitive
Psychology, 7:573–605.

Rosenfeld, R. (1996). A maximum entropy approach to adaptive statistical
language modeling. Computer, Speech and Language, 10:187–228.

Rubenstein, H. and Goodenough, J. B. (1965). Contextual correlates of
synonymy. Communications of the ACM, 8(10):627–633.

Sahlgren, M. (2005). An Introduction to Random Indexing. Methods and
Applications of Semantic Indexing Workshop at the 7th International
Conference on Terminology and Knowledge Engineering, TKE 2005.

Sahlgren, M., Holst, A., and Kanerva, P. (2008). Permutations as a means
to encode order in word space. Proceedings of the 30th Annual Conference
of the Cognitive Science Society, pages 1300–1305.

Tam, Y. and Schultz, T. (2005). Dynamic language model adaptation using
variational bayes inference. In Proceedings of Interspeech, pages 5–8.

36

Tam, Y. and Schultz, T. (2006). Unsupervised language model adaptation
using latent semantic marginals. In Proceedings of Interspeech.

Vaiciunas, A., Kaminskas, V., and Raškinis, G. (2004). Statistical language
models of lithuanian based on word clustering and morphological decom-
position. Informatica, 15(4):565–580.

Wang, S., Schuurmans, D., Peng, F., and Zhao, Y. (2003). Semantic n-
gram language modeling with the latent maximum entropy principle. In
Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP03).

Watanabe, S., Iwata, T., Hori, T., Sako, A., and Ariki, Y. (2011). Topic
tracking language model for speech recognition. Computer Speech and
Language, 25:440–461.

Whittaker, E. W. D. (2000). Statistical Language Modelling for Automatic
Speech Recognition of Russian and English. PhD thesis, Cambridge Uni-
versity, Cambridge, MA, USA.

Whittaker, E. W. D. and Woodland, P. C. (2003). Language modelling
for Russian and English using words and classes. Computer Speech and
Language, 17:87–104.

Xu, P. and Jelinek, F. (2007). Random forests and the data sparseness prob-
lem in language modeling. Computer Speech and Language, 21(1):105–152.

Yamamoto, H. and Sagisaka, Y. (1999). Multi-class composite n-gram based
on connection direction. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing.

Yokoyama, T., Shinozaki, T., Iwano, K., and Furui, S. (2003). Unsupervised
language model adaptation using word classes for spontaneous speech re-
cognition. In Proceedings of IEEE-ISCA Workshop on Spontaneous Speech
Processing and Recognition, pages 71–74.

Zhao, Y. and Karypis, G. (2002). Criterion functions for document clus-
tering: Experiments and analysis. Technical report, Department of Com-
puter Science, University of Minnesota, Minneapolis.

	Introduction
	Language models
	Statistical language models
	Evaluation
	N-gram language models
	Smoothing
	Additive smoothing
	Good-Touring estimation

	Model combination
	Linear interpolation
	Bucketed linear interpolation
	Back-off smoothing
	Kneser-Ney smoothing
	Log-linear interpolation

	Other architectures
	Class-based n-gram models
	Maximum entropy
	Factored language models
	Decision trees

	Expectation-maximization algorithm

	Clustering
	MMI clustering

	Word morphology
	Morphological based language models
	Stemming

	Word semantic
	Topic models
	LSA
	PLSA
	LDA

	Semantic Spaces
	HAL
	COALS
	Random Indexing
	BEAGLE
	Purandare and Pedersen
	Vector similarity metrics

	Future work
	Summary
	Aims of the PhD thesis

