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Chapter 1

Introduction

Finding which element in a mesh contains a query point is a very frequent task
in computational geometry. In general, elements may be arbitrary (also non
convex) polygons or polyhedra. In this text we focus on point locations in the
following two types of meshes: 2D triangulations and surface triangulations of
3D models of objects.

The algorithms solving point location problems can be divided into two groups:
algorithms using additional data structures and algorithms without using ad-
ditional data structures. The latter group includes mainly so called walking
algorithms. The former algorithms concentrate on achieving the lowest com-
plexity possible, in this case O(log n) per point query which is achieved by using
sophisticated data structures (n is a number of vertices in the mesh). Despite
their low complexity, these algorithms have some disadvantages which will be
later outlined.

The name of walking algorithms has arisen from the way of point location. The
walking strategy makes use of connectivity of the mesh to go through elements
between the starting element and the element which contains query point. The
walking algorithms do not need any additional data structures, they use only
connectivity in the mesh, thus often they are more favored possibility than the
optimal time complexity solutions. Hence we focus on walking algorithms in
the text of this thesis.

This work is organized as follows. Chapter 1 includes introduction, basic nota-
tions, problem definitions and details about used framework. Chapter 2 presents
the planar point location, especially the walking algorithms. Our modifications
of the planar walking algorithms are presented in Section 2.5. Chapter 3 shows
problematic of the point location on the surface of a star-shaped polyhedron
and walking algorithms for it. Future work is presented in Chapter 4.
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1.1 Basic Notation

In this subsection, we explain the basic notation. This notation is used in the
text of this thesis if it is not specified otherwise in the respective subsection.

Vectors including points and vertices are denoted by bold Roman characters
(e.g. a,b). Scalar values are denoted by Roman characters in italic (e.g. k, l),
especially components of vectors are denoted by Roman characters in italic with
lower indices (e.g. a = (ax, ay)).

We use lower case Greek letters for denotation of elements as triangles or tetra-
hedra (e.g. β, γ). Letters ε, ξ are used specially for denotation of edges of
triangle or faces of tetrahedron. Having in mind a particular edge or face, we
use lower indices of the vertices which belong to this edge or face (e.g. εab, ξabc).
In addition, the letter λ is used specially for denotation of a line. Having in
mind a particular line, we use lower indices (e.g., λn is a line orthogonal to λ).
For a line segment between two points (e.g., points a,b where a 6= b), we can
use

−→
ab. The letter ρ is usually used for denotation of a plane.

Upper case Roman characters are used to denotation of sets and arrays of
vectors or elements (e.g. A = {a,b}, T = {α, τ, ω}). Bold upper case Roman
characters are used to denotation of matrices (e.g. A).

We usually use letter T for triangle mesh or tetrahedral mesh in which we want
to locate query point. We usually use letter q for such a point. We assume
that a part of input of each walking algorithm is also the element (triangle or
tetrahedron) in which the walk of the algorithm start. When we talk about
this starting element, we use the Greek letter α (α ∈ T ) for its denotation.
We denote ω (ω ∈ T ) the triangle or tetrahedron which really contains q. The
Greek letter τ is usually used for each element on the walk of any walking
algorithm.
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1.2 Problem Definition

1.2.1 Point Location in 2D Triangulations

For a query point q and a given planar triangulation T of n vertices in the
plane, the planar point location problem usually means how to find a triangle
ω from T which contains q. In the following text we use term planar point
location for such a problem.

1.2.2 Point Location in 3D Triangulations

For a query point q and a given tetrahedral mesh T of n vertices, the point
location problem usually means how to find a tetrahedron ω from T which
contains q. In the following text we use the term spatial point location for such
a problem. This problem is described in [36] and is not included in this text.

1.2.3 Point Location in Surface Triangulations

For a query point q and a given surface triangulation T of an object model of
n vertices, the definition of a surface point location problem, in general, is not
so straightforward. Hence, in this text, we concentrate on the point location on
a star-shaped polyhedron surface which is used especially as point location on
a spherical surface. For a star-shaped polyhedron ζ, its surface triangulation T
of n vertices and a center point c, the spatial point location problem of a query
point q usually means how to find a triangle ω from T which is intersected by
the ray −→cq. Note that the center point c of ζ with the surface triangulation T
is such a point inside ζ that each vertex of T is directly visible from c. In the
following text, we assume c is the part of input.
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1.3 Framework

Very important part of the walking algorithms for triangle and tetrahedral
meshes is a behavior of the algorithms in case q lays outside of the mesh, current
triangle τ is on the border of this mesh and the walk wants to go outside of
the mesh. In our algorithms, we return ω = null for such a situation. Tests to
null are not mentioned in all presented algorithms and respected modification
is very simple. In some particular applications, the output is demanded as
last valid triangle on the walk. The corresponding modification is very simple
too. In all algorithms, we assume that whole the triangulation is saved in the
memory of a computer.

Another important part of all walking algorithms is the behavior of the algo-
rithms if q lays on an edge ε. We extend the solution to the set Q that for each
element ω from Q, ε is an edge of ω. The situation, where q = t, t is a vertex
of T , is analogous.

1.3.1 Planar Walking Algorithms

In this subsection, we present framework used in planar walking algorithms.

2D orientation test [8] (see Equation 1.1, where t,u are edge vertices or line
points and v is the examined point) is very important for most of the walking
algorithms because it returns position of one point against an edge (or a line)
given by two vertices (by two points) (see Section 2.1.1). The side of

−→
tu on

which the point v lies is given by the sign of the determinant.

orientation2D(t,u,v) =
∣∣∣∣
ux − tx vx − tx
uy − ty vy − ty

∣∣∣∣ (1.1)

Sometimes it may be more useful to compute the implicit line equation (Equa-
tion 1.2) of a line λ from its two points (Equations 1.3, 1.4, where g,h ∈
λ,g 6= h) [34]. Then the position of an examined point v against this line is
computed by the substitution of a, b, c coefficients of λ and coordinates of de-
termining point v into Equation 1.5. We often use normal-line λn which is
orthogonal to λ and goes through h,h ∈ λ (see Equations 1.6, 1.7). For λn,
we use the same test to determine the position of the point v as for λ (we
substitute λn and v into Equation 1.5).

λ : a · x + b · y + c = 0 (1.2)

(a, b, c) = (gx, gy, 1)× (hx, hy, 1) (1.3)

a = gy − hy, b = hx − gx, c = gx · hy − gy · hx (1.4)

position(λ,v) = sgn(a · vx + b · vy + c) (1.5)

λn : an · x + bn · y + cn = 0 (1.6)
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an = b, bn = a, cn = a · hy − b · hx (1.7)

Some planar walking algorithms (see Section 2.1.4) need barycentric coordinates
of a triangle. Let us denote b = (b0, b1, b2) as barycentric coordinates vector of
a point v in the triangle σ = t0t1t2. Equations 1.8, 1.9, 1.10, 1.11, 1.12 show
computing and relationships of components of the barycentric vector b [33, 43].

A(t0, t1, t2) =
[
t1x − t0x t2x − t0x

t1y − t0y t2y − t0y

]
(1.8)

b0(t0, t1, t2,v) =
(t1y − t2y) · (vx − t2x)− (t1x − t2x) · (vy − t2y)

det [A(t0, t1, t2)]
(1.9)

b1(t0, t1, t2,v) =
(t2y − t0y) · (vx − t2x)− (t2x − t0x) · (vy − t2y)

det [A(t0, t1, t2)]
(1.10)

2∑

i=0

bi(t0, t1, t2,v) = 1 (1.11)

b2(t0, t1, t2,v) = 1− b0(t0, t1, t2,v)− b1(t0, t1, t2,v) (1.12)

1.3.2 Star-shaped polyhedron point location

In this subsection, we present framework used for point location in tetrahedral
meshes and also for point location on triangulation surface, for both of them
by the walking algorithms.

The implicit line equation of a plane is used in some surface algorithms (see Sec-
tion 3.1). The computation of this implicit line coefficients (Equation 1.13) of
the plane ρ given by a triangle σ = t0t1t2 is described in Equation 1.14.

ρ : a · x + b · y + c · z + d = 0 (1.13)

(a, b, c, d) = (t0x, t0y, t0z, 1)× (t1x, t1y, t1z, 1)× (t2x, t2y, t2z, 1) (1.14)

3D orientation test (see Equation 1.15, where t,u,v are vertices of a face and w
is examined point) is very important for most of the spatial walking algorithms
because it returns the position of one point against a face given by three vertices
(see Section 3.2.1). The side of σ = tuv on which the point w lies is given by
the sign of the determinant.

orientation3D(t,u,v,w) =

∣∣∣∣∣∣

ux − tx vx − tx wx − tx
uy − ty vy − ty wy − ty
uz − tz vz − tz wz − tz

∣∣∣∣∣∣
(1.15)

8



Some spatial walking algorithms (see Section 3.2.3) need barycentric coordi-
nates of a tetrahedron. Let us denote b = (b0, b1, b2, b3) as barycentric coor-
dinates vector of a point v against tetrahedron σ = t0t1t2t3. For barycentric
coordinates computation of tetrahedron we use 3D orientation test (see Equa-
tions 1.15, 1.16). Equation 1.17, 1.18 show relationships of components of
barycentric vector b [33, 43].

bi(t0, t1, t2, t3,w) =
orientation3D(t[(i+1) mod 3], t[(i+2) mod 3], t[(i+3) mod 3],w)

orientation3D(t0, t1, t2, t3)
(1.16)

3∑

i=0

bi(t0, t1, t2, t3,w) = 1 (1.17)

b3(t0, t1, t2, t3,w) = 1−
2∑

i=0

bi(t0, t1, t2, t3,w) (1.18)

Lines in 3D can easily be given as coordinates of two distinct points (six num-
bers) or they can be given as coordinates of two distinct planes (eight numbers).
The utilization of Plücker line coordinates is a compromise between these ways
which can easily generate both. Furthermore, Plücker line coordinates are much
more efficient for computations. For the points g,h determining a line where
g 6= h, Plücker line coordinates u,v are given in Equations [31, 11, 13].

