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Abstract

Information in images (as well as in volume data or video) is typically represented by an
array of pixels, where each pixel stores either greyscale luminance or colour components
values. Due to the simplicity of this representation, many algorithms from signal process-
ing can be implemented efficiently with ease. For some applications, however, this repre-
sentation may not be the best one as it is quite space consuming (although the storage
requirements can be reduced by using image compression techniques such as JPEG) and
is liable to the occurrence of aliasing artefacts. This thesis describes possibilities of alter-
native representation of image information based on the exploitation of various geomet-
rical data structures such as triangulations (e.g., Delaunay triangulation), etc. It investi-
gates various methods for the evaluation of the significance of pixels and it deals with the
problem how to reconstruct image data from significant pixels only. Various methods for
the storing of significant pixels in compact forms are also discussed. Methods proposed in
this thesis are compared with already existing methods. The thesis also describes the pos-
sible extension for video and discusses the options of direct manipulation with images
represented by triangulations.
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Background

This report describes results of the research gré#dB10470701 (Alternative representation
of image information by the use of triangulation§lGA AV of the Czech Republic. The pro-
ject was being solved in 2007 — 2009 by a team oz of Ing. Josef Kohout, Ph.D. (who
was its main researcher), Doc. Dr. Ing. Ivana Kadoya and several undergraduate students
supervised either by Josef Kohout or by Ivana Kggiova. Those students were: Tomas
Janak (interpolations on triangulations), Radekdsgk(extension of proposed methods for
colour images), Petr Puncman and Martin Varga (eskde for video) and Josef Vy3Skovsky
(direct manipulation with images represented kanigulations).

Important note: as the writing of this report stdrtn 2008 and finished before the end of the
abovementioned project, some of its sections maynetude the final results.

Basic terminology

In this subsection, we explain various basic tetimas are used in the next text of this thesis.
Advanced terms will be explained in the text atplece where they firstly appear.

k-Simplex, withk < d, is the convex combination &f +1 affinely independent points in a
point setSin E%. These points are called vertices of the simpieE" it is a line segment, in
E? a triangle and ifE> a tetrahedron. In this thesis, we use the ternplsixralso as a synonym
to the term node. When we, therefore, speak abmddification of a simplex or an access to
a simplex, we mean, actually, the modification s hode that stores information about this
simplex or the access to the node data structure.

Convex hull CH(S) of a set of poin&is the smallest convex geometrical object (polygon
E? and polyhedron iE%) such that any point fror8 lies inside the interior oEH(S) or it is
one of the vertices &@H(S).

Divide & Conquer denotes a recursive strategy &bimgj of two stages. In the first one, the
divide stage, the input data set is repeatedly isidatl as equally as possible into smaller
subsets until each subset is small enough to heeddalirectly. Afterwards, the solution for
each subset is found. In the second stage, theens¢éage, solutions of subsets (i.e., subsolu-
tions) are repeatedly merged until the solutiortherwhole input set is obtained.

Used Shortcuts

The shortcuts commonly used in this thesis are sanzed in the following table:

2D =5 two-dimensional case, i.e., planar case
3D E three-dimensional case

CH(S) convex hull of S

D&C Divide & Conquer

DT DT(S) Delaunay triangulation

MS Microsoft
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1 Introduction

A digital image, volume data or video (as the lattéo can be considered as a set of images)
is typically represented by a raster of pixelsdemay of pixels), where each pixel stores either
greyscale luminance or colour components valuespie its popularity (mainly due to its
simplicity), this representation suffers from selalisadvantages. First of all, it is quite space
consuming. This is especially true for video; on@ute long colour video in the resolution
640%x480 consumes approximately 1.3 GB (assuminiga2bes per second). That is why im-
ages are commonly transferred and stored in confpatis, such as GIF, PNG and JPEG
(MPEG or DivX for video). Unfortunately, these fosnare not well-suited for applying fur-
ther image processing operations directly in themp@ssed domain. Next problem is that
scaling and rotation operations applied on an imaghis representation typically introduce
some distortion to the image. Despite our bestrgfharp edges present in an image are
blurred (or converted into a set of squares) dffteimage is enlarged.

Besides raster images, there are also vector imagesisually contain simple geometrical
objects described by their analytical functionsbgrcoordinates of vertices that form them.
Vector representations (here aka geometric reptas@ms) do not suffer from distortions
caused by affine transformations and they have algotential to be more compact. As data
acquisition devices (e.g., digital camera) produn®sges in raster representation, it is neces-
sary to transform these images into some geomedpiesentation in order to exploit these
advantages. However, whilst the transformation feony geometric representation into raster
representation is straightforward, for the comarsof digital images from the traditional
raster representation into a geometric represent&icomplex and ambiguous.

If grey-scale images are considered only, thegitlorward approach is to think about the
pixels of raster image as about 3D points in aepétere x and y-coordinates are the rows
and columns of the image, and z-coordinate is pipecagriate grey level. These points can be
connected to form non overlapping polygons, er@angles. There are, indeed, many ways
how to do it. Another issue is that it may not leeywuseful to represent an image with N pix-
els by a geometric representation (e.g., trianguigatwith the same number of vertices. A
representation such that it has fewer verticestksiill sufficiently approximates the original
image is very often needed to be found. No wonlat these challenges have attracted re-
cently many researches.

Existing methods for the conversion of digital irmagrom the traditional raster representa-
tion into a geometric representation can be subtldo/into three main categories according to
the goal they want to achieve as follows. Firsgréhare methods that produce geometric rep-
resentations that enhance the quality of furthexgenprocessing. The representations are not
compact as they contain usually as many verticeseagaster. Majority of these methods cre-
ates the data dependent triangulation (DDT) whéaedle edges match the edges in the im-
age and they differ only in cost functions usediétect an edge and optimisations [Bat04,
Su04, YuO01].

In the second category, there are methods thatipeodompact (i.e., only a subset of vertices
is kept) but highly imprecise representations. Tlieyg its use in applications of non-
photorealistic rendering where details are unwatiechuse they make an understanding of
the information presented by the image more diffich typical application of such represen-
tations is described in [Gru05]. From existing noeth that belong to this category, let us de-
scribe two interesting.



Prasad et al. [Pra06] proposed a technique thds stéth the detection of edges in the input
image using the Canny operator. The detected edgesised as constraints for the con-
strained Delaunay triangulation that is afterwardsstructed. For every constructed triangle
one colour computed as the average of coloursx@lpicovered by the triangle is assigned.
Adjacent triangles with similar colours are merdedether forming a polygon for which a
common colour is chosen. The process results ipahgyonal representation of the image.

Kreylos et al. [Kre01] describes an interestingrapph that starts with the Delaunay triangu-
lation of a randomly chosen subset of vertices ihaticcessively improved by choosing dif-
ferent vertices governed by a simulated annealiggrithm. A drawback of their approach is
that the final triangulation contains a lot of loagd narrow triangles that may be difficult to
efficiently encode. The approach was later expibiig Cooper et al. [Coo05] for the surface
reconstruction from a set of images. Instead okipg a random subset for the initial ap-
proximation, they, however, choose detected impogtaints (typically, corners and edges).

The last category consists of methods that attémpalance the compactness and the quality
of the produced geometric representations thaffidiently encoded, are suitable for the stor-
ing of digital photos. These representations arg g#en adaptive triangulations that differ in
the way how they were obtained. In general, weidantify two basic strategies how to cre-
ate an adaptive triangulation. The first one getesran adaptive triangular mesh by starting
with two triangles covering the whole image ared #ren successively splitting them in or-
der to reduce the approximation error. Alternagyéthe algorithm can start with a fine mesh
and successively make it coarser until the appraton error is above the desired tolerance.
The question is which triangle should be split dvich vertex should be removed in the next
step and that it is not a simple task is demoredraéty two straightforward approaches de-
scribed in [Gev97] and [Cia97] that either do naagerve well sharp edges in images or pro-
duce meshes with many vertices. Let us describe snare sophisticated approaches.

Starting with two initial triangles and their cosponding approximated image, Rila et al
[Ril98] successively construct the Delaunay tridagan as follows. A vertex, in which the
approximation is the poorest, is inserted intotti@ngulation, which results in the construc-
tion of new triangles. These triangles are inteafe, i.e., a new approximation is obtained,
and the next point to be inserted is found. Thegse stops when the required quality of the
approximation is reached. The authors also deserifeehnique for the storing of the created
mesh. As the Delaunay triangulation of a set off®ois unique, it is necessary to store just
vertex positions and their grey levels. An arrayNobits such that it contains 1 at positions
appropriate to the vertices of the constructedhgpidation and O elsewhere is constructed and
compressed using a RLE (Run Length Encoding) approghe grey levels are encoded using
a fixed-length uniform quantizer of 5 bits.

Garcia et al [Gar99] choose a predefined numbeyadls from image by applying a non-
iterative adaptive sampling technique, which det@ctels on edges present in the image, and
triangulate the corresponding points of these pixming the Delaunay triangulation. After-
wards, triangles are further subdivided as lonthaserror of the approximation does not drop
below some threshold. Although the authors were &blachieve better results (in the com-
pression ratio as well as in the quality of therespntation) than the authors of straightfor-
ward approaches, the results are, in our opinitdhfas from being perfect — see Figure 1.1.

In the approach described by Galic et al [GalO5]edex with the poorest approximation is
found using the same criteria as Rila et al. [Rii#8very step of their algorithm and the tri-
angle containing this vertex is split into two néwangles by the height on its hypotenuse.
The centre of the hypotenuse becomes an additi@antx of the representation. The advan-
tage of this hierarchical splitting process is tligdorms a binary tree structure that can be



efficiently stored using just one bit per node. B encoding of grey levels, the authors use
the Huffman compression. In their paper, they discussed various interpolation techniques
and finally they decided to use edge-enhancingusibin interpolation for their experiments
instead of commonly used piecewise linear interjpmta

Figure 1.1: Lena (512x512 pixels) represented by an adaptive triangular mesh of 5807 vertices con-
structed by the approach by Garcia et al. Image was adopted from [Gar99].

More recently, Demaret et al. [Dem04] proposed lgordhm that computes the Delaunay
triangulation of all vertices and after that it sessively decimates this triangulation by re-
moving the least significant vertex in every st&pertex is considered to be the least signifi-
cant, if its removal leads to the approximatiortied original image with the smallest mean
square error (MSE). The authors were able to aehiiee compression ratio comparable with
JPEG and the same or, especially, for higher cosspe ratios, even better quality of the
image representation — see Figure 1.2. On the bidned the proposed algorithm consumes a

lot of time.

Figure 1.2: Lena (512x512 pixels) represented by an adaptive triangular mesh constructed by the
approach by Demaret et al. The compression rate is about 53:1. Image was adopted from [DemO06].



A hybrid approach is described in [Part03]. Thegioial image is first segmented using an
unsupervised segmentation method for colour-textegeons. Following polygonal approxi-
mation of created regions causes the degradatiorgidn boundaries. The triangulation is
then applied to polygons and either all short edgesll small triangles are filtered out from
the triangular mesh (CDT or greed approach is uged@sults in new smaller regions — see
Figure 1.3. Pixels in every region are then indejgetly encoded with a code similar to JPEG
(different quantization can be applied for différeagions). The proposed method is better
than JPEG representation but it offers only a Bohiset of advantages of the geometric repre-
sentation in comparison with previously describppraaches.

Figure 1.3: Baboon (256x256 pixels) compressed by the approach by Partyk et al. The compression
rate is about 27:1. Image was adopted from [Par03].

A digital video (or 3D image information) is a stre of similar digital images. Usually, these
images are denoted as frames. Videos are comm@mgférred and stored in compact form
through well-known representations, such as MPE®ieK. These representations encode
image frames by the JPEG compression techniqueioenohlwith the strategy to use previous
frame information in order to reduce the amournin@drmation the current frame requires.

There is not so much done in the field of geometpresentation of digital video. Yaoping et
al. [Yao98] proposed quite a straightforward apphothat replaces the traditional JPEG rep-
resentation of frames by the alternative geomegjresentation by the Delaunay triangula-
tion. This triangulation is constructed by the ®ssive application of split-merge scheme,
l.e., it is a combination of approaches descriliefiGev97] and [Cia97]. The authors show
that, for very low bit-rate transmissions, theipnesentation offers higher quality of decoded
frames than the standard approaches.



The main goal of this work is to represent greylesead colour images and videos by a geo-
metric representation that approximates the origiia@a in an acceptable quality, yet it is
more compact than the traditional raster repretentaThis is achieved by keeping only
a small subset of the most significant pixels. Assig that we deal with 8-bits grey-scale
image, this subset may contain no more than 20%iginal pixels because positions of se-
lected pixels must be, unlike in the raster repreg®ns, also retained (we suppose that the
position can be stored using a pair of two byteg) lmtegers). The computation of the small-
est subset of pixels that represents the imageerdésired quality (i.e., with the given error)
is NP-hard problem. The investigation of every swbsf 1 000 pixels for an image of
512x512 pixels would take several millions yéaBome heuristics is, therefore, necessary.

Let us suppose we already have an algorithm thatcosate a subset of pixels such that all
other pixels of the image can be reconstructed fitohy some interpolation in a requested
quality. The problem is that existing interpolasoof scattered points (pixels in our case) are
usually too slow to be used in interactive appiarad because they must investigate the rela-
tionship between every point to be reconstructetl erery point from the input set. For an
instance, the interpolation of 4 000 pixels sel@édtem an image 512x512 by the approach
proposed by Uhtiet al. [UhlO5], which is based on radial basisctions (RBF) used in a
sliding window, takes about 90 seconds on a RFdpcter with 2GB of RAM. In order to
achieve even better results, it is necessary tanizg the points into some structure.

The organization of this report is as follows. I tfollowing section, we describe the most
popular triangulations and their constructions.ti®ac3 proposes various heuristics selection
of most significant pixels (let us note that thengulation and selection are two mutually

dependent tasks) for grey-scale images. The peederperiments and their results are given
in Section 4. For storing purposes, the triangafegtican be further compressed. Various tri-
angulation compression strategies are describé&kation 5 and they are compared in Sec-
tion 6. Section 7 deals with the interpolation wérigles. The extensions for colour images
and videos are described in Section 8 and Secti@r8ct manipulations with images repre-

sented in the proposed geometric format, e.g., #m@ap convolution, etc. is given in Sec-

tion 10. The report is concluded in Section 11,okkalso discusses the future work.

> 2611000 = 102416 djfferent sets.

! There is(

262144) 262144! _ 262144-262143--261145 _ 2611441000

1000 / ~ 2611441-1000! 1000-999---1 10001000



2 Triangulations

Given a point seBin E?, the triangulatiorT(S) of this set is a set of triangles such that:

« The pointp O E? is a vertex of a triangle fro(9) if and only ifp belongs tdS i.e.,
the vertices of the triangles are some points fiteeninput set.

» The intersection of two triangles is either emptyt s a shared face, a shared edge, or
a shared vertex.

* The sefl(S) is maximal: there is no triangle that can be dddéo T(S) without violat-
ing previous rules; i.e., union of triangles anahEx polygon formed by a convex
hull CH(S) is the same object.

One advantage of triangulation is that it divides image space, which allows an easy detec-
tion of pixels that should be taken into accountth® interpolation and those that should not.
Let us note that the bilinear interpolation onrgalations is implemented in every graphics
adapter, so it is possible to reconstruct imaga® firiangulations in real-time.

It is clear that one set of points can be triantgalan various ways. There is also no doubt

that the interpolation of two different triangutats of the same set may produce different

results. Therefore, the choice of triangulatioassmportant issue as the selection of subset of
significant pixels. In this section, we describeldd@ay, constrained Delaunay, regular and

data dependent triangulations that are most seit@blthe purpose of image representation.

Furthermore, we describe methods of their constust

2.1 Delaunay Triangulation

Delaunay triangulation was proposed by a Russiaensst Boris N. Delone [Del34a,
Del34b]. However, as his original papers are nottewr in English and their translations are
usually rather complex, we would recommend RadiResi99] or de Berg's [Ber97] texts for
details about Delaunay triangulation.

Delaunay triangulatioDT(S) of a set of pointS$in E? is a triangulation such that the circum-
circle of any triangle does not contain any oth@npof Sin its interior. In the next text, this
criterion is also called the circum-circle critario

There is also an alternative definition of the Delay triangulation: th®T is a dual of the

Voronoi diagramVor(S), which is a set of points having the same digtadnom at least two

points fromS and, moreover, there is no other point fr@mvith a smaller distance. The
mathematical expression of tler(S) can be written as:

Vor§ ={x0E*: [n OSp; 0Si # j | px = pyx O~ [ OSk# ik # j | pX </ px}
Figure 2.1 shows the mutual relationship of tfer(S) and theDT(S).
The basic properties of tiEl(S) are as follows [God97]:

* In the worst case, it can be computediNidg N). However, algorithms witl®(N)
expected time also exist.