u = g − h = (gx − hx, gy − hy, gz − hz) (1.19)

v = g × h = (gy · hz − hy · gz, hx · gz − gx · hz, gx · hy − hx · gy) (1.20)

The main value of Plücker line coordinates is in the 3D line orientation
test which is use especially in ray tracing. Let us denote u1,v1 vectors of
Plücker line coordinates of the first line and u2,v2 vectors of Plücker line
coordinates of the second line. The orientation of given lines can be com-
puted by the sum of two dot products of these vectors (see Equation 1.21).
When rayOrientation(u1,v1,u2,v2) = 0 then lines have an intersection. If
rayOrientation(u1,v1,u2,v2) < 0 then the orientation of the tested lines is
clockwise. If rayOrientation(u1,v1,u2,v2) > 0 then the orientation of the
tested lines is counterclockwise. Figure 1.1 shows the line pair signature mean-
ing (where the orientation of two lines λ1 and λ2 is CW, CCW or lines intersect).
If the orientation of a ray against each edge of a triangle is the same then the
triangle is intersected by this ray (see Figure 1.2).

rayOrientation(u1,v1,u2,v2) = u1 · v2 + u2 · v1 (1.21)
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Figure 1.1: Line pair signature meaning

Figure 1.2: Triangle intersected by a ray

Especially in the star-shaped polyhedron point location, we use the computation
of spherical coordinate values ϕ and θ (see Equations 1.22, 1.23, where g is an
examined point and c is the center point of star-shaped polyhedron.

gϕ(g, c) = arctg2(gy − cy, gx − cx) (1.22)

gθ(g, c) = arccos

(
gz − cz√

(gx − cx)2 + (gy − cy)2 + (gz − cz)2

)
(1.23)
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Chapter 2

Planar Point Location

The algorithms solving planar point location problem (see Figure 2.1) can be
divided into two groups: algorithms using sophisticated data structures and
algorithms without using additional data structures. The latter group includes
mainly so called walking algorithms. The former concentrates on achieving
the lowest complexity possible, in this case O(log n) per point query which
is performed by using sophisticated data structures such as slabs [10], trape-
zoidal maps (usually with binary search tree [27, 25, 5]), directed acyclic graph
(DAG) [2, 3, 7, 5, 18], skip list [44], quad tree, uniform grid [35, 47] (with
bucketing in [39]) and data structures based on random sampling [24, 6].

q

Figure 2.1: Planar point location problem

Despite their low time complexity, these algorithms have some disadvantages.
First, the data structures listed above consume generally O(n) amount of mem-
ory in the worst case (except slabs with O(n2) amount of memory in the worst
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case) which may be a problem for huge datasets. Second, the implementation
effort for most of these structures is nontrivial (especially the modifications of
these structures which is possible where the triangulation is modified). Finally,
most of these structures are hierarchical and the top level of the hierarchy may
become a bottleneck in case of parallelization.

Walking algorithms have not this disadvantages. They do not need any extra
memory (they need only connectivity information in a mesh), their implemen-
tation is rather simple and their usability for parallelization is good. Thus often
they are a better choice than the optimal time complexity solutions. The name
of these algorithms has arisen from the way of locating the triangle ω which
contains q. From a starting triangle α chosen as one of the triangles of T and
the query point q the walking strategy makes use of connectivity of the trian-
gle mesh to go through triangles between α and ω (see Figure 2.2). It should
be mentioned that many optimal complexity solutions use sophisticated data
structures for location of proper α and final location is performed by one of the
walking algorithms.

q

α

Figure 2.2: Walking strategy

Devillers et al. [8] divided walking strategies to three main types: visibility
walk, straight walk and orthogonal walk. The visibility walk (see the whole
Section 2.1) makes use of point-inside-triangle tests to determine which triangle
is the next in the walk. The most of the published visibility walk algorithms
[23, 8, 17] (see Sections 2.1.2, 2.1.3) come out from the first oriented walk
published by Lawson in 1977 [20] (see Section 2.1.1). A partial exception may
be barycentric walk algorithm published by Sundareswara et al. in 2003 [39]
(see Section 2.1.4).

The straight walk algorithms pass all such triangles in the mesh between α and
ω that are intersected by a line −→pq where p is a point inside α [21, 8]. The
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orthogonal walk algorithms pass all the triangles in the mesh between α and ω
which are intersected by the lines λx, λy collinear with coordinate axes which
go through p and q where p is a point inside α [8] (p ∈ λx and q ∈ λy).

The starting triangle α may be chosen randomly, by the use of hierarchical struc-
tures, by the help of additional information or by a special way, e.g. as the clos-
est triangle to q from a set A of randomly chosen triangles from T , ‖A‖ ¿ ‖T‖
[23] (see Section 2.4). A proper choice rapidly improves the speed and expected
computational complexity of the algorithm (e.g. from O(

√
n) to O( 3

√
n) for the

algorithm without additional data storage published by Mücke et. al. [23], later
analyzed in [9]).
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2.1 Visibility Walk Algorithms

q

Figure 2.3: Example of visibility walk algorithms (blue path of the remember-
ing stochastic walk in Section 2.1.2 and red path of the barycentric walk in
Section 2.1.4, shared triangles are pink)

2.1.1 Lawson’s Oriented Walk

This very simple visibility walk algorithm was first published by C. L. Law-
son [20]. The algorithm uses the planar orientation edge test (see Equation 1.1)
to determine which triangle is the next one in its walk. Assuming that vertices
of γ are in the same orientation (CW or CCW) for each triangle γ ∈ T, γ = lrs,
the result from Equation 1.1 (after substitution of l, r,p coordinates) indicates
the position of p against the oriented edge εlr, where p is the tested point. Fig-
ure 2.4 shows the resulted signs of orientation tests for the triangle τ = t0t1t2
with CCW vertices orientation.

t0

t2

t1

+++
-

+
-

+++
-

++
-

++++
-

+++
-

+++
-

+
-

+
-

Figure 2.4: The orientation test for triangle with CCW orientation of vertices

Algorithm 2.1 describes the simple Lawson’s oriented walk. We assume CCW
orientation of triangle vertices in all following pseudo codes. The input and
output is the same for almost all further walking algorithms, so it is in further
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pseudo codes only if it is different. The walk starts in a triangle α. In each
step of the algorithm we test the position of the query point q against edges
of the current triangle τ until we find the edge εab for which the third vertex
c of τ lies on the opposite side of εab than q. Then the walk continues to the
next triangle over εab. If a matching edge does not exist in τ then τ = ω and τ
contains q.

Input:

• the query point q
• the chosen starting triangle α, α ∈ T

Output:

• the triangle ω which contains q

triangle τ = α;
boolean found = false;

while not found do
found = true;
foreach edge ε ∈ τ do

point l = first vertex of ε;
point r = second vertex of ε;
if orientation2D(l, r,q) < 0 then

τ = neighbor of τ trough ε;
found = false;
break; // terminates the foreach cycle

end

end

end
// now τ contains q

return τ;

Algorithm 2.1: Lawson’s oriented walk

The simple Lawson’s oriented walk algorithm uses edges of τ for tests in a de-
terministic order which depends on the arrangement of edges in triangles. The
arrangement of edges in triangles is generated during construction of triangu-
lation and it causes that walk may loop in some specific configurations of the
triangle mesh [8, 41] (see Figure 2.5). It is shown that for planar Delaunay
triangulation is Lawson’s oriented walk totally correct [12, 41].

2.1.2 Remembering Stochastic Walk

We know from Section 2.1.1 that the simple Lawson’s oriented walk algorithm
uses edges of τ for tests in a given order and this method may loop for a non-
Delaunay triangulation. For such a triangulation it is necessary to choose the
tested edges of τ in a random order. This modification is called stochastic [8].
Furthermore, it is not necessary to test the edge incident with the previous
triangle in the walk (let us denote previous triangle as ψ), hence we remember
the previous triangle ψ and skip the orientation test for the relevant edge ε (ε ∈
τ∧ε ∈ ψ). This improvement is called remembering [8] and it may save up to one
orientation test for each triangle. It brings significant speedup. Therefore, one

15



or two orientation tests are needed for each triangle during the walk (except α).

q

Figure 2.5: Loop of Lawson’s oriented walk [41]

Let us denote vertices of τ as t0, t1, t2, (τ = t0t1t2). The algorithm 2.2
describes the remembering stochastic walk algorithm (in the following text we
use a shortcut RSW for this algorithm). We can see an example of RSW in
Figure 2.3 (blue color). Note that we can use the remembering improvement
also for the non-stochastic Lawson’s oriented walk. We call such an algorithm
remembering walk (RW). The application of remembering walk is advisable for
Delaunay triangulation because the stochasticity is not necessary and consumes
a significant amount of algorithm speed.

triangle τ = α;
triangle ψ = τ; // the previous triangle is initialized as τ
boolean found = false;

while not found do
found = true;
int k = random int(3); // k ∈ {0, 1, 2}
for i = k to k + 2 do

point l = t(i mod 3);

point r = t[(i+1) mod 3];

// “remembering” improvement condition
if ψ is not neighbor of τ trough εlr then

if orientation2D(l, r,q) < 0 then
ψ = τ;
τ = neighbor of τ trough εlr;

found = false;
break; // terminates the for cycle

end

end

end

end

return τ;

Algorithm 2.2: Remembering stochastic walk

16



2.1.3 Fast Remembering Stochastic Walk

In each step of the RSW algorithm, we performed one or two orientation tests
because the orientation test for the edge to previous triangle ψ is skipped (except
the triangle α where up to three tests may be performed). For each triangle
τ, τ 6= ω on the particular walk we can choose the next triangle on the basis of
one orientation test [17]. If the test for the edge ε, ε ∈ τ , where the neighbor
over ε is not ψ, returns that ε is not suitable to go through it, we continue the
walk through another edge ξ ∈ τ, ξ 6= ε, where the neighbor through ξ is not ψ.
We obviously performed exactly one orientation test for each triangle.

q

Figure 2.6: Loop of fast RSW

The walk goes correctly but the problem occurs when we need to determine
the triangle ω and terminate the walk (see Figure 2.6). The solution presented
in [17] uses this fast walk in k steps and after ω is located by the RSW algorithm.
Naturally the value of k should depends on n, where n is the number of vertices
in the triangle mesh. The question is which value of k is optimal. Kolingerová
presents this dependency as a multiple of the average walk length. According
to her special choice of the triangle α (see Section 2.4), the expected average
walk length is presented as O( 3

√
n), more precisely between 2 3

√
n and 2.15 3

√
n.

The experiments show that the optimal value of k can be computed as 1.15 3
√

n
and the improvement is much lower than expected (only 8% saved edge tests).

The stochastic version of [17] is described by the pseudo code in the Algo-
rithm 2.3. Naturally, for Delaunay triangulation, the algorithm may be also
in non-stochastic version (let us call fast remembering walk this modification).
Note that the value of k corresponds to the stochastic version and experiments
with the non-stochastic version may return different results.
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Input:

• the query point q
• the chosen starting triangle α, α ∈ T
• the chosen number of fast walk steps k

Output:

• the triangle ω which contains q

triangle τ = α;
triangle ψ = τ; // previous triangle is initialized as τ

for i = 1 to k do
edge ε = random edge of τ, ψ is not neighbor of τ trough ε;
point l = first vertex of ε;
point r = second vertex of ε;
ψ = τ;
if orientation2D(l, r,q) < 0 then

τ = neighbor of τ trough ε;
else

edge ξ = second edge of τ, ξ 6= ε, ψ is not neighbor of τ trough ξ;
τ = neighbor of τ trough ξ;

end

end

return remembering stochastic walk(q, τ);

Algorithm 2.3: Fast remembering stochastic walk

2.1.4 Barycentric Walk

This algorithm differs from visibility walk algorithms presented before that it
uses the barycentric coordinates of the triangle (see Equations 1.8 - 1.12 in
Section 1.3.1) instead of the orientation test (see Equation 1.1). Barycentric
coordinates have a very significant property - the final triangle ω has all barycen-
tric coordinates of the query point q non-negative. This property was utilized
by Sundareswara et al. in very specific visibility walk algorithm [40].

The main idea of this algorithm (see Algorithm 2.4) is really simple. In each
step, the algorithm computes barycentric coordinates of q for the current tri-
angle τ = lrs. If the coordinates are non-negative then ω = τ . Otherwise we
choose the next triangle as a neighbor over the edge given by two vertices with
a maximum value of the correspondent barycentric coordinate components. We
can transform the problem to the inverse problem (we are looking for a ver-
tex s with minimal barycentric value) and the searched edge is the edge εlr

which is opposite to s. Both cases (q inside the triangle ω and outside of
the triangle τ) are illustrated in Figure 2.7, where barycentric coordinates are
b(ω) = (0.25, 0.35, 0.4) and b(τ) = (−0.75,−0.25, 2).

The main advantages of this algorithm are that it works in triangulations where
the triangles may have a random orientation and it does not loop for non-
Delaunay triangulations [40]. Sundareswara claims that the number of visited
triangles by the barycentric walk is a bit lower in average than by other visibility
walk algorithms (see Figure 2.3, where the barycentric walk is compared with
the RSW algorithm). Our experiments really confirm that the barycentric walk
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Figure 2.7: Barycentric coordinates of q inside (ω) and outside (τ) of triangle

is shorter in average than other visibility walk algorithms (see Section 2.6).

triangle τ = α = t0t1t2;
boolean found = false;
double min;
edge ε;

while not found do
double b0 = b0(t0, t1, t2,q);
double b1 = b1(t0, t1, t2,q);
double b2 = 1− b0 − b1;

ε = edge t1t2;
min = b0;

if b1 < min then
ε = edge t2t0;
min = b1;

end
if b2 < min then

ε = edge t0t1;
min = b2;

end
if min < 0 then

τ = neighbor of τ trough ε;
else

found = true;
end

end

return τ;

Algorithm 2.4: Barycentric walk
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2.2 Straight Walk Algorithm

ql

r

s

p

Figure 2.8: Straight walk algorithm

Generally, the straight walk passes all triangles in the triangulation T inter-
sected by the line −→pq where p is a point, p ∈ α = lrp. The standard straight
walk algorithm [8] is composed of two steps: initialization step and straight
walk step.

Pseudo code of the algorithm is given as Algorithm 2.5 [8] and an example of
the walk is in Figure 2.8. The initialization step is colored pink and the straight
walk is light blue. The triangle δ is such a triangle where the initialization step
ends and straight walk begins.

In the initialization step (pink color in Figure 2.8), p is chosen as one of the
triangle α vertices and a triangle γ incident to p which is intersected by the line
segment −→pq must be found. Then r and l are switched. Now the line segment−→pq has r on the right and l on the left side. During the initialization step, one
orientation test is needed for each visited triangle and the number of visited
triangles is at most the degree of p.

After the initialization is completed, the straight walk (blue color in Figure 2.8)
may start. For each triangle τ , τ = lrs in the straight walk, the line −→pq goes
into τ, τ 6= α through the edge εlr . Depending on the orientation(p,q, s), new
r (or new l) is set to s. If orientation(p,q, s) < 0 then r = s, otherwise l = s.
The singular case orientation(p,q, s) = 0 is added to one of these situations.
Now the straight walk goes out of τ through the new edge εlr. By testing on
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which side of εlr the q lies it is decided whether the τ contains the q or whether
the walk must go on. In the latter case the walk goes to the neighbor of τ
through εlr. Therefore the straight walk evidently needs two orientation tests
per triangle and some orientation tests in the initialization step.

// initialization step
triangle τ = α = lrs;
point p = s;

if orientation2D(p,q, r) > 0 then
while orientation2D(p,q, l) > 0 do

r = l;
τ = neighbor of τ trough εpl;

l = vertex of τ where l 6= p, l 6= r;
end

else
repeat

l = r;
τ = neighbor of τ trough εpr;

r = vertex of τ where r 6= p, r 6= l;
until orientation2D(p,q, r) > 0 ;

end
switch(l, r);
// now −→pq has r on the right and l on the left side

// straight walk - following the line segment −→pq
while orientation2D(l, r,q) < 0 do

τ = neighbor of τ trough εlr;

s = vertex of τ where s 6= r, s 6= l;
if orientation2D(p,q, s) < 0 then

r = s;
else

l = s;
end

end

return τ;

Algorithm 2.5: Straight Walk
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2.3 Orthogonal Walk Algorithm
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Figure 2.9: Orthogonal walk algorithm

The planar orthogonal walk was proposed by Devillers at al. [8] with an idea of
cheaper tests. The algorithm goes first in the direction of one coordinate axis
and then in the other coordinate axis. Planar orientation tests (Equation 1.1)
were substituted by comparisons of coordinate values. An orthogonal walk is
usually longer than other walks (see Figure 2.9) but the cost of its tests is
significantly lower which results in a faster location.

Denote p as one of the triangle α vertices. A new point a is set as a = (qx, py).
In the following text, we describe one case of orthogonal walk where q is above
and to the right of p (qx > px, qy > py). Other cases are simply analogous.
The algorithm is described in Algorithm 2.6 and consists of three steps. In the
initialization step (pink color in Figure 2.9), the algorithm looks for a triangle
δ = lrp incident to p which is intersected by the line segment λx = −→pa which
is collinear with the horizontal axis x. Then r and l are switched. Now the line
segment λx has r bellow and l above. Note that vertices of all triangles are still
in CCW order.

If δ is found then the horizontal walk step (red color in Figure 2.9) may begin.
This step is following λx until the current triangle contains a. For each triangle
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τ in the horizontal walk the edge εlr of τ is the edge used to cross to this
triangle. In such a triangle, we denote the vertex against the edge εlr as s.
The edge εlr to the next triangle is found by comparing sy with ay. If sy

is higher than ay then the walk continues over εlr where l = s, otherwise the
walk continues over εlr where r = s. The horizontal walk ends if a is inside τ
(orientation2D(l, r,a) ≥ 0).

The vertical walk step is following the line segment λy = −→aq which is collinear
with the vertical axis y. At the beginning of a vertical walk step, l, r, s are
chosen such that l is to left from λy and r is to right from λy (lx ≤ qx and
rx ≥ qx). Then the vertical walk in the y direction (blue color in Figure 2.9)
may start. For each triangle τ in the vertical walk the edge εlr of τ is the edge
used to cross to this triangle. In such a triangle, we denote the vertex against
the edge εlr as s. The edge εlr to the next triangle is found by comparing sx

with qx. If sx is lower than qx then the walk continues over εlr where l = s,
otherwise the walk continues over εlr where r = s. The vertical walk ends if q
is inside τ (orientation2D(l, r,q) ≥ 0).