* It maximizes the minimal angle and, therefore,Dieéaunay triangulation contains the
most equiangular triangles of all triangulations.(iit limits the number of too narrow
triangles that may cause problems in further praiogse.g., in the interpolation).

* If no four points lie on a common circum-circle amal three points lie on a common
line, then theDT(S) is unique. Let us note that four points lyingtive vertices of an

8



empty square ilE* have a common circle and two possible configuratiohtteir tri-
angulation.As pixels lie in a regular gricthe Delaunay triangulation of a subset
pixels istypically ambiguous. However, if a small randomtpsgration is applied t
pixel coordinates, it is very likely to gaunique triangulation, whicopens a new op-
tion for the encodir of the computed triangulationsee Sectiob.

Figure 2.1: The Delaunay triangulation (solid lines) and the Voronoi diagram (dashed lines) of the
same set of points (big black dots)

Due to these good properties, Delaunay trianguiasoused in many areas, such as tei
modeling (GIS) [Gon02], scientific data visualizati[Oku96, Oku97, Wal00, Att01] ar
interpolation [Par03], robotics, pattern recogmit{®ra00, Xia02], meshing for finite eleme
methods (FEM) [Béc02, Nis01], natural sciences [D8ulAda03], computer graphics a
multimedia [Ost99, Tek00], e

Many algoithms for construction of the Delaunay triangulatof the given point seexist.
Some of them exploit the duality aconstruct theéDelaunay triangulatiofrom the Voronoi
diagram whilst others compute trDelaunay triangulation directlyWWe classify direct algo-
rithmsinto several categories: local improvement, incret@leconstruction, incrementen-
sertion, higher dimension embedding and divide &qeee [Koh05]. Except for incrementz
insertion algorithms, which are also known as amliall points mst be known before tr
triangulation process stal As the selection of the optimal subsefofels and their triangu-
lation are not two separate steps (see Se 3), points are not known in an advance ¢
therefore, an incremental insertion algorithm & dmly option we hav

2.1.1 Incremental Insertion with Local Transformations

Starting with an initial Rlaunay triangulation, e.g., euxiliary simplex that contains ¢
points in its interior, thalgorithrr inserts the points in the inp8tinto existing Delaunay i-
angulation one at a timés long as we do not consider time requirements,dfiler of te
insertion is not important. The points do not néede known in advance (although tr
range of coordinates is needed). If the algorittsmsua randomized order of insertion,e-
comes almost insensitive to the type of pointgithstions

The insetion consists of three phases: locationwhere a simplex containing the point to
inserted has to be quickly found followed by subdivisionof this simplex and by thlegali-
zationwhere the circunsphere criterion is applied and if it is neces: the local improve-



ment techniques are used to restore the Delaumaygtiation. The algorithm written in
pseudocode is given in Figure 2.2.

Points already present in the triangulation caralse successively removed. The deletion
consists also of three phases: kbeation (the same as for the insertion) is followed by the
cavity constructiorwhere all simplices sharing the given point araaeed from the triangu-
lation and by thesavity retriangulationwhere new Delaunay triangles are constructedlito fi
the created cavity. Let us describe all steps taide

Input: AsetS={pg,pi, ..., -1} of N points inE?

for r :=0to m- 1 do begin
Locate the sinplex Sy O DT(S) containing p;;

Subdivide Sg; [//in the case where p, lies on the shared edge or face
//then subdivide al so the appropriate adjacent sinplices.

/lLegalize all new sinplices
while there exist an unchecked face F do
if the face F violates DT criterion
then performlocal transfornmation;

end;

Figure 2.2: Construction of the DT(S) by incremental insertion with local transformations.

2.1.1.1 Initialization

Let us have the input s&of N points. An auxiliary simplex large enough to haltithese
points inside its interior is constructed. We prdfas large simplex to the convex hull (see
Section 3) because it is easier and, accordingutoerperience, more stable. One problem
with this approach is how to choose the verticethi simplex. If they are not far enough
away, they may influence the empty circum-sphesésiavhich may lead to the non-convex
boundary of the resulting Delaunay triangulatiom @e other hand, if the vertices are “too
far away”, it may lead to numerical instabilitytbie algorithm.

Therefore, in our algorithm, the vertices have dowtes K, 0), (0,K), (-K, -K) for the ver-
sion inE? and K, 0, 0), (O,K, 0), (0, 0,K), (K, -K, K) for the version irE>. The value is
equal to the multiple ahe size of the bounding box of points — see FiguBe More detailed
description is given by Zalik and Kolingerova ire]43].

(0, K)

(K, 0)

(_K!_K)

Figure 2.3: The selection of the auxiliary simplex in E*. The black rectangle is the bounding box.
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2.1.1.2 Location

In the location part, it is required to find a siepthat contains the given point. It can be
done either with use of some hierarchical strustumewithout them by some walking tech-
nique. Walking techniques are based on the seaydiisimplex to be subdivided directly in
the Delaunay triangulation. Therefore, the locatian takeO(N) time in the worst-case. For-
tunately, the worst-case scenario is not very grtgband the location is, usually, performed
in O(VN) expected time. Let us note that under specialinistances expected tinN?)
can be reached [Zal03]. Although walking approach bit slower than the approach with a
hierarchical structure, its big advantages is thateeds no additional memory. Different
walking techniques are presented in [DevO01].

Let us describaisibility walk in E% Starting from an arbitrary triangle, the algomithrav-
erses through the triangulation testing the mupaalition of visited triangles and the given
input point until the triangle containing this pbia found. For each visited triangle, it is nec-
essary to detect an edge such that the line supgahis edge separates the triangle from the
input point, which can be reduced to a single daion test. If there is no such edge, the tri-
angle contains the point in its interior. Otherwidee search continues with the neighbouring
triangle sharing the detected common edge. Figd shows an example of walk.

Unfortunately, for non-Delaunay triangulations, thalk we have just described may fall into
a cycle as illustrated in Figure 2.4b. As the caised Delaunay triangulations (i.e., with
some prescribed edges — will be discussed in futéx), which are important in practice, are
also non-Delaunay, a little bit of randomness loalset introduced into the algorithm in order
to avoid infinite loops. Instead of starting thaedtion with the first edge of the given trian-
gle, the algorithm starts with randomly picked ed@kis ensures that, if the walk enters a
cycle in the triangulation, it cannot loop in tlagcle forever. Another small improvement is
to remember, for each visited triangle, the edge Was just crossed by the walk and do not
test this edge twice. The visibility walk algorithmith these two improvements is callsst
membering stochastic walk

LA / 1ot
a) the path of visibility walk, the dark graly) an infinite cycle for the visibility walk

triangle is currently being tested, light grfipev01l]
triangles were visited in previous steps

Figure 2.4: The visibility walk algorithm.
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There are other possibilities for quick locationery popular is Directed Acyclic Graph
(DAG) [Ber97], the structure that stores the higtof changes. Each inner node of the DAG
stores one simplex that existed in some previdgaadulation and the current triangulation is
stored in the leaves. Tint@(log N) for location is ensured. In the effort to reduaemory
use, Devillers in [Dev98] suggests a hierarchitalcsure similar to the DAG. It consists of
several connected levels; each level contains dorarsample of the level below. Other pos-
sibilities include a use of quadtrees or bucketemhniques. Various techniques for location
are compared in [Zal03].

2.1.1.3 Subdivision

Let us suppose we have successfully found thedliegn, p;, px containing the poinp, to be
inserted. There are several mutual positions &f plaint and the located simplex. The sim-
plest possible configuration is that the point Is#sctly inside the simplex. In this case, all
vertices of the located simplex are connected With point by an edge and the simplex is
subdivided into three new simplices (see FiguraR.5
P
k

pl pk

a) the point to be inserted lies strictly inside  th® point to be inserted lies on an edge
Figure 2.5: Subdivision in E*.

Slightly more complicated situation occurs when @t to be inserted lies on an edge. It is
then necessary to subdivide not only the locatetpleix but also the adjacent simplex that
shares this edge. It results in four new trian¢gee Figure 2.5b).

2.1.1.4 Legalization

After the subdivision, we have a new triangulatidowever, it may not be the Delaunay one.
Therefore, all outer edges of currently createdobtas have to be tested whether they do not
violate the empty circum-sphere criterion, i.e.gthter the far point of the simplex adjacent to
the new one does not lie inside the circum-sphéthi® new simplex. If the condition is not
fulfilled, the triangulation has to be changed lpplging the local transformations. The trans-
formation inE? which is shown in Figure 2.6, is simple: the etfgjeist swapped.

After that, indeed, we have new outer edges (@dpathat have to be tested. Figure 2.7 shows
an example of the propagation of the local tramségions inE> The located triangle is sub-
divided into three new triangles (Figure 2.7a—ehbtine). Then, the circum-circle criterion is
tested on all these new triangles. The test foitribaegleT; fails because the far poipt of

the adjacent triangle lies in the circum-circletloé triangleT;. The shared edge is flipped. As
the circum-circle of the just created triang@les not empty, the flipping has to continue — see
Figure 2.7b. Finally, the Delaunay triangulatiomachieved (Figure 2.7c).
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aye

Figure 2.6: Local transformations in E% The edge is swapped.

a) subdivision b) propagation of flips c) the reisg triangulation

Figure 2.7: The incremental insertion in E®. Edges that should be flipped are bold.

2.1.1.5 Cavity Construction & Retriangulation

In two dimensions, the deletion of the pgmimeans thain triangles must be removed from
the triangulation andh— 2 new Delaunay triangles must be created tah@lhole — see Fig-
ure 2.8. Althoughm may be equal to the number of points in the tndauipn, it is well
known that the expected valuerofs 6 without any assumption on the point distridoit

Devillers [Dev99] proposed an efficient algorithinréquiresO(milog m) for the retriangula-
tion of hole is based on successive cutting of eaithis hole. For each triple of topologically
consecutive verticeg, G+1, G+ along the boundary of the hole, i.e., for a caagidor the
triangle, a weight computed as a function of cawat®sq;, g1, g+2 andp is assigned. All
candidates are put into a priority queue orderethbiyr weights. After that an iterative filling
process starts. In every step of this processndidate at the head of the queue is taken and
the corresponding triangle is constructed. The ickatesq.1, G, G+1 andgi+1, G+2, Ge+3 that
overlap the newly constructed triangle are chartged;.1, ¢, g+2 andq;, g2, g+3 and their
weights are recalculated. The process stops wlheehdle is filled. An example of retriangula-
tion of hole is shown in Figure 2.8.
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c) the first ear to be tested d) Delaunay retriatgun

Figure 2.8: The deletion of the point p from the Delaunay triangulation.

2.1.1.6 Finalization

When the construction has been finished, all siceglihaving at least one vertex of the big
auxiliary simplex are removed from the triangulatio

2.2 Regular (Weighted) Triangulation

Regular triangulations [Ede92, Fac95] are a geizatadn of Delaunay triangulations offering
an extra degree of freedom by introducing weigbtspbints. Given a point s&in EY, a real
valued weightv, is assigned to every poiptfrom the set. Let us note that the weighted point
can be interpreted as a sphere with ceptand radius/w,. For each weighted poim, we
define so-calledpower distancefrom a not weighted poinzZE® to the pointp as
(2 = p2 2—Wp, where |p2 is Euclidian distance between poipteindz The geometrical
meaning of the power distance is shown in Figuga.2.

For any simplex, it is possible to find a parguch that the power distances from this point to
every point of the simplex are the same — see Eigub. A weight equal to the square of the
computed value of power distance is assigned tpdimez. The weighted poirtt is called the
orthogonalcenter of the simplex and the sphere with radilvg, centered at is theortho-
sphereof the simplex. Let us note that if the weightspofnts of this simplex are zero, then
the orthosphere and the circum-sphere of the skraie identical.
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a) the power distance from z to p b) the orthogoeater of simplex p.,pz

Figure 2.9: The geometrical meaning of power distance and orthogonal center in EZ.

A triangulation is regular only if all simplicesealocally regular. A simpley, p;, ps or, in

the case oE>, p1, po, ps, P4 is locally regular if the power distance from argimt q 7S— {ps,

P2, P, Pa} to the orthogonal center of the simplex is largen the weightvy assigned to this
point g, i.e., 75(0) > wgq. It is clear that the method of incremental insartwith local trans-
formations described in the previous text can kexlwso for the construction of regular tri-
angulation. All that is needed is it to supersdueDelaunay empty circum-sphere condition
by the condition of regularity. Points are sucoesyiinserted into the existing regular trian-
gulation and, as in the Delaunay triangulatiom, set of adjacent simplices violates the condi-
tion of regularity, local transformations have ® dpplied. Figure 2.10 shows an example of
local transformation ifE2. The edge shared by two adjacent triangles ididnize., the trian-
gles are not regular, and, therefore, it is swapped

Figure 2.10: Local transformations in E*. The edge is swapped.

If the geometrical meaning of power distance aridagonal center is taken into account, we
can reformulate the condition of regularity asdals. A simplex is regular, if for any poigt
from S (except for points in the vertices of the simpl&hg pointz of contact of tangent to the
orthosphere of the given simplex going throughpbmmt g does not lie inside the sphere with
radiusVwg centered at the point — see Figure 2.10. This means that to decide wheth

15



edge is invalid, i.e., whether a local transformatmust be applied or not, we need to test the
mutual position of some sphere and point. It iscdyahe same test as the one used in the
Delaunay triangulation, only spheres and pointset@hecked are different.

Similarly to the Delaunay triangulation, the regui@angulation is unique and, therefore, the
topology does not need to be stored as long asr@sewe weights for selected pixels. With-
out any doubt, the storing of weights negativeRuences the compactness of the representa-
tion. On the other hand, the regular triangulatibpoints are properly weighted, can better
represent image features and, therefore, fewetane required — see Figure 2.11.

There is also another option for the storing ofutag triangulations. Kim et al. [Kim99]
showed that the Delaunay triangulation of the gitemain data set (grey-scale images are
close to terrains) is very similar to other comnivangulations of the same data set. There-
fore, instead of keeping all weights, it is possiti store coordinates of vertices (and the as-
sociated data) and save those edges that areesanprin the Delaunay triangulation. Consid-
ering that weights are real numbers (hence thaloding typically requires 4 bytes per one
weight), this strategy can produce more compactitres

D @ @
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&4 /
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| \
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a) the original image b) the image reconstructed the image reconstructed
from the DT from the regular triangulation

Figure 2.11: The reconstruction of image from the Delaunay triangulation and the regular triangulation
of the same number of points.

2.3 Constrained Delaunay Triangulation

Constrained Delaunay triangulation is a generatmabf Delaunay triangulation offering

a possibility to incorporate some prescribed edagdaces (i.e., constraints) into the triangula-
tion. Typically, these constraints are used eitbexxpress the shape of object whose sampled
points are to be triangulated or to introduce s@mmgsical limitations. Figure 2.12 compares
the Delaunay triangulation and the CDT of the sampat set inE% The prescribed edges are
thick. Constrained Delaunay triangulation is usedhany applications, e.g., numerical analy-
sis and finite element methods (FEM), pattern radamn [Pra00, Xia02], etc.
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b) CDT

Figure 2.12: An example of the Delaunay triangulation (DT) and the Constrained Delaunay triangula-
tion (CDT) in E. Prescribed edges are thick.

From the point of view of the algorithm based oe thcremental insertion with local trans-
formations, a constraint is an edge or a face fileentriangulation that cannot be flipped, i.e.,
this edge is always considered valid in the meanirthe Delaunay criterion. This means that
the legalization stops on constraints. The bestknapproach for the insertion of a constraint
into the triangulation works as follows. First, aimplices crossed by this constraint are de-
tected — see Figure 2.13. These simplices are redniogm the triangulation, which results in
two adjacent holes separated just by the constrBiven, both holes have to be retriangulated.
For this purpose, the ear cutting algorithm thas weesented in the section describing the
deletion of points from the triangulation can bedis

Ps

Ps

p2

a) the original triangulation and the corbd) the construction of the first triangle

straint
Ps
_ Pa
D

c) the construction of the second triangle d) skt

Pe

Figure 2.13: An example of the insertion of a constraint (thick edge) into Delaunay triangulation in E°.

Unlike the deletion of a vertex, all vertices oflddie in the same half-plane (or half-space)
defined by the constraint, which allows us to cdesianother, much easier, algorithm. It is
based on the D&C strategy. Starting with the c@mstredge (or face), in each step of the re-
cursion, the algorithm constructs a simplex suet tto vertex from the hole (naturally, ex-
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cept for the vertices forming the simplex) liesidiesthe circum-sphere of this simplex. The
constructed simplex issues new two edges (faces)nzay split the hole into two smaller
holes that are retriangulated in next step — sger€i2.13. At the end of the insertion of the
constraint, the connectivity between simplicespdated.