In the initialization step, one comparison is needed for each visited triangle.
Three comparisons are needed for each triangle during the walk. Orientation
tests are usually used very rarely because the short-circuit boolean operators
are used and test is performed only if the condition before is false. However,
minimally two orientation tests are needed for each location (one in horizontal
and one in vertical direction). An example of orthogonal walk is in Figure 2.9.
The triangle, where the initialization step ends, is denoted as δ. The triangle,
where the horizontal walk step ends and the vertical walk step begins, is denoted
as γ.
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// initialization step
triangle τ = α = lrs;
point p = s;
point a = (qx, py);
// we describe the case where q is above and to the right of p (qx > px, qy > py),

other cases are analogous
if ry > py then

while ly > py do
r = l;
τ = neighbor of τ trough εpr;

l = vertex of τ where l 6= p, l 6= r;
end

else
repeat

l = r;
τ = neighbor of τ trough εpl;

r = vertex of τ where r 6= p, r 6= l;
until ry > py ;

end
switch(l, r);
// now τ is intersected by pa and l is above p and r is below p (py ≤ ly and py ≥ ry)

// note that short-circuit boolean operators are used
// traverses the triangulation T in the direction of the horizontal axis x
while (lx < ax and rx < ax) or orientation2D(l, r,a) < 0 do

τ = neighbor of τ over εlr;

s = vertex of τ where s 6= l, s 6= r;
if sy > ay then

l = s;
else

r = s;
end

end
// now τ contains a

if rx > qx then
s = l;
l = vertex of τ where l 6= r, l 6= s;

end
// now τ is intersected by aq, l is to left and r is to right from q (lx ≤ qx and rx ≥ qx)

// traverses the triangulation T in the direction of the vertical axis y
while (ly < qy and ry < qy) or orientation2D(l, r,q) < 0 do

τ = neighbor of τ over εlr;

s = vertex of τ where s 6= l, s 6= r;
if sx > qx then

r = s;
else

l = s;
end

end
// now τ contains q

return τ;

Algorithm 2.6: Orthogonal walk
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2.4 Choice of the Starting Triangle

They are two main types of these strategies: the strategies using additional
data structures and the strategies which do not consume additional memory.
We aim at letter strategies in this subsection.

The simplest way how to choose the starting triangle is to choose α as a random
triangle of the triangulation T . If we have an additional information about the
triangulation we can choose α in some clever way. For example, if we know the
range of the triangulation T , we can choose α for all locations in T as a triangle
which contains the point in the middle of T .

Mücke [23] proposed the choice of α without preprocessing and additional struc-
tures, where the starting triangle is chosen as the closest triangle to q from a set
A of randomly chosen triangles from T , ‖A‖ ¿ ‖T‖. This simple modification
improves performance of all walking algorithms. Because the distances are com-
puted only for one-to-one comparison, it is sufficient to compute the quadratic
distance. The point-triangle distance problem is substituted by point-point
distance problem where the triangle is substituted by one of triangle’s edge
midpoints (midpoint is the middle point of the edge). What is the optimal size
of A? Mücke presented that d 3

√
ne is the optimal size of A for RSW algorithm

where n is a number of vertices in a mesh. The choice of the starting triangle
is described in Algorithm 2.7. Our test shows that the optimal size of A is
O ( 3.5

√
n) dependent [36].

Input:

• the query point q
• the triangulation T of n vertices

Output:

• the starting triangle α

triangle α;
double dist = max double value;

for i = 1 to d 3
√

ne do
triangle σ = random triangle from T;

point p = midpoint of the first edge of σ;
double distnew = (px − qx)2 + (py − qy)2;
if distnew < dist then

α = σ;
dist = distnew;

end

end

return α;

Algorithm 2.7: Choice of the starting triangle
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2.5 Our Modifications of Planar Walking Algorithms

2.5.1 Distance Fast RSW

As we know from Section 2.1.3, the problem of the fast RSW [17] is how to
recognize the walk is actually in ω. Our modification published in [36] computes
the distance of each triangle τ from the query point q. As in Section 2.4,
the point-triangle distance problem is substituted by the point-point distance
problem where a triangle is substituted by one of its vertices and only quadratic
distances are computed. For distance computation, we use the vertex of τ which
is facing the edge we used to go to τ . If the distance is not lower than the last
computed distance, the fast RSW ends and ω is found by the standard RSW
algorithm.

Naturally, the fast RSW may end before the walk reaches ω. In the worst
case, almost all the walk is performed by the standard RSW. The cost for
distance computation is not low, therefore the distance is not computed for
each triangle but for each k-th triangle. This modification also decreases the
probability of fast RSW termination before the algorithm reaches ω. Our tests
prove that the optimal value of k is n-dependent. With the optimal choice
of the starting triangle [36], k = d0.34 · 4.58

√
n + 0.06e [36]). Note that this

modification may be used also with the non-stochastic version of algorithm for
Delaunay triangulation. For such an algorithm, with the optimal choice of α,
k = d0.23 · 4.90

√
n + 0.18e. The stochastic version is described in Algorithm 2.8.

triangle τ = α;
triangle ψ = τ; // previous triangle is initialized as τ
double distnew = max double value;

double dist;

repeat
dist = distnew;

for i = 1 to k do
edge ε = random edge of τ, ψ is not neighbor of τ trough ε;
point l = first vertex of ε;
point r = second vertex of ε;
ψ = τ;
if orientation2D(l, r,q) < 0 then

τ = neighbor of τ trough ε;
else

edge ξ = second edge of τ, ξ 6= ε, ψ 6= neighbor of τ trough ξ;
τ = neighbor of τ trough ξ;

end

end
point p = vertex of τ facing edge to previous triangle ψ;
distnew = (px − qx)2 + (py − qy)2;

until distnew > dist ;

return remembering stochastic walk(q, τ);

Algorithm 2.8: Distance fast RSW
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2.5.2 Flag Fast RSW

Another way how to solve the problem of the fast remembering stochastic walk
algorithm from Section 2.1.3 is to use an additional integer flag for each triangle.
This solution consumes an additional linear amount of memory and works very
simply. Each search query has a unique identification number (id) and each
visited triangle is flagged with this id. If we visit a triangle which has been
already flagged with id of the current location, then the fast RSW algorithm
is looping and it is terminated. The final location is performed again by the
standard RSW algorithm (see Algorithm 2.9).

triangle τ = α;
triangle ψ = τ; // previous triangle is initialized as τ
int k = unique identification number of this location;

repeat
τloc = k;
edge ε = random edge of τ, ψ is not neighbor of τ trough ε;
point l = first vertex of ε;
point r = second vertex of ε;
ψ = τ;
if orientation2D(l, r,q) < 0 then

τ = neighbor of τ trough ε;
else

edge ξ = second edge of τ, ξ 6= ε, ψ 6= neighbor of τ trough ξ;
τ = neighbor of τ trough ξ;

end

until τloc = k ;

// now τ has been visited twice during this walk

return remembering stochastic walk(q, τ);

Algorithm 2.9: Flag fast RSW

This modification has two cardinal disadvantages which make algorithm unprac-
tical. The former, algorithm consume additional amount of memory required
for flag. The latter and more significant, algorithm is useless for parallel loca-
tions because two parallel location may change flags so fiddly that algorithm
loops or returns results in a long time. Another disadvantage may be necessity
of data structure modification (adding a flag) which is not always possible.

2.5.3 Progressive Visibility Walk

The computation of barycentric coordinates from Equations 1.8 - 1.12 can be
rewritten as Equations 2.1, 2.2 and this is the main principle of our algorithm.
Analogically to barycentric coordinates bi, we define coordinates ci (orientation
coordinates in the following text - see Equations 2.3 - 2.6 - we use only numerator
of barycentric coordinates which is one 2D orientation test). Apparently if the
vertices of tested triangle σ = t0t1t2 are in CCW order and bi ≤ bj ≤ bk then
ci ≤ cj ≤ ck for i, j, k ∈ {0, 1, 2} where i 6= j, i 6= k, j 6= k. Note that if the
vertices of the tested triangle σ = t0t1t2 are in CW order and bi ≤ bj ≤ bk

then ci ≥ cj ≥ ck. This piece of knowledge allows us to use Algorithm 2.4 with
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orientation coordinates instead of barycentric coordinates. It improves speed
performance of the algorithm.

bi(t0, t1, t2,v) =
orientation2D(t[(i+1) mod 3], t[(i+2) mod 3],v)

orientation2D(t0, t1, t2)
(2.1)

2∑

i=0

bi(t0, t1, t2,v) = 1 (2.2)

ci(t0, t1, t2,v) = bi(t0, t1, t2,v) · orientation2D(t0, t1, t2) (2.3)

ci(t0, t1, t2,v) = orientation2D(t[(i+1) mod 3], t[(i+2) mod 3],v) (2.4)

2∑

i=0

ci(t0, t1, t2,v) = orientation2D(t0, t1, t2) (2.5)

c2(t0, t1, t2,v) = orientation2D(t0, t1, t2)− c0(t0, t1, t2,v)− c1(t0, t1, t2,v)
(2.6)

The following improvement allows us to use only one orientation test per
visited triangle at the cost of additional memory. We remember σori =
orientation2D(t0, t1, t2) (see 2d orientation test in Equation 1.1) for each tri-
angle σ ∈ T where σ = t0t1t2. The additional memory demands are linear but
still significantly lower than additional memory demands of hierarchical struc-
tures. Note that this additional information may be useful for other applica-
tions, too, because σori is a double of the triangle surface and gives information
about the triangle size.

Let us describe the algorithm which is given by pseudo code in Algorithm 2.10.
We modify the non-stochastic version of remembering walk algorithm. As we
know, in the remembering walk, we remember which triangle was the previous
one. In this algorithm, we also remember the orientation coordinate for the
edge we used to go to the current triangle τ (denote it cprev). The inverted
value of cprev is an orientation coordinate for the edge to the previous triangle
in the current triangle τ (denote it ci where ci = −cprev). Then the orientation
coordinate for another edge of τ is computed (let us denote it cj). For the
computation of the orientation coordinate ck of the last remaining edge of τ ,
we utilize remembered τori and Equation 2.6 (ck = τori − ci − cj). Apparently
only one orientation test is needed for each visited triangle during the walk
(except the first triangle where cprev does not exist and where two orientation
tests are needed). Note that a disadvantage may be also a necessity of the data
structure modification which is not always allowed.
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// initialization step
triangle τ = α = t0t1t2;
triangle ψ;
double c0 = orientation2D(t1, t2,q);
double c1 = orientation2D(t2, t0,q);
double c2 = τori − c0 − c1;

edge ε = edge t1t2;
double min = c0;

if c1 < min then
ε = edge t2t0;
min = c1;

end
if c2 < min then

ε = edge t0t1;
min = c2;

end

while min < 0 do
ψ = τ;
τ = neighbor of τ trough ε;
double ci = −min;
edge ε = first edge of τ, ψ is not neighbor of τ trough ε;
point l = first vertex of ε;
point r = second vertex of ε;
double cj = orientation2D(l, r,q);
double ck = τori − ci − cj;

if cj < ck then
min = cj;

else
min = ck;

edge ξ = second edge of τ, ξ 6= ε, ψ is not neighbor of τ trough ξ;
ε = ξ;

end

end

return τ;

Algorithm 2.10: Progressive visibility walk

2.5.4 Normal-line Straight Walk

The first idea of this modification published in [37] is to simplify the initializa-
tion step of the straight walk algorithm from Section 2.2 to a constant number of
operations. The second idea is to use a cheaper operation than the orientation
test used in Section 2.2.

The description of this modified straight walk algorithm is possible to find in the
pseudo code Algorithm 2.11. A fundamental prerequisite for the initialization
step is to suitably choose the point p. In Section 2.2, p is chosen as one vertex
of the starting triangle α but it is not necessary. The main idea is to choose p
in the way that no other operations in the initialization step are needed.

First, the point s is chosen as the closest vertex from α to q. The edge εlr is
the edge of α = lrs. Next, p is chosen on εlr where p 6= l, r. Now the straight
walk step may start.

In other words, the straight walk algorithm from Section 2.2 works as follows.
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For each triangle τ, τ = lrs in the straight walk (except α) the edge εlr of τ is
the edge that has been used to cross to τ and s is the vertex of τ facing εlr. The
line segment −→pq (let us denote it λ) goes out of τ through the edge ξ which is
determined by the means of using the orientation test. If orientation(p,q, s) <
0 then ξ = εls, ξ ∈ τ , otherwise ξ = εrs, ξ ∈ τ . By testing on which side of ξ the
point q lies, it is decided whether τ contains q or whether the walk must go on.

For each triangle τ the position of s is tested against the line segment λ = −→pq
and only s is changing during the walk, therefore it is possible to use an implicit
line equation test instead of the orientation test to speed up the process. The
implicit line equation of λ is computed in the initialization step (Equations 1.2,
1.3, 1.4) and the position of s is found by a substitution into Equation 1.5.

The implicit line equation test is subject to higher numerical imprecision than
the orientation test but the straight walk algorithm is robust enough to resist it.
Now there is one orientation test and one position test per each triangle during
the walk. The orientation test is used to detect whether the triangle ω was
found. A direct replacement of this orientation test is problematic because two
points are changing during the walk, therefore the original algorithm must be
modified. For this modification, a normal-line λn, λn ⊥ λ, q ∈ λn is computed
in the initialization step (Equation 1.6, 1.7).

The orientation test for detection, whether the triangle ω was found, is replaced
with the position test of λn and s. If s lays on the other side of λn than p then
the straight walk ends. A situation is possible where τ 6= ω at the end of the
straight walk (see Figure 2.10). Thus the RSW algorithm is always used for
final location. As a rule, this final location is very short, but extreme cases exist
where almost the whole walk is performed by RSW. However, this situation is
not probable and degradation of this modified straight walk to RSW is not a
significant problem because RSW is not dramatically worse (see Section 2.6).

// initialization step
τ = α = lrs where s is the closest vertex to q;
p = point on edge εlr where l, r 6= p (for example p is midpoint of εlr);

line λ = line segment −→pq;
line λn = line segment orthogonal to −→pq where q ∈ λn;

// following the line segment λ from p to q
while position(λn, s) < 0 do

if position(λ, s) < 0 then
r = s;

else
l = s;

end
τ = neighbor of τ over εlr;

s = vertex of τ where s 6= r, s 6= l;
end

return remembering stochastic walk(q, τ);

Algorithm 2.11: Normal-line straight walk

The example of the normal straight walk algorithm is given in Figure 2.10.
The straight walk step is colored red and the final location by RSW is light
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blue. The triangle γ is the triangle where the straight walk step ends and RSW
starts, the edge εlr is the edge used to go to γ. The point s is the point of γ,
whose position at the other side of normal-line λn than p causes the end of the
straight walk.

l

r

s

q

ω
γ

α

λn

λ

p

Figure 2.10: Normal-line straight walk algorithm

2.5.5 Improved Orthogonal Walk

Analogous to Section 2.5.4, the first idea of this modification is to simplify
the initialization step of the orthogonal walk algorithm from Section 2.3 to a
constant number of operations. The second idea is to use a smaller number of
coordinate comparisons per each visited triangle and not to use orientation tests
at the cost that we use RSW for final location of ω analogously to Section 2.5.4.
The description of this modified orthogonal walk algorithm is possible to find
in the pseudo code Algorithm 2.12.

Now let us explain our modification. First, the algorithm must choose a starting
point p anywhere inside α. Let us assume q is above and to the right of
p (qx > px, qy > py), other three possibilities would be analogous. In the
initialization step we choose s = (sx, sy) as a vertex of α with the maximal
horizontal value x. The vertices l, r, s of α are again in CCW order.

Now the walk in the direction of horizontal axis x may start. This particular
walk is following the line segment λx = −→pa collinear with horizontal axis x
where a = (qx, py). For each triangle τ, τ = lrs in the horizontal walk (except
α) the edge εlr of τ is the edge used to cross to τ and s is the vertex of τ facing
εlr. The line segment λx goes out of τ through the edge ξ, ξ ∈ τ . The edge ξ
is determined by the means of using the vertical coordinate comparison test. If
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sy < py then ξ = εls, otherwise ξ = εrs. The end of horizontal walk is detected
by the means of using horizontal coordinate comparison. If s is to right of q
(sx > qx) then the horizontal walk ends, otherwise the walk continues through
the edge ξ to the next triangle.

The vertical walk in y axis direction needs a simple initialization step, too. The
point s is chosen as a vertex of τ with the maximal vertical value y. Now the
walk in the direction of the horizontal axis y may start. This particular walk is
following the line segment λy = −→aq collinear with the vertical axis y. The edge
εlr of τ is the edge used to cross to τ and s is the vertex of τ facing εlr. The line
segment λy goes out of τ through the edge ξ, ξ ∈ τ . The edge ξ is determined
by the means of using the horizontal coordinate comparison test. If sx > qx

then ξ = εls, otherwise ξ = εrs. The end of the vertical walk is detected by the
means of using the vertical coordinate comparison. If s is above q (sy > qy)
then the vertical walk ends, otherwise the walk continues through edge ξ to the
next triangle.

After the vertical walk ends, τ is close to the triangle ω which contains the
query point q. We use only two coordinate comparisons and no orientation
tests per each visited triangle at the cost of the estimated result. The final
location is performed by the RSW algorithm from Section 2.1.2 and usually is
very short (see experimental results in Section 2.6).

// initialization step
p = a point generated anywhere inside α;
// we describe the case where q is above and to the right of p (qx > px, qy > py),

other cases are analogous
τ = α = lrs where s is the vertex with maximal x coordinate;

// traverses the triangulation T in the direction of the horizontal axis x
while sx < qx do

if sy < py then
r = s;

else
l = s;

end
τ = neighbor of τ over εlr;

s = vertex of τ where s 6= r, s 6= l;
end

τ = lrs where s is the vertex with maximal y coordinate;

// traverses the triangulation T in the direction of the vertical axis y
while sy < qy do

if sx < qx then
l = s;

else
r = s;

end
τ = neighbor of τ over εlr;

s = vertex of τ where s 6= r, s 6= l;
end

return remembering stochastic walk(q, τ);

Algorithm 2.12: Modification of orthogonal walk

32



Figure 2.11 shows an example of our modification of orthogonal walk. The
triangle γ is a triangle where the horizontal walk stops and the vertical walk
begins. The triangle δ is the final triangle of our orthogonal walk where the
vertical walk ends. Figure contains points s which cause end of the horizontal
walk (sγ) and of the vertical walk (sδ).

p

q

s

s

Figure 2.11: Improved orthogonal walk algorithm
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2.6 Experimental Results

We tested the following algorithms: Lawson’s oriented walk (Section 2.1.1), re-
membering walk (RW), remembering stochastic walk (RSW - see Section 2.1.2),
fast RW, fast RSW (Section 2.1.3), barycentric walk (Section 2.1.4), straight
walk (Section 2.2), orthogonal walk (Section 2.3) and our modifications of these
algorithms (see subsections of Section 2.5): distance fast RW, distance fast
RSW, flag fast RW, flag fast RWS, progressive visibility walk, normal straight
walk and our improved orthogonal walk.

Tests were performed on three Delaunay triangulations of different number of
points (n = 104, 105, 106) randomly distributed on the square. We use algo-
rithms without a special choice of the first triangle (α is chosen randomly).
Note that for the algorithms fast RW, fast RSW, distance fast RW and dis-
tance fast RSW, the way of choosing k is not described in relevant sources
[17, 36], if α is chosen randomly. Therefore the values of k were estimated and
are not probably optimal. 106 randomly generated points were located by each
algorithm on each triangulation.

Selected results are in Table 2.1. The following properties were examined for
each algorithm: the average length of the walk (#∆), the average number of
the tests (#test) and the average time (t[µs]) per one location (tested on Intel
Q6600 2,40GHz). The properties #test and #∆ for some algorithms consists
of two values, the former value concerns the walk and the latter one concerns
usually the final location by RSW (eventually by RW for non-stochastic ver-
sions of algorithms). Only one exception is the orthogonal walk algorithm from
Section 2.3, where the former value of #test is the number of coordinate com-
parisons and the latter is the number of orientation tests. The algorithms were
coded in Java with double precision floating point arithmetic.