Sloan [Sl092] suggested another algorithm for tiseiition of a constraint into the triangula-
tion. Starting from any triangle containing thesfivertex of the given constraint, the algo-
rithm searches the triangulation until it reaches triangle containing the second vertex of
the constraint. For each triangle visited during $learch, the algorithm checks whether there
is an edge intersected by the constraint. If thieaue of this test is positive, the edge is
flipped. It can be shown that the successive perfog of flips ensures that when the second
vertex of the constraint is reached, the constigiiicluded in the triangulation. Afterwards,
the legalization has to be performed in order thare the Delaunay property of the triangula-
tion. An example of such insertion of a constrasn be seen in Figure 2.14.

N> <S>

a) after the first swap b) after the second swap
c) after the third swap d) the result

Figure 2.14: An example of the insertion of a constraint (thick edge) into Delaunay triangulation in E?
using the successive application of local transformations.

Similarly to regular triangulations, constrainedldmay triangulations can preserve image
feature better than Delaunay triangulation. Itsstauction is, however, more difficult. Let us
note that for a given set of points, it should beoretically possible to assign a weight to
every point in such a manner that the regular gudation of these points is identical to the
required CDT [Mau04]. As the amount of constraiistsery low (in comparison with the
amount of all edges), it is, however, more conuenie store coordinates of vertices and as-
sociated data (like in the case of Delaunay tri¢atgan) followed by the constraints.

2.4 Data Dependent Triangulation

The previously described triangulations trianguliie given set of points without taking the
associated data (i.e., grey-scale or colour compsn&lues) into account. If the data values
change rapidly, e.g., on sharp image edges, tlaigesinformation may not be well preserved
by these triangulations or its preservation reguiog of vertices. Therefore, Dyn et al. intro-
duced data dependent triangulation [Dyn90] thas asdata dependent criterion instead of the
circum-circle criterion (or a similar one). Manyiteria have been proposed; some of them
consider z-coordinates directly, others deal withles between triangle normals, etc.
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Data dependent triangulation is typically consteddby successive application of local trans-
formations on initial triangulation (e.g., the Dateny one). Each edge is checked whether its
cost is lower than the cost of the other diagotdahe quadrilateral formed by two triangles
sharing this edge. If the outcome of this testegative, the edge is replaced by the other di-
agonal — see Figure 2.15.

Data dependent triangulation can be considerednasra general regular triangulation where

weights of points are not constants given expjiditl advance but they are functions whose

values dynamically change during the triangulatioocess. Once the triangulation is com-

pleted, however, the resulting triangulation canpbecessed (and stored) using the same
techniques that are available for regular triantyorhe.

==

Figure 2.15: Local transformation of quadrilateral formed by two triangles sharing the bold (red) com-
mon edge. Edge is swapped to better preserve the shape of data (slope).
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3 Selection of Significant Points

An image represented by a rasteNoM pixels can be easily, and without any loss of info
mation, transformed into a point stn E? such that for each pixel there is one point with x
and y-coordinates defined by the position of thiebin raster and with the associated data
corresponding to the grey-scale value (or coloummaonents values) of this pixel. Certainly,
this transformation is reversible (and there isass of information).

Let us suppose that we have a sulSseif points fromS (S0 S), and a point sef, created
from the remaining points, i.e., fro®— Ss, by preserving their x and y coordinates only,
which means that the data associated with poiots f, (i.e., grey-scale or colour compo-
nent values) is unknown. This missing data canpgpaximated by an interpolation of the
associated data of points frof (see Figure 3.1), which gives a new Sgtof points. The
point setS = S [ Sz is an approximation of the original point &t

I(x) 250 I(x) 250
200 - 200 -
150 150
100 - 100 -

50 -

a) original data b) linear interpolation c) recounsted data

Figure 3.1: Linear interpolation of points p,, p, and p in E* and the error of approximation (denoted by
horizontal line segments in the reconstructed data).

It is clear that the approximation error is infleed by the number and distribution of points
from the subse$s and by the interpolation method used for the rstraction. Interpolation
methods can be global, which take all points figimto account for the point reconstruction,
or local, which consider only those points fr@nthat lie near the point to be reconstructed.
Although global methods very often achieve lowepragimation error than local, for some
particular subsetSs, they produce much worse results than local methmtause of their
instability. As they consume a lot of time, theg ansuitable for real-time processing. Hence,
we decided to use local interpolation methods only.

If the points from the subs&; are triangulated first, e.g., by the Delaunaynigialation (see
the previous section), the detection of pointselwsthe point to be reconstructed can be done
in O(1). Certainly, the approximation error dependstankind of triangulation. If not speci-
fied otherwise, from now on, we assume that paanéstriangulated by the Delaunay triangu-
lation. Using the bilinear interpolation of triaegl the points fror, can be reconstructed in
real-time with an ease. In the further text, weuass, therefore, that the reconstruction is
done by this interpolation, if not specified othessy

Our task can be defined as follows. We want to fimel subse&s such that either it is the
minimal subset from which the point s&tcan be reconstructed with an approximation error
within the given tolerancer, or it contains the given number of pointand the approxima-
tion error of reconstruction from this subsetsawer than the error of reconstruction from
any other subset with the same number of points.ukenote that if regular or constrained
Delaunay triangulations are to be exploited, weidgbt these points and constraints must be
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also found. The points in the subSetare furthermore denoted as the most significanalgo
the most important) points.

Even if the Delaunay triangulation, which is uniquece points are slightly (within one pixel
size) randomly shifted, is to be exploited andyefere, neither weights nor constrains are
required, the problem of finding the optimal subSets NP-hard as it needs to check every
subset ofS It is clearly beyond our possibilities to cheesler/thing and, therefore, some heu-
ristics is necessary.

In this section, we describe various heuristicstfar detection of the most important points

for grey-scale images (the extension for colourgesais discussed in Section 7). These meth-
ods can be categorized into two main groups. Meshieuristics compute the significance of

a point directly as a function of its grey-scaldueaand grey-scale values of points in its

neighbourhood. All points with the significancedar than some threshold computed from

the given tolerance or the finstpoints @ is given) with the largest significance are takan

the subse$s. Usually, these heuristics are very fast, howethar produced subset is often too

far from being optimal, which means that eithes thilbset is too large or the approximation

error is too big. Let us point out that the comgtataof the threshold is also not well defined.

Starting with an initial subs&s, mesh based heuristics compute the significaneepafint as

a function of its influence on the overall approaimon error that is achieved for the triangula-

tion of points from the subs&. According to the computed significance of poititg subset

S is modified and the process repeats until the rgirgguirements (i.e., the maximal ap-

proximation error or the number of points) is fildftl. Due to the nature of mesh based heu-
ristics, it is clear that the detection of the miagportant points and their triangulation are not
two independent steps. These heuristics are sltiveer meshless heuristics (it takes some
time to compute the triangulation) but they canieah better results than their counterparts.

There are four different strategies how to chobsertitial subset and modify the current sub-
set when significances of points are recalculatedhe refinement, the initial subs&f con-
tains only four points representing the cornerghef image and this subset is successively
modified by adding the most significant point, adteady included in this subset. This strat-
egy is useful especially in cases when the compastof the produced geometrical represen-
tation is desired. The decimation works in an ogipoway. It starts with the initial subset
containing all points frons from which it removes successively the least $iggmt points.
This strategy is welcome when the quality of thalfigeometrical representation is preferred
to its compactness.

The problem common to both techniques we havedestribed is that as the subSgtand
consequently its triangulation, changes, some oftpanserted into / removed from this sub-
set in previous iterations may no longer be sigaiit / insignificant. This is illustrated in
Figure 3.2. The third point, which was evaluateé&the most significant one in the first
iteration, becomes insignificant after the thirdrétion as the original data can be approxi-
mated with the error within the given tolerancehwiit its consideration. The remedy for this
problem is to combine both strategies together.uisetote that a mechanism preventing infi-
nite loop of insertion and deletion of the samenpd required.

The last strategy starts with a random initial gtilmg n points that is modified during the it-
erative process by a genetic or a simulated amwealpproach as follows. Points that are ap-
parently not good candidates for the most significanes are removed from the current sub-
setSs and randomly chosen points lying in their vicingse included into the subset. In the
simulated annealing, the vicinity area decreasdh ewvery iteration. Let us note that this
strategy needs a big number of iterations andatebiour strongly depends on a large set of
parameters such as the temperature for the angeatm
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c) after the secoradation

d) after the third iteration e) optimal subSet

Figure 3.2: A refinement process in E*producing unnecessarily large subset of the most significant
points Ss for the given tolerance & of the overall approximation error (depicted by red dashed lines).

In the further text, we suppose that the describhedh based heuristics exploit the decimation
strategy, if not expressed explicitly otherwise.

4 i ki

a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.3: The significance map computed by the RND method for small areas (highlighted by red
rectangles) of three popular grey-scale images. Lighter pixels represent more significant points.
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3.1 Random Choice (RND)

The simplest heuristics, denoted as RND, assig@mdom significance to points at the be-
ginning of the decimation process and does not fyatiduring the process. Actually it
means that points are removed from the trianguldtica random fashion. This heuristics can
be used in both meshless and mesh based versidmisiganot limited to the decimation strat-
egy only. Figure 3.3 shows the significance of poin three popular grey-scale images. As
the RND heuristics does not exploit the shape mé&dion encoded in images, it is unlikely to
achieve good results with this method.

3.2 Marr-Hildreth (MARR)

A more sophisticated method, called MARR, compulessignificance of points as the re-
sults of Marr-Hildreth edge detection operator [B@r which is also known as the Laplacian
operator, i.e., points that form edges in the imagemore significant. Formally, the signifi-
cances(p) of the pointp can be defined by the formula:

S(p(X,y)) = |I(x_ 1:3’) +I(x+ 1;}/) +I(x,y— 1) +I(x1y+ 1) —4‘1(36',}7)',

wherel(x, y) is the grey-scale value of point with coordinatemdy. As in the RND method,
the significance is not recalculated during thecpss and the method is also suitable for any
strategy (not only for the decimation). Significaacof points for three popular images are
shown in Figure 3.4.

a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.4: The significance map computed by the MARR method for small areas of three popular
grey-scale images. Lighter pixels represent more significant points.

3.3 Pixel Similarity (PIXSIM)

The PIXSIM method, another meshless heuristichased on the evaluation of similarity
between points (pixels). In the following descmyptiof this method, we consider that two
points are adjacent if and only if they lie on ancoon horizontal or vertical line and there is
no other point on this line that lies between thémother words, the difference of coordi-
nates of these two adjacent points can be eithé))(1-1, 0), (0, 1) or (0, -1). We further de-
fine that two points are similar if and only if tAbsolute value of the difference of their grey
scale values does not exceed some given tolerance.

For each poinp, the method searches for every panip # @) such that this point and the
point p are similar and, moreover, they are either adjacethey lie on a common horizontal
or vertical line and all points on this line lyibgtween them are similar to the pgmin fact,
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this corresponds to the region filling algorithmtliwihe given tolerance and the seed in the
pointp. The significance of the pointp is then calculated as:

1

lQl’

whereQ is a point set including the poiptand all detected points Figure 3.5 shows the
influence of the tolerance value on significancegants.

s(p(x,y)) =
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Figure 3.5: The significance map computed by the PIXSIM method for a small area of the boat grey-
scale image when the tolerance 1, 2, 4, 8, 16 and 32 (from top left) was used. Lighter pixels represent
more significant points.

The problem with the previous formula is that itedonot consider the position of points,
which means that a point surrounded by other gghits with the same grey scale value has
the same significance as an endpoint of line segfoemed by nine points in total (all points
have the same grey scale value). Therefore, weopeoplso an alternative formula for the
evaluation of point significance:

Q]

S(p(x, y)) = m,

whereA(Q) is the area of bounding box of the etin the further text, we denote this variant
by the codename PIXSIM2. A comparison of signifa@s for three popular images is given
in Figure 3.6. Let us note that significances ahfmare not recalculated during the process.
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a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.6: The significance map computed by the PIXSIM (top) and PIXSIM2 (bottom) methods us-
ing the tolerance value 8 for small areas of three popular grey-scale images. Lighter pixels represent
more significant points.

3.4 Distance Weighted (DISTW)

Distance weighted method belongs to mesh basedstiesirit computes the significance of a
point p as the absolute difference of the grey value &f ploint and the value computed as the
distance weighted average of grey values of itghimuring verticeg that are connected
with p by an edge:
2q1(q)lp—ql

2qlp —4ql
As the pointp(x, y) is connected in the initial triangulation, whicbntains all points fron$,
with pointsatx-1,y), k+ 1,y), X, y—1), (X, y+1), (x—=1,y+ 1) and (x + 1-y1), i.e.,

four of these points are the same as those ust iIMARR method, the initial significance
map is very similar to the one obtained by the MARRIristics — see Figure 3.7.

s(p(x,y)) = |I(p) —

When a point (the least significant one) is deldtech the triangulation, significances of all
points that formed the hole, i.e., they were oaffjinconnected by an edge with the deleted
point, are recalculated using the formula writtbo\ze.
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a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.7: The significance map computed by the DISTW method for small areas of three popular
grey-scale images. Lighter pixels represent more significant points.

3.5 Error Distribution (ERRDIST)

This heuristics computes the initial significandepoints using the same formula as the pre-
viously described DISTW method but when the leapticant point is deleted from the tri-
angulation, significances of points are updatetedbhtly as follows. The triangle containing
the removed poing, is located and significances of its vertipgsp, andp.; — see Figure 3.8 —
are modified using the following formulas:

S(pa(x' .V)) = Sprev(pa(x' .V)) ta- S(pr(x» y));
s(Po (6, 3)) = Sprev (06, 9)) + B - 5(pr (x, 1)),
S(pc(x: y)) = Sprev(pc(x: y)) +y: S(pr(xr Y));

wheresprev(pi(x, y)) is the previous significance associated with tbmtyp; anda, f andy
are the barycentric coordinates of the p@nh the trianglep,, p, andp.. These coordinates
can be computed from this system of linear equation

a-pa+PB-pp+V: D=0
a+pf+y=1.

Let us note that this heuristics, actually, wonksaiway similar to the Floyd-Steinberg error
diffusion technique [Flo76].

O

Figure 3.8: The deletion of point from the triangulation.
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3.6 Triangle Mean Square Error (TRIMSE)

Starting with initial significances of points contpd by the formula as the DISTW method,
this heuristics updates significances of pointgerahe least significant point is removed, as
follows. For each newly constructed triangle, isficomputes its mean square error (MSE),
l.e., it computes the sum of square differencewden the grey values of pixels covered by
this triangle in the original image and the coraegging values obtained by the bilinear inter-
polation of grey values of triangle vertices thativided by the number of pixels in this tri-

angle. Formally, this can be written as:

e ey -1 (xy))?
MSEy = % size(d)

wherel’ denotes the interpolated values. The significarfca vertex is then recalculated as
the sum of MSE of triangles that share this veriest. us note that this method is, indeed,
slower than the previous methods.

3.7 Brute-force (BRUTE)

The BRUTE method is based on a brute-force idealmilate the significance of a pomas

a function of the approximation error achievedtfaangles that would be constructed if this
vertex was deleted. It is clear that there are npsgible functions. Whilst the basic function
sums the MSE of these triangles (see the previeasos), the function denoted as MAT,
originally proposed by Demaret et al. [DemO06], suhessquare differences between the grey
values of pixels covered by these triangles inattiginal image and the corresponding recon-
structed values. This actually means that the MAMmpgutes the sum of MSE of triangles
multiplied by the number of pixels they cover. To#ner two functions, we have experi-
mented with, denoted as MAT1 and MAT2 (both proploalso by Demaret et al.), return the
absolute maximal difference and the differencéatgointp, respectively. In the further text,
we assume that the basic function was used urpessfied otherwise.

T w t

a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.9: The significance map computed by the BRUTE method for small areas of three popular
grey-scale images. Lighter pixels represent more significant points.
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It is without any doubt that this method is the mime consuming but we may expect the
best results. To speed up the processing, thalisignificance of a vertep is computed
simply as the square difference of the grey valkeld by this vertex and the average of grey
values held by two its neighbouring vertices (&fd right):

1(x=1,y)+I(x+1,y)\?
s(p(x,y)) = (1(p) - =22

Let us note that this corresponds to the squareogppation error measured in this vertex.
Initial significances for three popular images sinewn in Figure 3.9.