Note that presented results are rather partial and serve especially for a better
orientation of a reader. More detailed tests are planed in the future work
(see Section 4.1). Furthermore, despite of relatively good results, some of the
presented algorithms (i.g. deterministic variants of Lawson’s oriented walk, e.g.
RW) are not available for non-Delaunay triangulations.
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Chapter 3

Point Location on Star-shaped
Polyhedron Surface

The star-shaped polyhedron point location is often used for a spherical point
location but it is not limited to this use. Its main application is in spheri-
cal remeshing methods [16, 14, 26]. Here, the surface triangulation T is an
original irregular mesh parametrized onto the unit sphere using a spherical
parametrization [4, 19, 30, 15] and T ′ is a regular spherical mesh. During the
sampling process, for each vertex q of T ′, it is necessary to find the triangle
ω from T which contains q. Apparently, it is a star-shaped polyhedron point
location problem (see Figure 3.1).

q

c

Figure 3.1: Star-shaped polyhedron point location
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3.1 Wu’s Barycentric Walk

Wu et al.[42] proposed a spherical modification of a planar location algorithm by
Sundareswara at al.[40] (see Section 2.1.4) which uses barycentric coordinates
to find the triangle ω. The main idea of this variant of visibility walk algorithm
is to compute the barycentric coordinates of q in the current triangle τ to
determine which neighbor triangle is closer to q and will be the next one to
visit. Wu at al. also proposed the choice of the first triangle using subdivision
of the regular octahedron. The disadvantage of Wu’s algorithm is its limitation
to a spherical surface.

The algorithm is described in Algorithm 3.1. Wu et al. projects q to each
triangle τ = t0t1t2 on the walk as q′ (q′ is the intersection point of the line −→cq
and the plane given by τ). The implicit line equation of the plane ρ given by
τ is used (see Equations 1.13, 1.14). Wu et al. suggest c = (0, 0, 0). Therefore
q′ can be computed using Equations 3.1, 3.2 by the substitution of coefficients
a, b, c, d of plane ρ and of query point q.

q′ = k · q (3.1)

k(ρ,q) = − d

a · qx + b · qy + c · qz
(3.2)

Then the barycentric coordinates of q′ in τ are computed. Wu et al. do not
present a particular way of computing of the barycentric coordinates but they
are likely to use planar computation of barycentric coordinates from Euqa-
tions 1.8 - 1.12 where the least changing Cartesian coordinate of the plane ρ
is ignored [10]. There are three possibilities how q′ is computed. If the half
line segment −→cq is intersecting the plane given by τ (k > 0) then the walk
continues as in Section 2.1.4 (through the edge opposite to the vertex of τ with
the minimal barycentric coordinate). If the half line segment −→qc is intersecting
the plane given by τ (k < 0) then the walk continues other way round than in
Section 2.1.4 (through the edge opposite to the vertex of τ with the maximal
barycentric coordinate). In the singular case, where the line −→cq is parallel with
the plane given by τ (k → ±∞), the next triangle is chosen randomly as a
neighbor of τ which is not the previous triangle.

This algorithm also uses a special data structure to choose a good starting
triangle α. It uses l levels of detail of the regular octahedron subdivision.
Each triangle σ in the m-th level of the regular octahedron subdivision (where
m < l) contains the pointer to the triangle in the (m+1)-th level of the regular
octahedron subdivision which contains the centroid of σ. Each triangle σ in the
lowest level of the regular octahedron subdivision contains the pointer to the
triangle from T which contains the centroid of σ. Wu et al. also present that
the best subdivision level l depends on the number of vertices n in T and on
the number of the query points nq. The way how l is computed is presented
in Equation 3.3 [42].
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l(n, nq) =

log2


 nq

2 · ln (2 · √n)
+

1
2
·
√(

nq

ln (2 · √n)

)2

+ 4 · nq




 (3.3)

triangle τ = α = t0t1t2;
triangle ψ;
boolean found = false;
double extremum; // may be minimum or maximum (it depends on the current k)
edge ε;

while not found do
plane ρ = plane given by τ = t0t1t2;
double k = k(ρ,q);
if k → ±∞ then

ε = random edge of τ, ψ is not neighbor of τ trough ε;
extremum = −1;

else
point q′ = k · q;
// computing barycentric coordinates
double b0 = b0(t0, t1, t2,q′);
double b1 = b1(t0, t1, t2,q′);
double b2 = 1− b0 − b1;

ε = edge t1t2;
extremum = b0;

// if k > 0 then we are finding minimum, otherwise we are finding maximum
if k > 0 then

if b1 < extremum then
ε = edge t2t0;
extremum = b1;

end
if b2 < extremum then

ε = edge t0t1;
extremum = b2;

end

else
if b1 > extremum then

ε = edge t2t0;
extremum = b1;

end
if b2 > extremum then

ε = edge t0t1;
extremum = b2;

end
extremum = −extremum;

end

end
if extremum < 0 then

ψ = τ;
τ = neighbor of τ trough ε;

else
found = true;

end

end

return τ;

Algorithm 3.1: Wu’s barycentric walk
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The algorithm (see Algorithm 3.2) which searches a proper triangle α is really
simple. It starts in a random triangle of the first level of the regular octa-
hedron subdivision. Then the triangle of the current level of the subdivision
which contains q is found by Algorithm 3.1. The walk (performed again by
Algorithm 3.1) continues from the triangle from the next level of the subdivi-
sion which contains centroid of the current triangle. This procedure is repeated
until the walk is in the lowest level of the subdivision (in the l-th level). The
walk in the l-th level of the subdivision ends in the triangle which contains q
(as well as at higher levels of subdivision - let us denote γ such a triangle in
the l-th level of the subdivision). Algorithm returns the starting triangle α as a
triangle pointed from γ (it is the triangle from original mesh T which contains
centroid of γ). Such a triangle is usually close to the triangle ω, ω ∈ T which
really contains q.

Input:

• the query point q
• the regular octahedron O with l levels of subdivision

Output:

• the starting triangle α

int level = 1;

triangle τ = random triangle from the first level of O subdivision;

while level < l do
τ = Wu′s barycentric walk(q, τ); // see Algorithm 3.1
τ = pointed triangle of τ containing its centroid;

level = level + 1;
end
// now τ ∈ T

return τ;

Algorithm 3.2: The choice of α using regular octahedron subdivision
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3.2 Our 3D Walking Algorithms

3.2.1 Remembering Walk

We propose a modification of planar remembering stochastic walk algorithm
(see Section 2.1.2) published in [38] as another possibility for point location
on a star-shaped polyhedron. Our modification uses the center point c of the
polyhedron. Instead of the classical edge test (Equation 1.1) which is used in
the planar point location, we use spatial orientation facet test (Equation 1.15)
which is used for walking in tetrahedral meshes. The decision whether or not
the edge εlr of the current triangle τ should be crossed to continue the walk
into the next triangle depends on the result after substitution l, r, c,q to the
Equation 1.15 where q is the query point, c is the center point and l, r are
vertices of τ .

Assuming that the vertices of the triangle are in the CCW order from outside
the polyhedron in the left-handed coordinate system, the walk continues to
the next triangle over the edge εlr if the orientation3D(l, r, c,q) > 0. If the
orientation3D(v,w, c,q) ≤ 0 for all edges εvw of τ , the triangle τ contains
the query point q. In the proposed algorithm (see Algorithm 3.3), we use this
simple idea which allows walking on the triangulated surface of a general star-
shaped polyhedron, in contrast to Wu’s barycentric walk algorithm [42] which
allows walking only on a spherical surface.

3.2.2 Plücker Line Coordinates Visibility Walk

This very simple modification of the algorithm from Section 3.2.1 uses Plücker
line coordinates (see Equations 1.19, 1.20, 1.21) to determinate which triangle is
the next on the walk instead of the standard 3D orientation test (Equation 1.15).
Plücker line coordinates of the ray −→cq are computed in the initialization step
and during the walk only the Plücker line coordinates of edges are computed.
Analogous to Algorithm 3.3, the walk continues through the edge εlr if

−→
lr and−→cq are in the clockwise orientation (the orientation of two line segments is

computed using Equation 1.21). If the orientation of all edges of τ against −→cq
is CCW then τ = ω and it is intersected by the ray −→cq (see Figure 1.2 and
Section 1.3.2 which describes the orientation test of two lines).

3.2.3 Barycentric Walk

Wu et al. [42] use barycentric coordinates of a triangle and have to solve
several singular situations in the algorithm from Section 3.1. Our idea is to use
barycentric coordinates of a tetrahedron similar to barycentric coordinates of a
triangle in the planar point location (see Section 2.1.4). Tetrahedron is made
from the surface triangle by adding of the center point c. The barycentric
coordinates of the tetrahedron are computed by Equations 1.16, 1.17, 1.18 and
the algorithm is described in Algorithm 3.4 (assuming that the vertices of the
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triangle are in the CCW order from outside the polyhedron in the left-handed
coordinate system).

triangle τ = α;
triangle ψ = τ; // previous triangle is initialized as τ
boolean found = false;

while not found do
found = true;
int k = random int(3); // k ∈ {0, 1, 2}
for i = k to k + 2 do

point l = t(i mod 3);

point r = t[(i+1) mod 3];

if ψ is not neighbor of τ trough εlr then
if orientation3D(l, r, c,q) > 0 then

ψ = τ;
τ = neighbor of τ trough εlr;

found = false;
break; // terminates the for cycle

end

end

end

end

return τ;

Algorithm 3.3: Remembering stochastic walk for star-shaped polyhedron

triangle τ = α = t0t1t2;
boolean found = false;
double max;
edge ε;

while not found do
// computing three barycentric coordinates of tetrahedra
double b0 = b0(t0, t1, t2, c,q);
double b1 = b1(t0, t1, t2, c,q);
double b2 = b2(t0, t1, t2, c,q);
ε = edge t1t2;
max = b0;

if b1 > max then
ε = edge t2t0;
max = b1;

end
if b2 > max then

ε = edge t0t1;
max = b2;

end
if max > 0 then

τ = neighbor of τ trough ε;
else

found = true;
end

end

return τ;

Algorithm 3.4: Barycentric walk for star-shaped polyhedron
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3.3 Point Location in Spherical Coordinate System

In this section, we present a technique which uses spherical parametrization
and allows planar point location on the surface of a star-shaped polyhedron.
This technique is faster then the spatial algorithms but brings some difficulties,
where the planar algorithm does not return a correct output, so it cannot be
used separately. However, it serves well to find a triangle close to the correct
triangle. The search is then finished by one of the spatial algorithms from
Sections 3.1, 3.2.

The star-shaped polyhedron triangulation mesh T consists of an array of ver-
tices V and an array of faces (triangles) F . Each triangle σ = vivjvk ∈ F
contains indices of its three vertices vi,vj,vk ∈ V and of its neighbor triangles
ψm, ψn, ψo ∈ F where εjk is the edge shared with (its neighbor) triangle ψm, εki

is the edge shared with ψm and εij is the edge shared with ψo. Each vertex vi

of V can be denoted as a pair vi = (pi,hi), where pi = (pix, piy, piz) is a triple
of Cartesian coordinates and hi = (hiϕ, hiθ) is a pair of spherical radian coordi-
nates. The spherical coordinates (hiϕ, hiθ) of vi are computed from Cartesian
coordinates using Equations 1.22, 1.23. Note that c = (cx, cy, cz) is the center
point of a star-shaped polyhedron and the range of arctg2 function is defined
as (−π, π〉.
The query point q is given by either Cartesian or spherical coordinates. As-
suming that the spherical coordinates (ϕ, θ) are planar coordinates of points
and vertices, we can use normal planar walking algorithms. Note that in the
following text, the third spherical coordinate r (radius) is ignored and we use
the term planar walk for walking in spherical coordinates, where we use ϕ in-
stead of x and θ instead of y part of planar coordinates. However, to make use
of standard planar algorithms possible, we represented the edges of the model
in spherical coordinates as line segments, projecting only their endpoints. This
way we obtain a standard planar triangulation, usable for planar walking algo-
rithms without any need of changes. This simplification brings some difficulties
as follows.

a) b) c)

q
d

d q
q

є

Figure 3.2: Problem of the planar orientation edge test in our simplification of
spherical coordinates (the icosahedron (a) and its first (b) and second (c) level
of the subdivision, red color represents the surface subdivisions of the edge ε)

The problem lies in the fact that spherical coordinate system is a curvilinear
coordinate system [22] and the line segment between two points in Cartesian
coordinates is an arc in spherical coordinates. It contradicts to our simplifica-
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tion where we represented the edges in spherical coordinates as line segments,
projecting only their endpoints. Figure 3.2 shows three examples, where the ori-
entation test in spherical coordinates produced incorrect results regarding the
original position in Cartesian coordinates. This problem is shown on three lev-
els of subdivision of an icosahedron. Figure 3.2a shows the original icosahedron
in spherical coordinates, Figures 3.2b, 3.2c its first and second level of subdivi-
sion. A point d lies originally on an edge ε (Figure 3.2b) of the icosahedron, but
in spherical coordinates, it may lie outside the edge (Figure 3.2a). The edge ε
and its subdivisions are bold and colored red. In Cartesian coordinates, a point
q is located in a triangle which is colored yellow in Figures 3.2a, b, c, but in
spherical coordinates it may lie on an edge (Figure 3.2b) or even in a different
triangle (Figure 3.2a).

Hence our simplification is not geometrically correct and the planar orientation
edge test (Equation 1.1) in the spherical coordinates occasionally returns incor-
rect results. The probability of incorrect results goes down with higher density
of mesh, but not to zero. However, the triangle returned from the planar point
location is always very close to the correct one, thus planar walking algorithms
in spherical coordinates are a good choice for fast location of a proper start-
ing triangle for slower, but precise spatial algorithms. In most cases the final
location with a spatial algorithm will be very short (see Section 3.5).

For better readability, the border triangles (triangles whose vertices lie on the
opposite sides in our simplification of spherical coordinates) are not displayed
in all planar figures, except Figure 3.3 (see Figure 3.3a where these triangles
are colored red and one chosen border triangle is highlighted by green). All
types of the planar walking strategies sometimes fail on such triangles and may
loop. For bigger datasets, cases where the walk goes over these border triangles
are very rare and they appear only if α is chosen as one of the border triangles
or one such triangle contains q (see Figure 3.3b) or q is near to it. Hence if
the planar walk detects that the current triangle τ is a border one, the planar
location ends and ω is located by one of spatial algorithms.

b)a)

q

Figure 3.3: Planar triangulation of the icosahedron with shown border triangles
colored by red (a) and with location of point in the border triangle (b)

Border triangles are recognized and flagged during computing the spherical
coordinates. The detection is rather simple. We substitute the spherical co-
ordinates hi,hj,hk of the vertices vi,vj,vk of the triangle τ = vivjvk to the
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planar orientation test from Equation 1.1. The result of the hi,hj,hk is oppo-
site for the border triangle than for the other triangles. Assuming that the
vertices of the triangle are in CCW order on the surface of a polyhedron
in left-handed coordinate system, the triangle τ is the border triangle if the
orientation2D(hi,hj,hk) > 0. Note that we use ϕ coordinate instead of x and
θ instead of y in the test from Equation 1.1.

When we are walking on a surface of polyhedron using some spatial point loca-
tion algorithm (Sections 3.1, 3.2), the resulting path is usually straighter and
shorter than the planar walk, especially in case when α is close to q on the
surface but it is on the other side of the mesh in spherical coordinates. Fig-
ure 3.4 shows the path of one location process of a planar RSW algorithm in our
simplification of spherical coordinates where the passed triangles are filled by
gradient from green to yellow color. On the surface (Figure 3.4a), the starting
triangle α is quite close to the target triangle ω but in spherical coordinates it
is not (Figure 3.4b), so the resulting walk is longer than it is necessary. Despite
longer paths this property is not significant because it can be minimized by a
clever choose of α (see Section 3.4) and because the planar walking algorithms
are faster in average thanks to the cheaper cost of the tests.

q

c

q

a) b)

Figure 3.4: Path of a planar walk (the passed triangles are filled by gradient
from green to yellow)

3.3.1 Orthogonal Walk Algorithm in Spherical Coordinates

In this section, we present a modification of an orthogonal walk algorithm for
our simplification of spherical coordinates. This modification is established on
algorithm from Section 2.3. The Cartesian coordinates x and y are substituted
by spherical coordinates ϕ and θ. The orthogonal walk step ends if the current
triangle τ is border or in the same case as Algorithm 2.12. The final location
is performed by one of the algorithms from Sections 3.1, 3.2.

Figure 3.5 shows an example of our orthogonal walk on the surface of a icosa-
hedron in the first level of subdivision. The triangle β is a triangle where
the horizontal walk stops and vertical walk begins. The triangle γ is the final
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triangle of our orthogonal walk and the first triangle of the final spatial loca-
tion. Figure 3.5a shows the walk in our simplification of spherical coordinates
and Figure 3.5b shows the walk in the Cartesian coordinates. The algorithm
description is given in Algorithm 3.5.

p

q sγ

sβ

sα

q

a) b)

Figure 3.5: The path of our spatial orthogonal walk algorithm in the spheri-
cal (a) and the Cartesian (b) coordinates

// initialization step
p = a point generated anywhere inside α;
// we describe the case where q is above and to the right of p (qϕ > pϕ, qθ > pθ),

other cases are analogous
τ = α = lrs where s is the vertex with maximal ϕ coordinate;

// traverses the triangulation T in the direction of the horizontal axis x
while sϕ < qϕ and notBorder(τ) do

if sθ < pθ then
r = s;

else
l = s;

end
τ = neighbor of τ over εlr;

s = vertex of τ where s 6= r, s 6= l;
end

τ = lrs where s is the vertex with maximal θ coordinate;

// traverses the triangulation T in the direction of the vertical axis y
while sθ < qθ and notBorder(τ) do

if sϕ < qϕ then
l = s;

else
r = s;

end
τ = neighbor of τ over εlr;

s = vertex of τ where s 6= r, s 6= l;
end

// the final location is done by another walking algorithm (e. g. spatial remembering
stochastic walk in Section 3.2.1)

return remembering stochastic walk(q, τ);

Algorithm 3.5: Modification of orthogonal walk for spherical coordinates
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3.4 Preprocessing and using of hierarchical struc-
tures

A very important part of a walking algorithm is the choice of the starting
triangle which may improve the speed of the algorithm. The easiest way is to
choose the starting triangle α randomly or as the triangle of a planar mesh
which contains a point in the middle of this mesh. Mücke et al. proposes the
way how to choose a good starting triangle without preprocessing[23] where α
is chosen as the closest triangle to q from a set A of randomly chosen triangles
from the mesh T , ‖A‖ ¿ ‖T‖. For the best performance, Mücke recommends
‖A‖ = 2 · 4

√
n for spatial data and our results confirmed that. But if we choose

the starting triangle α as the triangle containing the point b which is in the
middle of the spherical domain (bϕ = 0, bθ = 0.5 · π), the performance is very
similar to [23].