3.8 Nock Segmentation (NOCK)

This heuristics is an extension of the BRUTE metHbdomputes the initial significance of
points in a slightly different way as follows. Rir¢he input raster image is segmented using
the technique proposed by Nock et al. [Noc05], Wipcoduces several irregular regions of
similar pixels. Every point on the boundary of thesgions is marked to be not removable,
i.e., its significance is set to be maximal. Letnage that the boundary may be thicker than
one pixel. An example of the segmentation is giwvefigure 3.10. Significances of the re-
maining points are calculated as in the BRUTE matAde aim of this significance evalua-
tion is to preserve such edges that define theesbapoded in the image.

a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.10: The segmentation of three popular grey-scale images using the method proposed by
Nock et al. [Noc05]. The boundary pixels are white.

3.9 Gaussian Influence (GAUSS)

Another extension of the BRUTE method computedritial significance of a poinp as the
sum of Gaussian weighted differences between &g-gcale value and the values of points in
its vicinity:

T T i2+j2

spEy) = ) D U@ =1 +iy+)l-e 7o,
i=—71 j=-1

where constants ando define the vicinity area and the influence faatbithe point in this
area, respectively. This formula is based on tlea ithat when points in the vicinity of the
point p were removed and must be reconstructed, it isyiket points closer to the poipt
will be influenced by its value more than distaairps (which might lie even in a triangle not
having the poinp as one of its vertices).

Considering the formula given above, it can be destlithat points in uniform regions have
very low significances while points lying in proxiyof image edges are significant ones and
their significances depend on their distances ¢ontarest edge. Indeed, these values are also
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dependent on constantsando — see Figure 3.11 and Figure 3.12. Initial sigaifices for
three popular grey-scale images are given in Fi§ut8. As it can be seen, for smaller con-
stants, significances are quite similar to thoswiokd by the Marr-Hildreth method but the
map is not so noisy, i.e., points belonging to $mmaimportant image edges are not evaluated
to be significant (unlike in the MARR heuristics).

Figure 3.11: The significance map computed by the GAUSS method for a small area of the Lena
grey-scale image when the influence factor () 24 and the vicinity area (r) 2, 4, 8, 16, 32 and 64 (from
top left) was used. Lighter pixels represent more significant points.

Figure 3.12: The significance map computed by the GAUSS method for a small area of the fruit grey-
scale image when the vicinity area (r) 32 and the influence factor (o) 2, 16 and 32 (from top left) was
used. Lighter pixels represent more significant points.

29



a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.13: The significance map computed by the GAUSS method for small areas of three popular
grey-scale images when the vicinity area (r) 16 and the influence factor (o) 8 was used. Lighter pixels
represent more significant points.

3.100ther Heuristics

In this section, we have described various heuasdtr the evaluation of point significances.

Some of them are complex and tend to be slow (#hg.GAUSS), however, they promise

a more compact representation of images withirgthen quality threshold. Others are much

simpler (e.g. the DISTW method) and offer fast pssing, however, they are likely to pro-

duce larger representations. Let us note that $stegidescribed here can be combined to
achieve event better results. For instance, oneusarthe Marr-Hildreth heuristics to evaluate
the initial significance of points and then proceeth the BRUTE method, etc.
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4 Experiments with Triangulation Construction

For our experiments, we used a seboth grey-scale and colotest images of sizes rangi
from 300x400 to 1024x1024 (most of them were of&ll2 size' They were downloade
from the Internet from various sources, e.g., ftbm USC-SIPI image database [UscOLet
us note that most of these images have never lubjected to any ssy compression tech-
nique (used, e.g., in JPEG&ince their capture inta lossless PNG or TIFF form Most often

e) Lena, 512x512 g) peppers, 512x512
BN e ' .

I) kodim, 465x375 m) Maran, 400x300 g) monarch, 768x512

Figure 4.1: Test images.

For each of proposed methods of the vertex sigmfie evaluation (see the previous secti
we investigated the degradation of the qualityhaf geometric representation in the ded-
ency on the amount ofiingulated vertice The quality was measured the PSNR, which is
computed for imageNxM using the following formula:

_) ,

wherel (X, y) is the grey scale value in the original rasteage at positioix, y while I' (x, y) is
the corresponding value in the image reconstruitted the given geometric representat
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4.1 Main Meshless Heuristics

Figure 4.2 brings examples of Lena images recoctsiiuby the bilinear interpolation on the
Delaunay triangulation of points selected by thedmam choice (the RND method). As it can
be seen, edges in images are not smooth and #&gmdglthe underlying triangulation are
clearly visible even for triangulations with lot @értices. On the other hand, even images
reconstructed from the Delaunay triangulation ekey few vertices (e.g., 1.9% as in Figure
4.2b) are well recognisable. Apparently, the RNDrigtics could be used for very fast pre-
views or for non-realistic rendering (especialty, the pointillism).

E

5000, PSNR = 25.30 e) 25 000, PSNR = 26.64 50)00, PSNR = 28.86

d)

Figure 4.2: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the RND method.

The results of the Marr-Hildreth (MARR) method aeen in Figure 4.3. Unexpectedly, this
heuristics provide us with the results of a lowlgudespecially for small triangulations). The
reason is that there is not a sufficient amounvestices to represent areas with a smooth
change of intensity (e.g., in face) in a good dydiecause too many vertices were wasted to
represent areas with sharp edges in an outstagdeldy (see the feather).
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d) 15 000, PSNR = 20.46 e) 25000, PSNR =24.93 50100, PSNR = 30.95

Figure 4.3: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the MARR method.

There is no significant difference between the RM&nd PIXSIM2 heuristics — compare
Figure 4.4 and Figure 4.5. It is not a big surpgsee significance maps for the tested image
are also very similar (see Figure 3.6). Howeves,ifisue is whether this can be expected in a
general case. Let us analyse both heuristics féerdnt inputs. If we have an image of uni-
form colour, every point has the same number o&cat)t similar points and, therefore, all
points are equally significant in both methods. Eorartificial image having two regions of
the same size but different, not similar, colowsgy the left region is white whilst the right
region is black), significances of points are adspial. This actually means that these heuris-
tics are impropriate for images with regular paisenot separated by an edge. Fortunately,
such patterns are not very often present in reagjes.

In real images, regions, either gradient or unifoame always separated by edges at least one
pixel thick that typically blends colours of ongi@n into colours of the other region. Let us
consider an image with two uniform regions separdtg such an edge. For the sake of sim-
plicity, we assume that this image has only one lof pixels (the extension for two-
dimensional case is straightforward). It can beswtered to be a one-dimensional function
that maps x-coordinates into grey-scale valuess fiunction is depicted in Figure 4.6a.
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e) 25 000, PSNR =22.19 5000, PSNR = 24.16

Figure 4.4: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the PIXSIM method with the tolerance value 8.

If we compute differences between adjacent pixiets, (the differentiali(x + 1) —I1(x)), we

get zeros for uniform areas and non-zeroes forettge with the peak in the middle of the
edge — see Figure 4.6b. The algorithm for the $&agoof similar points adjacent to a popjt
which was described in the previous section, camdererted now into another one. This
algorithm starts at the poip(x) with the total energy equalled to the toleranati@ and it
advances to points with lower x-coordinates deangathis energy in every step by the dif-
ference value at the current position. Naturalhg process terminates when there is not
enough energy to move to the adjacent point. Aftat the algorithm is repeated, this time it
advances to points with higher x-coordinates.

For instance, let us assume that we have a lipéxefs with grey-scale values: 1, 2, 3, 4 and
6. The differences are then: 1, 1, 1, 2 and OHerlast pixel as it does not have the right
neighbour. For the tolerance value 2, the regioadjacent pixels similar to the third pixel
clearly includes four pixels (1, 2, 3 and 4). Thgoathm starts at the third pixel with the total
energy 2. As the cost of movement to the secondl péxjust one, it moves there and de-
creases the total energy by one. As it has stidlgh energy, the algorithm moves then to the
first pixel. After that no energy remains and thegess is restarted for the right side, where it
can move only to the fourth pixel as it lacks eyei move further. Hence, the resulting re-
gion contains the same pixels as the region pratlbgethe original algorithm used in the
PIXSIM and PIXSIM2 heuristics.
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b) 5000, PSNR = 19.13 ©00) PSNR = 20.49

d) 15 000, PSNR = 21.22 e) 25000, PSNR =22.91 50100, PSNR =24.24

Figure 4.5: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the PIXSIM2 method with the tolerance value 8.

1(x) I'(x)

a) x b) E

Figure 4.6: An example of one-dimensional function I(x) and its derivation I'(x).

Being at the poinp(x) with an unknown amount of energy, the probabilitst the algorithm
can move to the adjacent point is inversely propoal to the difference between grey-scale
values of these points. It actually means thataim®unt of similar points adjacent to the
given one is highly dependent on the shape ofuhetion of differences. If the slope around
the point is small, the amount is much larger thmathe case of big slopes. As image edges
produce sharp peaks (and, therefore, big slopsge-also Figure 4.7, we can conclude that
the number of similar adjacent points is small darimage edge while it is large for other
areas. Hence, the most significant points in the¢SIV heuristics are those that represent
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image edges. Further, it can be easily shown thatratio between the amount of similar
points adjacent to the given one and the area whdiaog box of these similar points typically

decreases as this amount grows. It means thatatisis larger for points of image edges,

which leads into conclusion that the PIXSIM2 metlatslo assigns higher significances for
points that represent image edges. Hence, bothshiesiproduce almost the same results for
any digital image.

I'(x) A

Figure 4.7: Differences in x-coordinate for a small part of the Lena image. Red line of pixels is given in
detail in the right image.

From the presented results, it is apparent thaPIXSIM and PIXSIM2 heuristics can pre-
serve the image shape better than the MARR methalel case of triangulations of a very

d) 15 000, PSNR = 28.22 e) 25 000, PSNR =30.86 5000, PSNR = 33.38

Figure 4.8: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the DISTW method.
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4.2 Main Mesh Based Heuristics

Figure 4.8 shows the results for the first mestetddgeuristics, the DISTW. This method ap-
parently inclines to preserve those points thatasgnt image edges. Unlike the meshless
MARR heuristics, the weighting scheme preventsitie¢hod from the keeping of improper
points and, therefore, the quality of achieved Itess better (much better for smaller triangu-
lations). The most important information is preseheven if the image is represented by a
tiny triangulation (see Figure 4.8a). Nevertheldss,quality is still far from being acceptable.

Similar results were achieved for the ERRDIST hstio$ — see Figure 4.9. As it can be seen,
this heuristics also tends to keep points on imedges. In comparison to the previous
method, the significance of those points is, howeadit diminished due to the error distribu-

tion scheme, which may lead to slightly better ltsstor smaller triangulations. Let us note

that both methods are very fast (although theystower than meshless methods), yet they
can represent images in an acceptable qualitynregaonly about 6% of their pixels. Suppos-

ing that no compression technique is involved,dtogage cost for this geometrical represen-
tation is, therefore, about one third of the steragst for the raster representation.

d) 15 000, PSNR = 26.72 e) 25000, PSNR =27.57 501f)00, PSNR = 32.08

Figure 4.9: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the ERRDIST method.

The results achieved by the TRIMSE heuristics avergin Figure 4.10. As this method
evaluates the significance of point according ®rtiean square error of triangles sharing this
point, there is a little wonder that reconstruct@ages, especially those reconstructed from
smaller triangulations, have visible triangulareéatts. Unlike the RND method, which also
produces similar artefacts, the results are, how®fenuch better quality. It is also important
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to point out that this heuristics can achieve bejtality for moderate triangulations than the
previously described methods. Nevertheless, th@esaeconstructed from such triangula-
tions are a bit blurred (and with visible triangudatefacts, indeed).

d) 15 000, PSNR = 28.34 e) 25000, PSNR =29.69 50100, PSNR = 31.25

Figure 4.10: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the TRIMSE method.

Figure 4.11 and Figure 4.12 show the results aelidwy all considered variants of the
BRUTE heuristics. Let us remind the reader thatNi#el, MAT1 and MAT?2 versions were
originally proposed by Demaret et. al [Dem06]. Eptctor the MAT2 variant, which is the
fastest one, the results are of an outstandingtgu@his is definitely true for the basic and
the MAT versions that can represent images in a gp@lity retaining only about 5 000 pix-
els (2%), which reduces the storage cost to ortl tarcomparison with the raster representa-
tion (assuming that no compression technique isluad).

As it can be seen, there is no significant diffeeebhetween the basic and the MAT variants of
the BRUTE heuristics. This is hardly surprisingicg both variants compute significances of
points in a very similar way. An interesting obssion, however, is that the results obtained
by the MAT2 version are not significantly betten the meaning of achieved quality) than

results obtained by much faster distance weighéedlistics (DISTW).

A serious drawback of the BRUTE heuristics isiitset consumption. Even the fastest version
takes almost one minute to process an image of B2 pixels and, therefore, this method
cannot be used in real-time (or almost real-timpgliaations. However, we believe that with

a careful implementation exploiting modern hardw@rtech as GPU for interpolation of trian-

gles), it could be possible to reduce the time irequents to mere seconds.
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1) 15 000, PSNR = 32.74 k) 25 000, PSNR =33.94  50Ip00, PSNR = 35.74

Figure 4.11: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the basic version of the BRUTE method (a-f) and the MAT version (g-1).
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d) 15 000, PSNR = 32.11 e) 25000, PSNR =33.53 50100, PSNR = 35.45

~ ©00) PSNR = 28.37

/
i
R
.
>
2

d) 15 000, PSNR = 28.37

Figure 4.12: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the MAT1 version of the BRUTE method (a-f) and the MAT2 version (g-1).
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The results achieved by the NOCK method (basecherBRUTE) are given in Figure 4.13.
As it can be seen, the quality of reconstructedgesaquickly degrades with the decreasing
size of the triangulation. The reason of this béhavis that too many points represent region
edges and, therefore, there is hardly any othenrt peit to preserve the data within regions.
This is well visible especially in Figure 4.13a.iF lproblem might not be so severe for the
Lena image that has only about 7 000 boundary pikat it is a serious issue for complex
images with plenty of details. A possible solutmuld be to decimate boundaries first, i.e.,
to reduce the number of boundary pixels.

a) 19 517, PSNR = 32.37 b) 27 017, PSNR =33.94 47@17, PSNR = 35.98

Figure 4.13: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the NOCK method (with one pixel thick boundaries).
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The GAUSS heuristics, which is also based on th&/BR heuristics, unfortunately does not
bring any further improvement — see Figure 4.14e Tésults are rather worse than better.
Considering that this heuristics ned@§\-M-4r?) time for the computation of initial signifi-
cances, wher®&l andM are numbers of rows and columns in the imagerasdhe vicinity
area, which is typically 16, it is a big disapponeint. We tried, therefore, to combine this
heuristics with the ERRDIST one in such a mannat thitial significances of points are
computed using the algorithm of the GAUSS methadl thien the error distribution decima-
tion algorithm is applied. For smaller triangulai$o the achieved results are of a better qual-
ity than those obtained by pure ERRDIST method mpare Figure 4.15 and Figure 4.9.
Hence, this combined method is apparently suitisléarger images whose processing using
BRUTE or TRIMSE methods would take too long butngsimuch faster DISTW and
ERRDIST methods would not meet the requested guaitierion.

d) 15 000, PSNR = 32.34 e) 25000, PSNR =33.85 50f)00, PSNR = 35.42

Figure 4.14: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the GAUSS method with when the influence factor () 8 and the vicinity area (r) 16.
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d) 15 000, PSNR = 28.39 e) 25000, PSNR =29.88 50f)00, PSNR =31.71

Figure 4.15: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the ERRDIST method combined with the GAUSS method with when the influence factor
(o) 8 and the vicinity area (r) 16.

4.3 Comparison of Main Heuristics

Figure 4.16 compares images of fruits reconstrudtech Delaunay triangulations with
10 000 vertices (i.e., 96% of vertices was remowerputed using different methods for the
evaluation of vertex significance. Without any dube best results were obtained by the
BRUTE method. However, it is interesting to poiat that this method did not preserve some
details that might be important from the user pointiew. For instance, see missing diagonal
lines on the background. On the contrary, the ERSRDhethod, although not so powerful as
the BRUTE one, preserved it quite well. Hence, arsraombination of these two methods
seems to be optimal.

For each proposed heuristics, we investigated dgeadlation of the quality of the geometric
representation in the dependency on the amoumnodved points (the number of significant
vertices in the Delaunay triangulation can be dated as the total number of points in the
original image minus this value). The results foee popular images, all with 262 144 points
in total, are presented in Figure 4.17 — Figur® 445 it can be seen from graphs, the quality
of the representation degrades quite quickly uhgl algorithm removes approximately 25%
of vertices, after that the quality decreases alrosarly in a slow pace until another thresh-
old of about 90% removed vertices is reached. Ritweth moment, the quality rapidly drops

down. An interesting observation is that in thistlperiod, all methods (including the RND

method based on a random selection of vertices teimoved) produce quite similar results.
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b) MARR, PSNR = 19.53 c) PMSPSNR = 23.20
B
A\ v y
P

2S¢

15 Fl

d) DISTW, PSNR=26.09 e) ERRDIST, PSNR=25.64 f) TRB) PSNR = 27.82

W
4

g) BRUTE, PSNR=32.08 h) NOCK, PSNR=30.58 i) GAUBSNR = 31.94

Figure 4.16: The comparison of fruit images reconstructed from triangulations with 10 000 vertices
computed by various methods. Note that for the NOCK method, the triangulation had 10 134 vertices.