At the cost of additional memory, we can improve performance of our algorithm
in the following way. The advantage of spherical coordinates is the known range
of ϕ and θ values and it can be used to find a suitable starting triangle for our
orthogonal walk algorithm using a grid. For each cell ηij of the grid, the suitable
starting triangle αij is the triangle which contains the center point qij of ηij .
For the polyhedron whose triangles are very similar, each cell ηij of the uniform
grid (see Figure 3.6a) contains a different number of these similar triangles,
especially near poles, the triangles are very wide and the number of triangles
in these cells is much lower.

a) b)

Figure 3.6: The uniform and the nonuniform grid of 32 cells for finding a
suitable starting triangle (the starting triangle for each cell of grid is yellow
colored)

This consideration leads us to the use of a nonuniform grid preserving the char-
acter of the spherical projection. The grid is nonuniformly subdivided only in
the ϕ direction (the planar triangulation is divided uniformly to k longitudi-
nal strips and each strip Gi is divided vertically to li cells - see Figure 3.6b).
Each cell ηij contains such triangles of T that their area of these triangles on
the spherical surface is similar for all ηij . Assuming that the surface of a unit
sphere (r = 1) can be approximated by the function sin(θ) in the plane, the
spherical surface Si equivalent to a planar longitudinal strip Gi for θ ∈ 〈a, b〉
in the spherical coordinates can be computed as the area of the planar strip
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bounded by the functions f(ϕ) = 2πsin(θ), θ ∈ 〈a, b〉 (see Equation 3.4 and
Figure 3.7 - the equations are derived from the definition of determinant of
Jacobian matrix for spherical coordinate parametrization [1, 28] and from the
range of ϕ coordinate). The surface S of the unit sphere can be computed as
S = 2π (cos(0)− cos(π)) = 4π. Given m is a number of cells of the nonuniform
grid, k is the number of longitudinal strips and li is the number of cells in each
longitudinal strip Gi, Equations 3.5, 3.6 describe the computation of k and li.
Figure 3.6 shows grid structures for the choice of the first triangle where the
first triangle for each cell of the grid is colored yellow. Figure 3.6a shows a
uniform grid of 32 cells and Figure 3.6b shows the nonuniform grid with the
same number of cells. The matching cell ηij of a query point q = (ϕq, θq) is
computed identically (see Equations 3.7) for uniform and nonuniform grid (in
the uniform grid, li is the same for each i). Note that if qθ = π then i = k − 1
or if qϕ = π then j = li − 1.

Si = 2π

∫ b

a
f(θ)dθ = 2π

∫ b

a
sin(θ)dθ = 2π [−cos(θ)]ba = 2π (cos(a)− cos(b))

(3.4)

k =
⌊√

πm

4
+ 0.5

⌋
(3.5)

li =
⌊

mSi

S
+ 0.5

⌋
=

⌊
1
2
m

∫ (i+1)π
k

iπ
k

sin(θ)dθ + 0.5

⌋
, i = 0, 1, ..., k − 1 (3.6)

i =
⌊
k
θq

π

⌋
, j =

⌊
li

ϕq + π

2π

⌋
(3.7)

a) b) c)

0

½ ��
0

0

Figure 3.7: An illustrative example to computing an area of the strip (by red)
in our simplification of spherical coordinates (a), its real surface area on the
unit sphere (b) adjusted for easier computation (c)
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3.5 Experimental Results

We tested the following algorithms: Remembering stochastic walk presented
in Section 3.2.1 (RSW), Wu’s barycentric walk [42] (WBW) and our orthog-
onal walk (OW). Tests were performed on sixteen different datasets (a real
parametrized models, subdivisions of regular polyhedra (tetrahedron, octahe-
dron, icosahedron), a randomly generated star-shape polyhedra). The results
correspond to the sizes of datasets and do not differ too much for different
datasets of the same size, therefore the results will be illustrated on the follow-
ing datasets: Headus Skull, Stanford Bunny, an icosahedron in the 7th level of
subdivision and a randomly generated star-shape polyhedra with 105 vertices.
106 randomly generated points were located by each algorithm on each dataset.

Selected results are in Table 3.1 (without preprocessing) and Table 3.2 (with
preprocessing - see Section 3.4). The following properties were examined for
each algorithm: the average length of the walk (#∆), the average number of
the tests (#test) and the average time (t[µs]) per one location (tested on Intel
Q6600 2,40GHz). The properties #test and #∆ for OW consists of two values,
the former value concerns the orthogonal walk and the latter one concerns the
final location by RSW. In Table 3.2, we tested RSW with the uniform and the
nonuniform grid and WBW, where we choose a starting triangle using n levels
of subdivision of a regular octahedron [42]. The properties #test and #∆ for
WBW consist of two values, where the former value concerns the choice of a
starting triangle and the latter concerns the final location. In Table 3.2, we
compare such algorithms that have the same number of elements (i. e., for
WBW, the number of triangles in the lowest level of subdivision of octahedron
is the same as the number of grid cells used by RSW). The algorithms were
coded in Java with double precision floating point arithmetic.

To sum up the results without preprocessing (Table 3.1), the RSW is about 30%
slower than WBW, but it can be used for a general star-shaped polyhedron,
therefore we use it for the final location in OW. The OW is almost twice as
fast as WBW and the time of the final location by RSW is not significant
because its walk is usually very short in average (see Table 3.1). To sum up the
results with preprocessing, for the same number of elements (see above), the
OW is evidently faster than WBW and the grid is more memory-economical
than the octahedron hierarchy used in [42]. The nonuniform grid is faster than
the uniform grid but the difference is not great.
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Chapter 4

Future Work

4.1 Planar Point Location

As a future work in planar point location, we want to perform more thorough
tests of our proposed algorithms. Several number of types of triangulations
exists and it is possible that each walking algorithm will return different results
for each type of triangulation. Thus we want to compare all walking algorithms
over different types of the walking algorithms. For example, we have a suspicion
that the barycentric walk algorithm (see Section 2.1.4) may not be safe for non-
Delaunay triangulations (as is proclaimed in [40]) and the algorithm may loop
for such triangulations. If the algorithm loops for non-Delaunay triangulations
then our progressive visibility walk algorithm (see Section 2.5.3) may loop too.

Usually, triangulations are made from datasets which may have specific char-
acters and properties given by assortment of points. Therefore we want to test
algorithms on as many datasets as it will be possible. In these tests, we will
aim at particular applications, especially utilization of geodesic datasets for
geographical applications.

The quality of the walking algorithms is not determined only by their speed.
Therefore we want to test several other properties of each algorithm (including
efficiency aspects, stability, finality, resistance against singularities and practical
applicability).

In other work, we will aim at modification of the walking algorithms for the
application in hierarchical clustered data. For a huge datasets, hierarchical
cluster structure allows to keep in memory only the highest level triangulation
where each vertex represents the spacious parts of the lower level triangulation
[32]. The whole lower level triangulations cannot be stored in memory and
certain parts are read only if it is needed. Our future modification will be
looking for the query point q on different levels of the cluster subdivision and
change the level of detail as needed.

51



4.2 3D Point Location

As a future work in the point location in tetrahedral meshes we want to test
existed algorithms in the same way as is described in Section 4.1. We also have
some preliminary ideas of new algorithms which we want also to test. For point
location in tetrahedral meshes, we expect a practical application in dynamic
proteins research [45] where the point location is performed especially in the
construction of Delaunay and regular triangulations of the dynamic proteins
models [46].

Analogously to Section 4.1, for a huge tetrahedral meshes, it is impossible
to store the whole tetrahedronization in memory. Therefore, we may use a
hierarchical cluster structure which allows to keep in memory only the highest
level tetrahedral mesh where each vertex represents a spacious part of the lower
level tetrahedral mesh [32]. The whole lower level meshes cannot be stored
in memory and the certain parts are read only if it is needed. Our future
modification will be looking for the query point q on the different levels of
cluster subdivision and change the level of detail as needed.
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4.3 Point Location on Surface Triangulation

We presented new walking algorithms for the point location on triangulated
surface of general star-shaped polyhedron, where we are looking for a triangle ω
which is intersected by the ray −→cq (q is the query point and c is the center point
of star-shaped polyhedron and it is the part of input). The definition of a surface
point location problem, in general, is not so straightforward. Therefore, for our
possible future work, we define three different particular problem definitions
which depend on the position of the query point q.

First, we assume that q lies on one of the surface triangles. Our goal is to
locate this triangle. Second, we assume that q is near the surface triangulation
but does not lie on it. Our goal is to find a proper way how to locate the
triangle ω which is optimal for the given criteria. The criteria of optimality
may be various with respect to the practical application. Finally, we have a
triangulated parametrized surface (e.g. as in [29]) and the query point q lies
on this parametrized surface (generally not necessarily on one of the surface
triangles). Our goal is to locate the triangle which ”covers” the part of the
surface where q lies. Apparently, in the parametrized surface, we can use a
similar idea as in Section 3.3.
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Reviewed Publications

• Roman Soukal and I. Kolingerová. Star-shaped Polyhedron Point Loca-
tion with Orthogonal Walk Algorithm. Accepted for ICCS 2010: The 10th
International Conference on Computational Science, Amsterdam, Nether-
lands, 2010.

• Roman Soukal and Přemysl Holub. A Note on Packing Chromatic Num-
ber of the Square Lattics. Electronic Journal of Combinatorics, vol. 17,
2010.

• Roman Soukal and I. Kolingerová. Straight Walk Algorithm Modifica-
tion for Point Location in a Triangulation. EuroCG’09: Proceedings of
the 25th European Workshop on Computational Geometry, pp 219-222,
Brussels, Belgium, 2009.

Student Publications

• Roman Soukal. Walking Algorithms for Point Location. Diploma thesis
(supervised by Ivana Kolingerová), University of West Bohemia, Pilsen,
Czech Republic, 2008.

• Roman Soukal and Ivana Kolingerová. Procházkové lokačńı algoritmy.
SVK: Studenstká vědecká konference, Plzeň, 2008.

Related Talks

• Efektivńı lokace bodu pomoćı hierarchických datových struktur. Center of
Computer Graphics and Data Visualization, University of West Bohemia,
Czech Republic, May 2010.

• Walking in a triangulation. Center of Computer Graphics and Data Vi-
sualization, University of West Bohemia, Czech Republic, March 2009.

• Walking algorithms for point location. University of Maribor, Slovenia,
October 2008.
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• University of Maribor, Slovenia. October 2008, 1 week.
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• Triangulated Models for Haptic and Virtual Reality. The Grant Agency
of the Czech Republic, Project Code GAČR 201/09/0097.

• Algorithms for Terrain Modeling, Bilateral Cooperation Czech Repub-
lic - Slovenia. The Ministry of Education, Youth and Sports, Project
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