It means that an application that calls for a giglation with a few vertices only (e.g., in non-
photorealistic rendering), does not need to payhrattention which method for the evalua-
tion of vertex significance to use. Another impattabservation is that a heuristics that pro-
duces results of a poor quality for triangulatimisnedium size may overcome other more
sophisticated (and, therefore, also slower) metlvdu=n small triangulations are considered.
For instance compare the behaviour of the RND aAdRR heuristics (Figure 4.17).
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Figure 4.17 (colour): The dependency of quality (measured in PSNR) of images reconstructed from
Delaunay triangulations obtained by meshless heuristics on the number of removed vertices (higher
values mean smaller triangulations) for three popular 512x512 grey-scale images.
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Figure 4.17: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations obtained by meshless heuristics on the number of removed vertices (higher values
mean smaller triangulations) for three popular 512x512 grey-scale images.
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Figure 4.18 (colour): The dependency of quality (measured in PSNR) of images reconstructed from
Delaunay triangulations obtained by basic mesh based heuristics on the number of removed vertices
(higher values mean smaller triangulations) for three popular 512x512 grey-scale images.
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Figure 4.18: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations obtained by basic mesh based heuristics on the number of removed vertices (higher
values mean smaller triangulations) for three popular 512x512 grey-scale images.
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Figure 4.19 (colour): The dependency of quality (measured in PSNR) of images reconstructed from
Delaunay triangulations obtained by basic heuristics on the number of removed vertices (higher values
mean smaller triangulations) for three popular 512x512 grey-scale images.
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Figure 4.20: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations obtained by various BRUTE kind heuristics on the number of removed vertices (higher
values mean smaller triangulations) for three popular 512x512 grey-scale images.
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As it can be further seen in Figure 4.19, the cuivguality achieved by the slowest BRUTE
method is the upper bound for all other curves)evie lower bound is formed by the curve
achieved by the simplest (and the fastest as R3NP method in the area of large and me-
dium triangulations and by another meshless héesjsthe MARR method, in the area of
smaller triangulations.

Except for the NOCK method and the BRUTE methodtsnVIAT2 variant, whose behave
poorly, there is no significant difference betwaeamious methods based on the brute-force
strategy in the area of small triangulations — Biggire 4.20. Let us note that although the
MAT variant, which was originally proposed by Demiaet. al [Dem06], proved to produce
results of the highest quality, we continue to tieebasic version of the BRUTE method in
the further text, if not specified explicitly othveise. Anyway, the basic version achieves only
slightly worse results in comparison with the MAdr\ant.

4.4 Combined Heuristics

Figure 4.21 brings the comparison of results oletiby two combined methods with results
that were obtained by their pure (not combinednteparts. As it can be seen, when the ini-
tial significance of points is calculated by slowAGSS technique and after that the points are
processed by fast ERRDIST method, results achigvéte area of smaller triangulations are
much better than when the pure ERRDIST methodnsidered. Although they do not reach
qualities of the BRUTE method, this combined metlsostill very important for applications
that need to convert quickly large images becausan process these images much faster
than the BRUTE method whilst reaching acceptabla@itgs. The reason of this is that the
time complexity of the BRUTE method grows much éaghan the time complexity of the
significance evaluation used in the GAUSS method.

The other combined method, where the initial sigaiice of points is evaluated using the
Marr-Hildreth operator, does not outperform thevpres one and it might be even worse than
the ERRDIST method itself in some cases (see thdtsefor the boat image). Nevertheless,
this combined method has also its merits as itusmfaster than the previous one and, there-
fore, it can be used as a good compromise betwgsedsand quality. It is important, how-
ever, to point out that this method is pretty useMhen dealing with larger triangulations.

We also experimented with other combinations (dlge, MARR combined with the basic
BRUTE method) but we did not find any other comkora that would bring a substantial
improvement. An interesting observation from owsutes is that the decimation technique
always produces a set of significant points whieemajority is formed by points that belong
to image edges no matter which mesh based hearisticsed. However, when we try to en-
force edge points by giving them larger initial réfgcance, the results are typically worse
than without this interfering.
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Figure 4.21 (colour): The dependency of quality (measured in PSNR) of images reconstructed from
Delaunay triangulations obtained by the ERRDIST combined heuristics on the number of removed
vertices (higher values mean smaller triangulations) for three popular 512x512 grey-scale images. The
results are compared with the results of ERRDIST and BRUTE methods.
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Figure 4.21: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations obtained by the GAUSS combined with ERRDIST heuristics on the number of removed
vertices (higher values mean smaller triangulations) for three popular 512x512 grey-scale images. The
results are compared with the results of ERRDIST and BRUTE methods.
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4.5 Combined Triangulation Strategy

In order to improve our results, we decided to thix decimation technique with the refine-
ment strategy as follows. The algorithm keeps tworjpy queues, denoted & andQg. The
first queue Qp) contains vertices currently present in the Dedgumniangulation and the other
contains vertices removed from the triangulationpievious iterations of the algorithm.
Whilst the point at the head of the first queuthisleast significant one, the point at the head
of the latter queue is the one with the highestiigance of all points in this queue. In itera-
tion, the algorithm compares significances of bmbimts at heads of queues. If the point from
the queudr is more significant than the other one, then whid probabilityp, this point is
inserted into the triangulation; otherwise the pdimom at the head of the que@ is re-
moved from the triangulation. In any case signiim@s of points (both present and already
removed) in the affected area must be recalculdikd. probabilityp is proportional to the
number of already removed points, i.e., it is mamabable for the removed vertex that it will
be reinserted into the triangulation in later stagkthe algorithm.

Without any doubt, the proposed algorithm consumese time than the one based on the
decimation technique and with an improper probgbflinction it may even ends in an infi-
nite loop when some points are removed to be iedafter a while. We insert points when
the following condition is fulfilled:

count(Qg) - rnd() > %N -M,

where count(Qg) is the number of points in the que@g, rnd() is a random function that
returns real numbers from the interval <0, 1> AhandM are width and height of the origi-
nal raster image. With this condition the algorittenminates eventually, however, it is still
several times slower than the decimation.

Figure 4.22 compares the results obtained by the BRheuristics (which has proven to be
the best one) when the decimation technique wad asly and when the decimation was
mixed with the refinement strategy. Clearly the bamed algorithm achieves better results in
almost all cases. The improvement is, however sigtificant and if we consider the addi-
tional time requirement for this algorithm, we hawerefer the decimation algorithm.

4.6 Image Filtering

Another option how to improve the results is to lggome lossless filtering technique that
transforms the input data into a form more suitdbtehe considered heuristics. For an easier
understanding of the problem, let us resort todimeensional case. Figure 4.23 shows a func-
tion that should be approximated by a piecewisealirfunction with the allowed approxima-
tion errore. In its original form, an approximation that contsethe ending points of the given
function, p, andpy, is not possible because its error is out of {hecsied tolerance. It is,
therefore, necessary to introduce the third vegigxnto the approximation to fulfil the crite-
rion. If the input function is, however, filtereging a simple SUB filter (will be described
later), the approximation by, andp, is possible. It means that by the filtering weuset the
number of vertices from three to two, i.e., we @ittmproved the compression ratio or spared
one vertex that can be used elsewhere to impravquhlity of the geometric representation.
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Figure 4.22 (colour): The dependency of quality (measured in PSNR) of images reconstructed from
Delaunay triangulations obtained by the BRUTE heuristics with (DEC+REF) and without (DEC) re-
finement strategy on the number of removed vertices (higher values mean smaller triangulations) for
three popular 512x512 grey-scale images.
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Figure 4.22: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
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Figure 4.23: An edge approximation (dashed line) of the original and filtered function (solid line).

We experimented with three image filters commordgdiin PNG format. The first one is
already mentioned SUB filter that computes diffeesbetween neighbouring pixels:

SUB(x) = mod(I(x) — I(x — 1)),

wherex ranges from zero to the number of pixels in thagenminus ond(x) refers to the
grey value of the pixel in the image correspondmghe specified position andmodXx) de-
notes unsigned arithmetic modulo 256, so the ostfiuinto bytes (e.g., 1 — 2 = 255). For all
negativex, we assumé&(x) = 0. In order to reverse the effect of the SURefiafter the inter-
polation of triangles, the output is computed syrgs:

I1(x) = mod(SUB(x) + (x — 1)).

The AVG filter transmits the difference between tlaue of a pixel and the average of the
two neighbouring pixels (left and above) used g@sedgliction of this value. The formulas for
forward and reverse filter can be written as:

AVG(x) = mod (I(x) — —I(x_l)H(x_N)),

2
I(x) = mod (AVG (x) + ZHHED)
whereN denotes the horizontal size of the image.

As the previous filter, the PAETH filter also tram¢s the difference between the real value
and the predicted value of a pixel. The predicisnhowever, calculated from the three
neighbouring pixels (left, above, upper left) b thlgorithm developed by Alan W. Paeth.
This pseudocode of this algorithm is depicted uFe 4.24.

p=a+b-c; pa=abs(p-a);, pb=abs(p-b);, pc=abs(p-c)
if pa <= pb and pa <= pc then PAETH(x) = a;

else if pb <= pc then PAETH(x) = b;

else PAETH(x) = c;

Figure 4.24: PAETH filter (see http://www.w3.0rg/TR/PNG/).Legend: a is the left pixel value, b is the
grey value of pixel above and c is the upper left pixel.

Despite our expectations, the experiments provatithiese filtering techniques are not useful;
we obtained even worse results with them than withbigure 4.25 shows images of fruits
that were reconstructed from triangulations witt498 of the original amount of vertices (i.e.,
only an insignificant amount of vertices was renwverhen filtering techniques were ap-
plied. Artefacts are clearly visible.
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Figure 4.25: Artefacts caused by various filtering techniques.

We identified several reasons for such behaviobhe most important fact is that by filtering
we introduce a dependency between pixels and,ftreref one pixel is reconstructed with an
error, this error is distributed over the rest ofets, which may cause unexpected artefacts.
Let us consider the following example. The SUBefiltransforms a group of adjacent pixels
0, 0, 10, 10 and 10 into filtered values 0, 0,@@nd O. If the second value is not stored and
has to be reconstructed, we get value§, d,0, 0, 0. The reverse SUB filter propagates the
error and gives pixels 8, 15, 15 and15.

The problem is also that although the filteringttas the image, it does not create suffi-
ciently large places with a constant value butthencontrary, it introduces a lot of edges into
the image. It makes the approximation process ynasast leads to a rapid degradation of
guality. Actually, this is close to the MARR method

4.7 Summarization

Let us summarize what we have learned from expeatsngresented in this section. In order
to get a geometric representation with an acceptgbhlity, the evaluation of significant
points and their triangulation must be two relatsat, separable, steps. Any mesh based heu-
ristics described in the previous section is slétatthen used with the decimation strategy.
The best (in the achieved quality of representatisrapparently the BRUTE method. This
method is, however, quite slow and, thereforenifagplication calls for fast transformation,
the ERRDIST or DISTW methods are often optimal. fingority of points in the produced
representation are points that represent edgebkeirotiginal raster image, so one can be
tempted to assign higher initial significance t@mvpoint on these edges in order to help the
heuristics to get better results. This strategyomanately, does not work well as many points
in the original image lie on edges. Apparently, better results could be achieved, if only
some of those points were set to be more signifiddow to detect them is, however, an is-
sue. Filtering of input image (by filters used IN®), which was supposed to help to get tri-
angulations with fewer vertices, also proved toubeless. Nevertheless, we believe that the
idea of filtering of image in the pre-processingnat bad in general but one has to come with
the filter where the filtered values are more irglggent and thus less liable to errors. Another
way how to improve results is to exploit a differémerpolation of triangles. This option is
discussed in Section 7.
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5 Triangulation Encoding

Having an arbitrary triangulation representing ithage, it is necessary to store both, the co-
ordinates and grey values of its vertices (i.ee,dbometry) and triangles (i.e., the topology).
If the image is, however, represented by the Delgunangulation, it is possible to avoid
storing of the topology because, as the Delaunaggulation of a given vertex set is unique
(if no four points lie on a common circum-circl&@may be recomputed from the geometry
during the reconstruction process. At any ratenef/é contains a few vertices only, the tri-
angulation in this raw form consumes a lot of byded, therefore, it is not suitable for stor-
ing. A more compact form is necessary.

In this section, we describe various triangulamtoding methods. In order to get as small
files as possible, we often employ also some oftexg data compression algorithms such as
bzip2, deflate (the default algorithm used in ZigPdm, Izma (both used in 7z), paq8o, Ipaql,
and quad — see [Mah07, Sou07b, Wik07a, Wik07b, WtkOLet us note that we exploited
the implementation of these algorithms that is@aZp utilities [Sou07a]. Commands used to
compress the given source file using these usliiee shown in Table 5.1

Algorithm | Command

bzip2 7z.exe a -tbzip2 -mmt=on -mx9 -md=900k -mp&ss

deflate 7z.exe a -tzip -mm=Deflate64 -mx9 -md=64knfb=128 -mpass=5
-mem=AES256

ppdm 7z.exe a -t7z -m0=PPMd -mx9 -mmem=192m -moea&2-0n

lzma 7z.exe a -t7z -m0=LZMA -mmt=on -mx9 -md=32nTbrb4 -ms=on

paq8o paqg8o.exe -1

lpaql Ipagl.exe 6

quad guad.exe -x

Table 5.1: Commands used for the compression of a source file.

5.1 Raw

After a header, which contains the size of imagetae number of vertices, is written into the
output file, the method proceeds with storing atices one after another in an uncompressed
way. For each vertex, it saves its x and y cootdméollowed by its grey value using 16-bit
integer for one coordinate and 8-bit for the grejue, i.e., 5 bytes per one vertex are con-
sumed. The topology is not stored at all, i.es thethod is suitable for the Delaunay triangu-
lation only. The produced file is afterwards congsexl by one of data compression algo-
rithms. As general compression algorithms usuatiyndt take the character of data into an
account (except for paq80), the expected compnesatm is rather small.

5.2 Vertex Path (VXPATH)

The VXPATH method successively visits all vertigtsring the differences (in both coordi-
nates as well as in grey values) between the dilyrespected vertex and the previously vis-
ited vertex into two arrays constructed in the mgmn the first array, denoted &5 there
are stored differences in x and y-coordinates;stond, denoted & keeps differences in
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grey values (i.e., in z-coordinates). In the retmmtsion process, vertex positions are then
reconstructed from the arrd4 whilst the second array is used for the computation of grey
values.

Vertices are visited in such an order that thesdgfifices in x and y-coordinates are minimized.
Being in the vertep(py, Py, Pgrey), the algorithm thus proceeds with such vedgx, dy, Agrey)
that it has not been already visited and the Mirddaowdistance between these vertices
[Wik07d], i.e., the value:

Ipx - qxl + |py - qy|’

is minimal. Figure 5.1 shows the triangulation es@nting a tiny image of 8x8 pixels with
the displayed order of vertices, their grey valaled the corresponding content of both arrays.

0 1 2 3 4 5 g§ 7 Grey values V (Differences in x, y)
#grey  #grey X y X y X y X Yy X 'y X y Xy X Yy Xy x.y
0- 0 6 7 8 11 ol 4] 10l 9 0 1 2 3 4 5 6 7 8 9
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Figure 5.1: The storing order of vertices and the differences in both coordinates and grey values for
VXPATH.

The method then stores the header (see the Rawod)edhd the minimum in the arrays of
differences in x and y using 16-bits into the oufjde. Afterwards, all values from this array,
lowered by the minimum, are stored using as smathlver of bits as possible (constant for
every value). The number of used bits, naturaiyyiitten into the file first. In our example,
the minimum is -2 and the maximum is 7, i.e., taege is 9 and, therefore, we need 4 bits.
Let us note that it is more than we would have iregy if we had stored coordinates instead
of differences (only 3 bits would have been reqlipecause the largest coordinate is 7). For
larger images, however, it is highly improbablytttie storing of differences would consume
more bits per vertex than the storing of coordisdtemselves. Anyway, this approach lowers
the data entropy and, therefore, if we use ondreddy mentioned data compression utilities
on the output file, we can expect higher compressaios.

Differences in grey values are stored otherwisés heasonable to expect that two adjacent
vertices may hold a completely different grey vallikis is definitely true for vertices in the
vicinity of image edges where the difference carewen 255 in the worst case. If we had ap-
plied the same encoding strategy to this secorad at differences, we would have needed,
typically, with at least 8 bits per one value. Téfere, values are simply stored using 8 bits.

An advantage of this approach is that it does aquire the connectivity for the decoding
process and it offers a compactness as the diffeseshould be very small. The output file
can be optionally compressed even more by one rdrgédata compression algorithms. On
the other hand, this brute-force algorithm runOiiN?), which means that it takes a lot of
time (especially, if the triangulation containsaege number of vertices).
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5.3 Faster Vertex Path (FVXPATH)

This method is a slight modification of the VXPAThethod. Being in the vertgx the algo-
rithm computes its Minkowski distance from everyteg that has not been already visited
and is connected with this vertex by an edge intihegulation and it proceeds with the ver-
tex for which the distance is minimal. If no suartex exists, an exhaustive search is used
like in VXPATH. The algorithm, therefore, runs mufaster than VXPATH but it generates a
slightly different array of differences that mayntain larger values — see Figure 5.2. Let us
note that for the tiny triangulation from Figurel Soth algorithms produce the same results.
Unlike VXPATH, the algorithm encodes distances iand y-coordinates separately, i.e., it
constructs two array¥y andVy, instead of just one array

i+1 i+2 i+1 i+3
~.— . ! o !
iy Ai+3 ! iy A2 !
'/, "\ | [N |
! AN | oo AN 1
[}
\\ E \\ :
1 |
a) FVXPATH b) VXPATH

Figure 5.2: The difference between the order of vertices in FVXPATH and VXPATH methods.

As for the differences in grey values, we decidégspite the reason given in the previous
section, to store them in the same way as therdiftes in coordinates, thus accepting that in
the worst case this may lead to the nine-bits pelex representation.

5.4 Triangle Path (TRPATH)

The Triangle Path enhances the VXPATH method in gswall things. First, it the processes
vertices in a different order (but by the same way, it also constructs arrays of differences)
as follows. The algorithm traverses triangles ia thangulation in the depth-first order and
whenever a new triangle is visited, its still nobgessed vertices are processed. An example
Is given in Figure 5.3.

0 1 2 3 4 5 g 7 Grey values V (Differences in x, y)

#grey  #grey Xy Xy Xy Xy Xy Xy Xy Xy Xy Xy
0n 0 2 18 16 15 ol 4| 10l20 0 1 2 3 4 5 6 7 8 9
: 1 2| 12[18] [olof of 1] 2[-1] of of -2[ 1] 2] 1] -2] of of 2 2f 1] -2[ 9]
14 1 = : 2_4 126 10 11 12 13 14 15 16 17 18
. 3t /|17 ) a6l 13 9| Lrzlol of-2[-2[-1]-1] of 2[-2] 1]-2[-2[ of -1] 1] o]-1]
_,: 51 15/15] C(Differencesin greyvalues)
4 ¥ 13 2 6] 5| 16[12
o — — 8 9 10 11 12 13 14 15 16 17 18
54 7 R < v I 4| 2| 2| 2| 1| 2| 2| 2| 1[-a]20]-2] -6]-3] o] 6] -3[-5] 3]
8| 4| 18[10]
V| o ol 0]
7H 9 - 10

Figure 5.3: The storing order of vertices and the differences in both coordinates and grey values for
TRPATH. The traversal order of triangles is drawn by a dotted poly-line.
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As vertices are handled in a linear time, the tocmesumption is significantly reduced. On the
other hand, the vertexadjacent to the vertgxin the storing order is rarely the closest one in
the meaning of Minkowski distance. Sometimes it reagn happen that these vertices are
quite far away from themselves and/or separateselgral triangles. This is caused by dead
ends in the traversal process — see the triangtE3[53] in Figure 5.3. All in all, it means that
we can expect larger values in the avay

The second improvement is, therefore, that thishotetdoes not use a fixed number of bits
for all differences but encodes the arkausing variant number of bits, i.e., different gawt
the array are encoded using different numbers tsf Bhis makes the method slightly more
complex but promises lower storage costs. Let usaescribe the encoding in detail.

For every part, it is necessary to store the nurobgalues present in this part (16 bits), their
minimum (another 16 bits) and, indeed, the numbdsits used for their encoding (4 bits),
which gives 36 bits in total. Parts are construdigdh data stream algorithm that processes
the values in the array successively as follows. dazh value, it checks whether this value
can be encoded using the current number of bithelbutcome of this test is negative, it de-
cides if it is worth to increase the number of ltsto proceeds with a new part. The algo-
rithm in pseudo C is written in Algorithm 5.1.

nCurM n = nCurMax = V[O]; /1the current ninimum and maxi mum
nCurBits = 1; //the current nunber of bits
nProcessed = 1; /Ithe very first value has been processed

for (i =1; i <length(V); i++) {
/1get new min and max
nNewM n = min(nMn, V[i]);
nNewbx = max(nMax, V[i]);
nNewBi ts = nunber of bits required to store val ues nNewM n. . nNewVax

/lcal culate the costs
nCost1l = 36 + nProcessed*nCurBits + 37;
nCost2 = 36 + (nProcessed + 1)*nNewBits;
if (nCostl < nCost2){
/lstart a new part
store | ast nProcessed val ues using nCurBits bits;

nNewM n = nNewiMax = V[i];
nNewBits = 1;
nProcessed = O;

}

nCurM n = nNewM n; nCur Max = nNewMax; nCurBits = nNewBits;
nProcessed++;

Algorithm 5.1: The encoding of the array V using variant number of bits.

5.5 Hilbert Space Filling Curve (BEHEC)

In this method, vertices are processed accordindpeéw position on a space filling Hilbert
curve [Hil81]. Unlike previously described methg@sg., VXPATH), we do not encode dif-
ferences in x and y coordinates (i.e., differenicethe Euclidian space) but differences in
positions (i.e., differences in a linear spacerdefiby the Hilbert curve). This means that, in
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comparison with, e.g., VXPATH, the arr&has only a half of values but its values might be
larger. Figure 5.1 shows the generated arvagadC for the image of 8x8 pixels.

0 1 2 3 4 5 6 7 Grey values \Y (Differences in positions)
: #grey  #grey 11 12 13 14 15 16 17 18
0 ° L of_4] 10_9|0|1|3|3|4|3|1|4|2|3|8|1|9|2|6|7|1|1|4|
) - 1l 2| 1112
1! ZNY 2[ 4] 12[20]
24 51 - Y 3| 6| 13[18 C(Differencesin greyvalues)
3d 6 a8 bLa Lt al 7] 14] 9 9 10 11 12 13 14 15 16 17 18
5 5| 15[ 7 |4|2| 2|2| 1|2| 0|2| 3|4| 5] 3] 8[-2[ -9[-2[ 3[ 2] 3
4 - am i lim — Py
. : 6| 5 16[10]
5 75 ol e Za3313 71 3] 17[12
6_ - - [ ] L] L™ 8_0 18£
7+ gE—— 2 Sl 1) oL 4|

Figure 5.4: The storing order of vertices and the differences in both positions and grey values. The
Hilbert curve is drawn by a dotted poly-line.

In the next stage of BEHEC, the artdys encoded into another arr&y using variant num-
ber of bits (see TRPATH for details) and the fiaglayV’ is furthermore compressed by the
Huffman encoding [Huf52]. The result of the comgies, including the constructed Huff-
man tree (i.e., the dictionary for the encoding)written into the output file. After that, the
arrayC, i.e., the array of differences in grey valuealgo compressed by the Huffman encod-
ing and the outcome stored into the file.

An advantage of this approach is that it can pretes triangulation i®(N) time in the worst
case and it is likely to produce very small fil&n the other hand, its implementation might
be rather complex (especially, the implementatibthe Hilbert curve for images of arbitrary
sizes). Let us also note that it is quite improbahkt additional application of general data
compression algorithms would bring a significardioge in compression ratio.

5.6 LZ Hilbert Space Filling Curve (LZHEC)

As one can guess from its name, this method alpmix the linearization of vertex space by
the Hilbert space-filling curve (see BEHEC). Itfdis from the just described BEHEC only in
the encoding of the arraysandC. These arrays are stored in an uncompressed foffioi-a
lows. Values from the array are processed first. If the value is less than 28 stored us-
ing 8 bits, i.e., the highest bit is always zeriheowise, the algorithm transmits one bit set to
one followed by bits 8 — 14 of the value and thgnt® lowest 8 bits, i.e., 16 bits are needed.
As it is reasonable to believe that most values valunder the threshold 128, the expected
average number of bits per vertex coordinate shooieéxceed nine.

After that, the array of differences in grey valui® arrayC, is stored using 8 bits per value,

l.e., it is processed in the same way as in the AXP method. In the last step, the method
compresses the output file by some of existing g@raata compression algorithm. An ad-

vantage of this approach roots from its simplieihd efficiency. On the other hand, an exter-
nal compression utility is required in order to i@sle a good compression ratio.

5.7 KORILA

A completely different strategy is exploited in tKORILA method. It is based on the idea
presented by Rila et al. [Ril98] to store vertexmhnates as a bitmap that contains 1 at posi-
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tions corresponding to the vertices of triangulatmd O elsewhere. An example of such bit-
map is shown in Figure 5.5.

01234567
llllllll:
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Figure 5.5: The triangulation and the corresponding bitmap for the 8x8 image.

After the bitmap is constructed, its bit values esenbined in order to get a byte stream, e.g.,
for our triangulation from Figure 5.5 we would geght values: 173, 168, 130, 160, 12, 129,
32 and 129. This byte stream is then compressatidbHuffman encoding. Let us note that
we also tried to compress the bitmap by the bitvirké& (Run Length Encoding) [WicO7f]
algorithm but it did not bring any improvement. THaffman has proved to outpace the RLE
in all our experiments — see Figure 5.6.

40000
35000
30000
25000
20000
15000 —RLE
10000 === Huffman
5000
0

Compressed size [B]

0 20000 40000 60000 80000 100000
N

Figure 5.6: The comparison of average sizes of outputs produced by the bit RLE and the Huffman
encoding for triangulations with various numbers of points (N). It was tested on a set of 512x512 grey-
scale images.

Let us suppose to have an imagdvbpixels that is represented by the triangulatioi afer-
tices (naturallyN < M). It is obvious that fewer vertices are in tharngulation, the sparser
the constructed bitmap is. A different encodingtstyy is, therefore, used for small triangula-
tions. A triangulation is considered to be sméilit contains the ratidN/M reaches at most 4%
(this threshold was found experimentally). Instebdombining bits into bytes, the bitmap is
converted into a one dimensional bit array and dhiay is split into sequences of zeroes and
ones of a predefined maximal length (this valueyesnfrom 16 to 256 according to the ratio
N/M). These sequences are, afterwards, used as abatghr the Huffman encoding. For the
example from Figure 5.5, the alphabet would be, @01 11, 000 and 00000, if the maximal
allowed length was 4. In comparison with the byierded Huffman encoding used for larger
triangulation, more bytes are needed to store tféntdn tree but, on the other hand, the size
of compressed data should be lower.
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When coordinates are stored, the KORILA method geds with storing of grey values. Dif-
ferences in grey values of vertices ordered judily are computed and compressed using
the Huffman approach as usual. The topology isstated at all, i.e., this method is again
limited to the encoding of Delaunay triangulatiamsy.

5.8 LZ Image 3D Matrix (LZIM)

Similarly to the approach described by Demaretl.ahgdDem03] (see the Demaret method),
the proposed LZIM algorithm starts with the constian of 3D binary matrix that contains
WxHxQ cells, wheréV andH are the width and height of the input image @nhdenotes the
number of supported grey values. As we do not geegrey values stored in vertices of the
triangulation (unlike Demaret et al(Q, is always 256. A cell at the position j|, k] holds one

if and only if there is a vertex having the cooates [, j] and the grey value equalskpoth-
erwise zero value is stored in this cell.

In the next stage of this method, the 3D matrixiclwhs very sparse, is stored into the output
file using one byte per value and this file is afterds compressed by some general data
compression algorithm. An advantage of this apgroadts simplicity and efficiency. On the
contrary, the uncompressed output file is huge.,(og a quite small image of 512x512 pix-
els, 64 MB are consumed).

5.9 Mueller (MUEKD)

Starting with the construction of 3D binary matisee LZIM), here aka as the box, the
MUEKD algorithm continues with a recursive subdiersof this box by axis aligned cuts. In
each step of the recursion, the box is split imto $maller boxes having as equal number of
cells storing the value one as possible. In aalidase, both boxes contain the same number
of ones. Let us note that we always construct asgah that it subdivides the longest side of
the box. The recursion stops when cells in thedvexuniform, i.e., they hold the same value.

In order to speed up the processing, we exploitnsediarea table of the matrix [Mue97].
Summed-area table is a three-dimensional array shatithe value of its cell at the position
[i, ], K] is equal to the sum of the values of the cellthmoriginal matrixat positions [0 up to
i, 0 up toj, 0 up tok]. Figure 5.7shows an example of binary matrix&h and its correspond-
ing summed-area table. Let us note that the sunaremltable can be efficiently found in
O(R), whereR is the total number of cells.

0o|0jojo|O|0O]|0O]|O o|0|0|O0|l0Oj0O|O]O
1/]0f(1|0[1]0]0]O 1{1(2]2|3|3|3]3
1/]0(0|/0]|0f0O[1]0 2|2|3|3|4|4|5]|5
1|0[1|/0]|0|0]|0]O 3|3|5|5|6|6|7]|7
0|0|0j0O|1[|1|0]|O 3|!3|5/5/7[8]9]9
1/0/0|/0]|0f0]|0]1 4/4|/6|6/8]9]10]11
0|0|1|/0|0|0]|O0O]|O 414|7]7]9]10]11]12
1]0/0j0]0j0]0]1 5|/518[8[10(11|12 |14

a) bitmap b) summed-area table

Figure 5.7: The construction of summed-area table in EZ.

Let us explain the process of subdivision usingsinamed area table by an exampl&in-

see Figure 5.8. In the first step, we divide thesied-area table into two parts x-coordinate.
In an ideal case, both parts would contain sevess.oh is, however, impossible to find an
exact position of cut to achieve this ideal cadethfat can be done is to find a cut that mini-
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mize the deviation from the ideal case as follokisst, the proper position of value 7 in the
one-dimensional array 5, 5, up to 14 (i.e., thé daw in the table) is found. As this array is
ordered, we can use modified binary-search algorfibr this purpose. The value somewhere
lies between values 5 and 8. It is necessary taeeghether the value 8 will belong to the
first part or the second one. The former optiomoithices the error 7-5=2 and the latter the
error 8-7=1. Therefore, the cut between the valuaad 10 is created and the summed-table
area updated as Figure 5.8b shows.

0o|0fo0|0O|Of0O|O]O 0|0j0|0]JOf0O|0O]|0O 0o|ofo0]|oO
1/1]12]|2)3|3|3][3 1(1(2]2)1(1|1|1 111|1]1
2|2|3|3[4|4|5]|5 2|123|3]1({1|2|2 111|2]|2
3|3|5|5[6|6|7]|7 3|3|5|5]1(1|2|2 1|1|2]2]1|1]|2]|2
3|!3|5|5[7]8[9]9 3/3|5|5]2|3|4|4 111|2|2]|2|3[4]|4
414(6|/6[8]9|10]|11 4/416[6]2|3[4|5 2|12(3]|3]2(3|4]|5
414(7|7]19]10[11]12 41417(7]12|3[4|5 2|12(414]2(3]|4]|5
5(5/8|8(10(11|12|14 5/5/8|8]2[3|4]|6 3|13[5]|5]2(3]|4]|6
a) before the subdivision b) after the first step c) after the second step
0|0|0]|O0 0|0 0 0j0jojo]O|O
1(1|2]2 0|0 1 1 1 0|0
2121313 1|1 1 0 0|0 0
1({1|2]2 111 0 0jloj0]oOjoO
1({1|2]|2]1]|2]|2]|2 0|0 0]0]0]0 1 0
212|3|3]1|2]2|3 0|1 1]0 0|0 1
2|2|4)4]2(2]2|3 0|1 0jl1jojojo0]o

3|3|5|5]1(2]2|4 0|2 1j0 0jojojo]1
d) after the third step e) after 7 steps f) the result

Figure 5.8: The recursive subdivision of the summed-area table in E°.

In the second step, we divide the first part inopiclinate (it is the longer one). The position
of the value 4 in vector 0, 2, etc. (i.e., the ladumn in the area) is found. It is between val-
ues 3 and 5. The table is subdivided and its vadmesupdated (see Figure 5.8c). The algo-
rithm continues until entirely zeroes or ones agasachieved as shown in Figure 5.8f.

The history of subdivision process is kept in aabyntree. Its inner nodes represent areas that
were subdivided and each of these nodes can bel@mty one zero bit followed by the rela-
tive position of cut used to subdivide the corresping area. For the positiohl,ogz(s—l)J

bits wheres is the length of divided side is used, i.e., astr®bits are consumed per cut for
our example from Figure 5.8. Leaves representimgezeareas can be encoded using two bits
long code 10 and leaves representing ones aredsecamcoded using code 11.

Let us, however, discuss the case when we haveecanndnere all cells are zeroes but those on
the diagonal — see Figure 5.9. We need 18 cuts avbnsoding would consume 50 bits and
the encoding of constructed 19 areas would taker@&8 bits, which gives that 88 bits would
be required. If we, instead of subdividing the argared (linear) positions of cells with the
value one, i.e., we store numbers 0, 8, 16, 24482and 48, using 6 bits per one value (as
there is 49 cells, 6 bits are sufficient), onlyBis would be consumed. As an image edge is
typically represented by more vertices than theaiemg parts of image, the case we have
just discussed is very likely not a singular oneibmay appear in real data quite often.
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1/{0(0|0|0|0O]|O 1{0(0f0(0|0]|O
0(1|j0]0|0|0OfO 1 0|1]0|0]0
o(0j1]0|0|0OfO 0j0j1]0|0f0O|O
o(0|j0]1|0|0fO 0j0|o0 0

o|(0j0j0|1|0|O0 0j]0|0]0|1

o|(o0jo0j0|0O|1]|0 0j0|o0 1(0
0(0|j0jJ0O|0O|O0Of1 0]0]|0 01

a) the bitmap b) the result of subdivision

Figure 5.9: The bitmap (in Ez) and its subdivision.

Therefore, we decided to use three bits long cddefdr leaves representing zeroes areas and
four bits long code 1111 for leaves representirgasuwith ones cells and to modify the ap-
proach as follows. Starting from leaves, the meshdtkecks for every inner node whether it is
worth to split the area or to store positions sfaeroes or ones. If positions are to be stored,
four bits long code 1110 for zeroes and two bitddrGones is written into the output stream
first followed by the number of values that follavisgure 5.10 brings this “merging step” for
an example shown in Figure 5.8. As it can be s#®n,minimal storage requirements are
achieved if the initial area is split verticallyitd9 0 110 are transmitted), its left part is fur-
thermore split horizontally (bits O 100 transmijteaid then positions of ones in areas denoted
in the figure as 18, 32 and 44 are stored.

a) leaves level b) after the first merging c) after another merging
10 17 18 44
@) @) @) @)
32
61214 @)
3 @)
d) inthe middle e) nearthe end f) root level

Figure 5.10: The evaluation of encoding costs. Symbols O and Z denote areas for whose positions of
cells holding the value 1 (O) or 0(Z) are to be stored.

Although this method may seem to be complex, itglé@mentation is quite simple. Its great
advantage is that it promises low storage costdh@®mther hand, despite the use of summed-
area table, it may be rather slow and what is nmaportant it consumes a lot of memory as 4
bytes per one cell of summed-area table are neegéedto process an image of 1024x1024
pixels one would need 1GB of memory.
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5.10Demaret

Besides the methods we have described in previectson, we also experimented with sev-
eral existing methods. Demaret et al. [DemO03] psepan approach suitable for the compres-
sion of Delaunay triangulations representing imanfeg x2* pixels. It stores the number of
vertices using & bits into the output file first and then it contes with the quantization of
grey values held in vertices followed by the camgion of 3D matrix (see MUEKD), here
also known as the box. Let us note that we ceaseulantization in our implementation in
order to be able to compare this method with outhouts.

Afterwards, the box is recursively divided. In eystep of recursion, the box is successively
split by three axis-aligned cuts chosen in the eidd every side of the box into eight smaller
boxes — see Figure 5.11. The algorithm stores ntsvdfevertices in areas L, LT, LTN, LBN,
RT, RTN and RBN using only as many bits as necgssgag., in the very first step of recur-
sion, the value for the area L is encoded ugibgs, values for LT an RT udel bits and the
remaining values are stored k2 bits. Let us note that if any area is empty, itecontains

no vertex in its interior, it is not divided any meo For an instance if the area R was empty,
values for RT, RTN and RBN areas would not be meeitomputed nor stored.

/ LTF _/ RTF

L R LT RT LTN RTN /
RBF
LB RB LBN | RBN /

a) after the first cut b) after the second cut c) theresult

Figure 5.11: The box subdivision.

The recursion stops when either the box to be sideti is empty or it is formed byx2x1
cells. For the latter case, the algorithm storeb@t binary code according to the configura-
tion of zeroes and ones in cells into the outdat frigure 5.12 brings these codes.

ofo][1]1 1]o|lo]1 ol1]|[1]0 olo|[1]1 olo|[1]1
olo|[1]1 ojof[1]1 olof[1]1 ol1]|[1]o0 1/o|{o]1
a) N/A b) 00 c) 01 d) 10 e) 11
0]1 01 1)1 1/0 1]0 0|0
0]1 1]0 olo 0|1 1|0 1]1
f) 10 9 11 h) 000 i) 001 ) 010 k) 011

Figure 5.12: Binary codes for various configurations.

A drawback of this approach is that it consumestai memory (because of 3D matrix). Its
generalization for any image size is possible aiffionot easy to be implemented. On the
other hand, according to the published results,eéhcoding strategy can achieve compression
ratio comparable even with JPEG 2000.
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5.11Demaret06

Another method proposed by Demaret et al. [Dem@&tswith the construction of bitmap
representing coordinates of vertices (see the K@Rfiethod). The bitmap is an initial area
that is recursively split into two smaller rectataguareas of equal size, if the area height is
larger than its width, by a horizontal cut, othesgyiby a vertical cut. The splitting terminates
at areas that are either empty, i.e., not contgiaimy vertex or atomic, i.e., they are of one
pixel size. Whenever an area is subdivided, thebaurof vertices lying in the first part (i.e.,
in top or left area) is written into an array of-Bigs integers. An example of bitmap subdivi-
sion is shown in Figure 5.13.

o|ojojojofofofoO ojofo|ojofof0o]|O ojojojojojojofo V (Numbers of vertices)
1]/o/1|{o]1]ofo]0 1{of1{of1]|o]o]o0 1Jojl1lo]1]o]olo

1/o/ofo]o]of1]0 1{ofolojo]jo]1]0 2]ofolo]ofolz]o L8l sl s af 1] of 2 1]
1/o|1|o]ofo]ofo0 1lof1{ofo]o]o]f0 iloJilo]ololo]o [[1] 2f o] 1] o 2] 1] 1]
olojo|oj1]|1|/0f0 0/0J0f0O]J1|1]|0]|0 0]J0O0jOjO]j1]1]jo}oO |0|1|O|0|1|1|2|1|
1/o/ofo]o]ofof1 1/ololofofo]o]1 1]JoJolo]ofo]o]z

ololz]ololololo ololzlolololol0 oJo[z]o[olo]o]lo Laf 1 of of af 1] 2 2]
1/olo]o]ofolo]1 1/ofofofolofo]1 i1jojojojojojoja [[1] 1] 1] o] o] 0]

a) the first split b) the second split c) subdivided bitmap d) the resulting array

Figure 5.13: The bitmap subdivision.

The constructed array of numbers is compressedhdyHuffman encoding and the result is
stored into the output file. After that, grey vadueeld in vertices are also compressed by the
Huffman encoding and stored. Let us note that astperform the quantization of grey val-
ues in prior to encoding but we skip this step um mnplementation so it can be compared
with the other approaches.

The method is simple to be understood and impleatericcording to the results presented
by authors, it also promises a good compressioo. rat

5.12Edgebreaker

Edgebreaker proposed by Rosignac [Ros99] is prglthlel most often used algorithm for a
compression of an arbitrary triangulation. Edgebkeeaisits triangles in a spiralling order and
generates a string of symbols from the set {C, LRES}. This string describes the topology,
l.e., it indicates how the mesh can be rebuiltngghe Huffman compressor, it can be effi-
ciently encoded so that two bits per triangle anargnteed. The geometry, i.e., the coordi-
nates and grey levels of vertices are encodedllasv When a triangle, sa¥, po, P, IS Vis-
ited and the far vertep of its adjacent triangle has not been processedayptedictiong is
computed using the parallelogram predictor andalgerithm stores the differences between
this predictor and the vertgxinto arraysv andC — see Figure 5.14.

Both arrays of differences are stored into the oufile using a fixed number of bits per ver-
tex (see VXPATH). This number depends on how adeutae predictions are. Theoretically,
if the predictor were able to give always an actupaediction (i.e.q andp are the same), it
would be possible to avoid the storing of geomelinypractice, however, this case does not
exist.

An advantage of this algorithm is that it can coeggrany triangulation, not only the Delau-
nay triangulation, and, if the parallelogram preéalids used, it runs incredibly fast. On the
other hand, its implementation for triangulationghwboundaries is not as simple as for
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closed meshes. Another drawback is that the toydhag to be stored even for the Delaunay
triangulation because it is needed for decodingoofdinates and grey values.

Pa Po

Figure 5.14: The prediction q of the vertex p.

5.13Coddyac

Another approach suitable for the compression oawnitrary triangulation, with the code-
name Coddyac, is described in [Vas07]. It is ayjagsmpression originally proposed for en-
coding of dynamic meshes, i.e., for triangulatiafese vertices may change their location in
time. Authors clearly demonstrate that their apphoautperforms EdgeBreaker and, there-
fore, a better compression ration might be expegtettade of quality).

Similarly to Edgebreaker, the algorithm storesedé#hces between vertices and their predic-
tions. Instead of the parallelogram predictor, edprtor based on PCA (Principal Component
Analysis) [Wic07e] is exploited. Let us note that the PCA is very time consuming, the

compression of even small triangulation (havingoapte of thousands vertices) might take

several minutes on commodity hardware.
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6 Experiments with Triangulation Encoding

In the previous section, we described various nasHor the compression of triangulations
representing grey-scale images. Most of them dostare the connectivity of vertices and,
therefore, they are suitable for the Delaunay gidgation only because this kind of triangula-
tions can be recomputed from vertices in the reitooson process. All these methods were
tested on Delaunay triangulations of grey-scalegesdarom the tested set that were produced
by the BRUTE decimation technique (see Section).3,hs section brings results of our ex-
periments.

@ bzip2 & deflate & ppdm & lzma
3.5

Wpag8o HMlpagl W quad

Compression ratio
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LZIM
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4000 -~

3000 -
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[
[
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|

E

1000 -

Compression ratio

d

bzip2 deflate ppdm Izma pag8o Ipagl quad

Figure 6.1: Average compression ratios achieved by data compression utilities for outputs produced
by various methods of the Delaunay triangulation encoding.

6.1 compares average compression ratios that wareved by various general data compres-
sion algorithms for Delaunay triangulations encotbydmethods described in the previous
section. As it can be seen, there is no significhfierence in these compression algorithms
for triangulations encoded by methods that useriabi@ number of bits for the encoding, i.e.,
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TRPATH, BEHEC, LZHEC, KORILA, MUEKD, Demaret and Braret06. For the remain-

ing methods, there is no universal compressionrdiigo; a good choice could be bzip2 (es-
pecially, for LZIM encoded triangulations) or paq86 we take all achieved compression
ratios into an account, the winning algorithm ig®a (with the score 92.2%) followed by
Ipagl (score 91.6%), bzip2 (90.5%) and then Iznta7®), ppdm (84.6%), deflate (81.4%)
and quad (80.4%). Nevertheless, both pag8o andl Ipfgprithms are, especially for larger
files, time consuming. For an instance, a file piat by LZIM was typically compressed by
pag8o in 18 — 25 minutes, while bzip2 needed jutdva seconds. Therefore, we consider
bzip2 to be the best choice.

As it can be also seen, while outputs of methods store data without any use of sophistic
encoding techniques (e.g., the Huffman encodingE)Rare well compressible, outputs of
BEHEC, KORILA, MUEKD and Demaret methods are notmgpoessible at all. Surprisingly,
the Demaret06 method, although it exploits the rhaffi encoding, produces files that can be
compressed by any of considered data compresgjomnithims. The explanation is simple, if
we recall the character of input data processethéyHuffman encoding (see Figure 5.13d).
The most frequent value in the input data is zeh eherefore, it will be likely encoded using
one zero bit only. As there are long sequencesudes in the input data, it is very likely to
have sequences of zero bytes also in the outp# fiilat can be, indeed, well compressed in
the post-processing by some general data compreskgjorithm.

Last thing visible in the graph is that by storitifferences in coordinates instead of storing
pure coordinates we get results that are bettepoessible — compare the compression ratio
for RAW and VXPATH methods. Without any surpris@tal encoded using a fixed number
of bits per value are also better compressible theta encoded using a variable number of
bits — see VXPATH, FVXPATH vs. TRPATH.

A comparison of methods for the encoding of Delgumi@ngulations (i.e., they do not store
the connectivity of vertices) is given in Figur@6- Figure 6.7. Unsurprisingly, the RAW
method produces much larger files (even if theyammpressed by bzip2) than others. Poor
results are also achieved by the TRPATH method.réhson roots probably from larger dif-
ferences (see Section 5.4), whose storing requoed bits.

60000
=o—RAW + bzip2 8-V XPATH + bzip2
FVXPATH + bzip2 =~ =«TRPATH + bzip2
50000 |« BEHEC LZHEC + bzip2
KORILA LZIM (bzip2)
40000 MUEKD Demaret
E Demaret06 + bzip2
1]
N 30000
(7]
2
i
20000
10000
0
0 5000 10000 15000 20000

N

Figure 6.2: The comparison of file sizes achieved by various encoding methods for Delaunay triangu-
lations of various numbers of vertices (N) that represent the Maran image (400x300).
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Figure 6.3: The comparison of file sizes achieved by various encoding methods for the image of boats
(512x512) represented by Delaunay triangulations of various numbers of vertices (N).

File size [KB]

140

120

100

80

60

40

20

——RAW + bzip2
—4—FVXPATH + bzip2
=#=BEHEC

—+—KORILA

MUEKD
Demaret06 + bzip2

—#-\VXPATH + bzip2
—<TRPATH + bzip2
~0-LZHEC + bip2
—=LZIM (bzip2)
~o—-Demaret

File size [B]

0 10000

20000

30000

40000 50000

25000

20000

15000

10000

5000

Figure 6.4: The comparison of file sizes achieved by various encoding methods for the image of fruits
(512x512) represented by Delaunay triangulations of various numbers of vertices (N).
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Figure 6.5: The comparison of file sizes achieved by various encoding methods for the Lena image
(512x512) represented by Delaunay triangulations of various numbers of vertices (N).
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Figure 6.6: The comparison of file sizes achieved by various encoding methods for the image of mon-
arch (768x512) represented by Delaunay triangulations of various numbers of vertices (N).
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Figure 6.7: The comparison of file sizes achieved by various encoding methods for the image of pirate
(1024x1024) represented by Delaunay triangulations of various numbers of vertices (N).

As it can be seen, there is no significant diffeesbetween Demaret and MUEKD methods.
For larger triangulations (with more than 10 00Qtices), these methods are slightly out-
paced by Demaret06. The smallest files were acHiéyethe VXPATH encoding combined
with additional compression by bzip2. This techmids typically followed by its faster ver-

sion, the FVXPATH. All other methods produce filwgh sizes between sizes achieved by
VXPATH and TRPATH.

We also tested Edgebreaker and Coddyac methodarauitable for encoding of arbitrary

triangulationsTable 6.1compares the results obtained by Edgebreakerifogulations with

50 000 vertices. While VXPATH and TRPATH methodkiaged a similar compression ratio

for all three triangulations, Edgebreaker showsfarént behaviour. The explanation is quite
simple. The regularity of constructed triangulagias significantly influenced by the amount

of sharp edges and the richness of objects asawsdll the range of grey values in the image.
For an instance, the Lena image contains 28 greyesaand a few objects only, whilst the

image of fruits consists of many objects of 256ygralues. If the triangulation is very irregu-
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lar, as it can be seen Figure 6.8, the predictor used in Edgebreaker often producgisiy
inaccurate predictions, which leads to lower coragian ratic

Image PSNR | Edgebreaker VXPATHTRPATH
Lena 36.29 | 152 624 175012 135(
Fruits 39.95 | 171 464 162 512 136¢
Boat 35.30 | 273 648 175012 128¢

Table 6.1: The comparison of sizes of output files produced by various compression schemes for
triangulations with 50 000 vertices of three popular 512x512 grey-scale images.

While the VXPATH method in its basic form needsitgtly less than 3.5 byt, i.e., 28 bits,
to encode one vertex (both coordinates and grayesal Edgebreaker requires 2.5 up to
bytes per vertex and at most 2 bits per trie. If we consider that there are twice as m
triangles as vertices in a triangulation, it giussthatthe Edgebreakenethodneeds 24 up to
40 bits to encode one verti In an averagease, VXPATH takes about four bits per ver
lessthan Edgebreaker. It means that if we have an imegeesented by the Delaunay n-
gulation ofN vertices, Edgebreaker is wo using only in such a case that one can repre
this image (in the same quality) by an arbitrargngulation of 2/ vertices only. In our
opinion, this is a very difficult (if not even impsible) tasl

R %
S R

- Rk
)
e AN L. e

s
7

XITS

Figure 6.8: The Delaunay triangulation with 15 000 vertices and the corresponding reconstructed
image (PSNR = 33.90).

When we tried taip output files in order to achieve a better coasgion rati, Edgebreaker
has never outperformealde VXPATH methoc see Table 6.2.
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Image PSNREdgebreaker VXPATH TRPATH

Lena  36.29| 66 566 52470 90 602
Fruits 39.95| 79620 57 135 100 998
Boat 35.30| 110419 53677 115 788

Table 6.2: The comparison of sizes of zipped output files produced by various compression schemes
for triangulations with 50 000 vertices of three popular 512x512 grey-scale images.

The Coddyac method has proven to be useless. Tétisooh required almost half an hour to
encode a triangulation of 3991 vertices, while thmaining methods do this in a couple of
seconds or at most in several minutes. It, morequeduced files with sizes that range from
12 to 38 KB according to the chosen encoding quékt us remind reader that Coddyac is a
lossy compression technique). It leads to an olsvamnclusion that it makes no sense to em-
ploy neither Edgebreaker nor Coddyac for the emapdf triangulations.

We compared the achieved results also with JPEGJ&&1{52000. As it can be seen from
Table 6.3, both compression techniques outpace #nvehest VXPATH method. Let us note
that both Demaret and Demaret06 methods, if thentggaion of grey values were used,
should have been, according to authors claims, etitiye to wavelet encoding exploited in
JPEG2000. Without the quantisation, however, botathods are beaten by LZHEC,
FVXPATH and even by VXPATH. Thus it seems reasoedbl believe that if grey values
were quantized, VXPATH should outperform JPEG2000.

VXPATH + bzip2 JPEG JPEG2000

Lena Sizé | 44310 19866 3329 38467 16159 3147 25538 4819
PSNR | 36.26 33.41 24.68 36.22 33.46 24.13 36.34 33.37
Fruits Size | 46345 19521 3002 45584 21367 26f7 33081 5857
PSNR | 39.95 35.27 2452 39.31 35.28 24.38 39.97 35.31
Boat Size | 46724 21404 399§ 39357 16295 3024 26378 2523
PSNR | 3530 31.00 23.35 35.36 31.00 23.03 35.26 30.95

Table 6.3: Sizes of zipped output files produced by the VXPATH method for different triangulations of
popular 512x512 grey-scale images in comparison with sizes produced by JPEG and JPEG2000.

From results presented in this section, it is qaléar that the compression of computed trian-
gulation is a very important issue. Even a smadingfe of an existing method could dramati-
cally change its typical compression ratio. Perfedmexperiments show that it would be
probably fruitless to construct an arbitrary triategion instead of the Delaunay one because,
although it would contain fewer vertices, it canbet stored using fewer bytes. Apparently,
the storing of differences using a fixed numbebité followed by a general data compression
is better than storing them using a variable nunabéits. It seems furthermore that the quan-
tization of grey values plays an important roleolrr future work, techniques identified dur-
ing our experiments to be worthy should be combiogéther in a new method.
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7 Extension for Colour Images

A pixel in a colour image is represented by a vedthree (or four) components whose
meaning depends on the colour model used for theesentation. Therefore, a straightfor-
ward extension of the proposed alternative reptasen of images by the Delaunay triangu-
lation (see sections above) is to deal with eadbucacomponent independently and construct
three (or four) component triangulations that #teravards encoded giving three (four) out-
put files. In our research, we experimented withges represented using RGB, HSV, L*u*v
and YCDbCr colour models.

7.1 Colour Space Systems

The RGB colour model (see Figure 7.1a) is an adglitblour model in which red, green, and

blue light are added together in various ways poaeuce a broad array of colours. The main
purpose of this model is for the display of digitakges in electronic systems (such as televi-
sions and computers), which renders this modeétthb most commonly used one.

The HSV colour model better corresponds to the humperception of colours (and their
blending) as the colour is defined by hue, satomatind lightness value — see Figure 7.1b.
This model is widely used in applications for usgmnipulation with digital photographs.

Magenta Hue 0-360"
Blue White
Black Yellow
Saturation
Green Value 0-100 0-100
a) RGB model b) HSV model
White
+L"
White

o0 L

Yellow

=l
L]
ey

Graen

Blue CIELUV color space

Black

c) CIE L*u*v model

Figure 7.1: Various colour models [MSDNO9, Nik09].
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The CIE L*u*v* colour model, also known as the CIBY colour model, is a device ie-

pendent colour space system based on the ideeethanhd green and blue and yellow as
are distant colours. Hence, it is possible to mhiice values describing the position of col

between red and green (component *u) and betwaen dtd yellow component *v). The
component L then defines lightne— see Figure 7cl The L*u*v model is extensively ust
for applications such as computer graphics whidl déth coloured lights

W\

a) original

g) HSV -V h) L*u*v—L

i) L*u*v-—*u

k) YCbCr-Y ) YCbCr-Cb

m) YCbCr — Cr

Figure 7.2: Separated colour components of Lena colour image in various colour systems.
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In the YCbCr model, Y is the luminance componerd &b and Cr are the blue-difference
and red-difference chromatic components, respdgti@riginally it was developed for SE-
CAM TV system and later adopted in various vided @amage encoding methods such as
JPEG or MPEG. Its main advantage is that due taé¢paration of luminance, it is possible to
transmit the luminance (Y component), which is mionportant for human perception, in a
high resolution and chromatic components (Cb anjd i@t so important for human percep-
tion, in a lower resolution.

A colour represented in one colour space modebeagasily transformed to be represented in
another colour space model. This transformationydwer, is not always without a loss of

information (especially in case of device dependembur systems). Colour components of
Lena image represented using various colour maatelsshown in Figure 7.2. As it can be

seen, while the range of values of RGB and HSV ammepts is large, i.e., it is reasonable to
expect lot of vertices in component triangulatiomsrder to achieve a good quality, the range
of values of components *u, *v, Cb and Cr is quite, i.e., these components can be likely
represented by triangulations with fewer vertidemntin case of L and Y components.

7.2 Separate Triangulations

Figure 7.3 presents the dependency of the qudlitysocomponent triangulation (measured in
PSNR) on the number of vertices for Lena colourged_et us note that similar results are,
indeed, achieved also for other tested colour imagasurprisingly, the degradation in the
quality might be significantly faster in one compan than in the other one (for instance,
compare L with *u or *v components). The perforneegberiments confirmed our hypothesis
that Cb and Cr components need fewer verticesttimoomponent Y to be represented in the
same quality. This is especially true for airplabapoon, fruits, tulips and other images
whose results are not presented in this reportikerdur expectation, however, experiments
show that the component L (in L*u*v colour modet) less important than the remaining
components, i.e., it needs fewer vertices.
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Figure 7.3: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations on the number of vertices in component triangulations for colour 512x512 Lena image.
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Component triangulations with the same (or at |lsasilar) quality are grouped together to
form the final geometric representation the colooage. Figure 7.4 brings a comparison of
the achieved quality for various colour models he tlependence on the overall amount of
vertices in component triangulations. While the R@Bdel clearly outpaces the other tested
models when larger triangulations are consideredchieves almost the same results as the
other models (except for the HSV model) for smailiengulations. As smaller triangulations
are typically required to get a good compressidio (@ee Section 6), we could conclude that
any colour space except for the HSV is suitabldHerproposed geometric representation.
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e 40.00 25.00 4
2
£30.00
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10.00 - : : : . 15.00 : :
0 200000 4oo|\?oo 600000 800000 0 2000040000

Figure 7.4: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations on the overall number of vertices (in all component triangulations) for colour 512x512
Lena image.

A relationship between the size of final triangidat(composed of three independent compo-
nent triangulations) and the size of output fileefyy component triangulation is encoded in-
dependently producing three output files whosessae summed to get the final size) is de-
picted in Figure 7.5.0bviously triangulations undécbCr and L*u*v colours models are
more suitable for the used encoding technique (haseHuffman encoding).
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Figure 7.5: The dependency of sizes of output files encoded by FVXPATH + bzip2 technique on the
overall number of vertices for colour 512x512 fruits image.
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However, it is important to point out that the quyabf the geometric representation using
these colour space systems degrades faster aneffotiee we must take into account also this
information — see Figure 7.6. Now, there is no ddhat the most suitable colour model is the
YCbCr model followed by the RGB model unless we kvarith large triangulations for
whose the RGB model is the best one.
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| 16
130 - 30 14
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105 - 0 - 0
M RGB (75K /35.58) ® RGB (18K /30.85) m RGB(6K/27.18)
M HSV (90K /35.19) ® HSV (24K /30.61) B HSV (9K /26.35)
L*¥u*v (120K /35.60) L*u*v (24K /30.60) L¥u*v (6K /26.24)
® YCbCr (90K / 35.46) B YCbCr (18K / 30.45) B YChCr (6K / 26.80)

Figure 7.6: The sizes of output files (encoded by FVXPATH + bzip2 technique) for three test cases of
colour 512x512 fruits image. Information in brackets denotes the overall number of vertices in the tri-
angulation (in thousands) / the PSNR of the representation.

7.3 Cotriangulation

A drawback of the straightforward approach descriimethe previous section is that it intro-
duces different approximation error for differentaur components. It might results in colour
bleeding. For an example, let us suppose to haireh of pastel pink colour with RGB val-
ues 235, 205 and 220 in the original colour imdgg.us further suppose that whilst the red
and green components are reconstructed withoutran ¢éhe reconstructed value of the blue
component is 180. While in a grey-scale image,@raimation error of this scale would be
hardly spotted, in the considered colour imaggs vwell visible as the reconstructed pixel has
a beige colour instead of ping one — see Figure 7.7

Figure 7.7: lllustration of colour bleeding — top: the original colour, its RGB components and the cor-
responding grey-scale value; bottom: the colour reconstructed with an error in the blue component.
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Colour bleeding can be diminished, if we use ongiaiogulation [Wei98], instead of three
separated triangulations. In general, the cotritatgun is constructed from d-dimensional
triangulations by their transformation into oredimensional triangulation in(d+n)-
dimensional space. For the purpose of the triamgwpresentation of colour image, this
means that the inputs are three component triaigntaand the output is one triangulation
that includes all the colour channels. Hence, #seilting structure is the Delaunay triangula-
tion with five parameters X, y, R, G, B assigne@a&ch vertex (instead of three parameters X,
y, grey value as in the case of grey-scale images).

As the spatial distribution of vertices in inpufatrgulations usually does not match, i.e., for
some vertex of one triangulation, there is no wedatiethe same position in the other two trian-
gulations, the number of vertices in the cotriaagah ranges from the vertex count in the
smallest component triangulations to the sum ofexecounts of all input triangulations. An
important property of the cotriangulation is thiamight represent some vertices from the in-
put triangulations with additional approximatiorrar which also reduces the storage costs.
Detailed description of cotriangulations and these for our purpose is given in the bachelor
thesis by T. Janak [Jan09] and in the bacheloighesSykora [Syk08].
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Figure 7.8: The dependency of quality (measured in PSNR) of images reconstructed from the Delau-
nay cotriangulation on the overall number of vertices (in all component triangulations) for colour
512x512 Lena image.
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Figure 7.9: The dependency of sizes of output files encoded by FVXPATH + bzip2 technique on the
overall number of vertices in the Delaunay cotriangulation for colour 512x512 fruits image.
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Figure 7.8 and Figure 7.9 show the dependenceeafjuiality (measured in PSNR) of the rep-
resentation by the cotriangulation on the numbeveastices in this cotriangulation and the
relationship between the number of vertices iniantgulations and the sizes of files produced
by FVXPATH + bzip2 method extended for cotriangidas (instead of one array of grey
values, three arrays are stored — one for each aoemp) and. As it can be seen the curves
have similar trends as curves for separate triatiguls (see Figure 7.4 and Figure 7.5) with a
small exception of L*u*v colour model whose qualitggrades in cotriangulations faster.

The dependency of quality on output file sizes igey in Figure 7.10. It is obvious that
YCbCr colour model outperforms the other colour gledalthough, save for the HSV model,
differences are not big. Figure 7.11brings anottw@nparison. Supposedly, L*u*v model
provides us with such good results that it coulddesidered as the second best model. How-
ever, this model was found unstable; it may perf@oorly (see Figure 7.12) for some im-
ages. Hence, the most suitable model is the YCh&tletrfollowed by the RGB model.
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Figure 7.10: The dependency of quality (measured in PSNR) on sizes of output files with cotriangula-
tions that were encoded by FVXPATH + bzip2 technique for colour 512x512 fruits image.
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Figure 7.11: The sizes of output files (encoded by FVXPATH + bzip2 technique) for three test cases
of colour 512x512 fruits image. Information in brackets denotes the overall number of vertices in the
cotriangulation (in thousands) / the PSNR of the representation.
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Figure 7.12: The sizes of output files (encoded by FVXPATH + bzip2 technique) for three test cases
of colour 512x512 Lena image. Information in brackets denotes the overall number of vertices in the
cotriangulation (in thousands) / the PSNR of the representation.

7.4 Comparison & Summarization

When we compare separated triangulations with amguilations (see Figure 7.13), we can
see that separated triangulations outperformsacwtilations in case of RGB model, whilst in
case of YCbCr model the situation is vice verséhe Tmprovement of cotriangulations is,

however, negligible considering the increased cewxipl of the algorithm. Hence, we rec-

ommend the use of separated triangulations (tHioee¢he representation of colour images and
these triangulation should exploit YCbCr colour rabdvhen low bit rates are demanded,
otherwise RGB model is more suitable.
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20 -II-Cotlriangl.||lationI - YCbFr 20 -Il-CotIriangllJIatioq - RGI|3 .
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Figure 7.13: Quality comparison of separated triangulations with cotriangulations for colour 512x512
Lena image.

Detailed description of performed experiments carfdand in thesis by R. Sykora [Syk08].
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8 Extension for Video

A digital video is a sequence of usually similatages called frames. The most widely used
representation of video is based on the partitioth@se frames into groups containing intra-
codedl-frames, inter-code®-frames and optional bidirectionally inter-cod®@drames — see
Figure 8.1. Eaclt-frame is considered to be a standalone image aptb&essed independ-
ently, i.e., it is encoded without using any infatmon from the previous (or the following)
frames in the video sequence. For the encodingmjerity of algorithms for lossy video
compression used nowadays exploits either the etesaosine transform (MPEG1-2, DV,
MJPEG, H261-4), the discrete wavelet transformREG 2000, Intel Indeo 5) or the vector
guantization (Cinepak, Sorenson Video).

The inter-coded and bidirectionaly inter-coded &¥fes and B-frames exploit their similarity
to the surrounding frames (in one or both dired)ofor the encoding. In most cases, some
block matching algorithm is used. For each macrbia the frame (typically, 16x16 pixels
group of four 8x8 pixel blocks — a basic elememt¥BEG based compression), it searches for
such movement vectors that, if applied to the nmaloek, describe the following frame with
the minimal error. The process is illustrated igufe 8.1 that shows a blo&kthat has been
found to be similar to the blodX' in the same window in the next frame.
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Figure 8.1: Typical compression scheme (left) and block matching principle (right).

1

The most common problems connected with traditiondeo compression schemes (de-
scribed above) are the appearance of new blockesienbetween two frames and a serious
loss of detail at low bitrates. Moreover, when éhera need to transform or interpolate a vid-
eosequence, handling these video representatioasbis impractical as the corresponding
frames have to be decompressed and all their ppmsessed. Both drawbacks could be
solved (or at least diminished) by using an altéveariangulation-based representation.

A straightforward approach would be to represetraicoded frames by the Delaunay trian-
gulation (see Section 3, 4) of subset of imporgairels, encoded into a compact form by
some of our encoding methods (see Section 5, @) paocess inter-coded frames in a tradi-
tional way (like in MPEG). In our research, we igtigated two other options of exploitation

of triangulations in a digital video. First one sigbe kinetic Delaunay triangulation where
vertices move in time (in directions computed kdyl@ack matching algorithm). The other one
is based on the idea that video could be repreddme3D triangulation, a tetrahedrization,

since it can be considered as a 3D matrix of pikedh taking the time axis as the third geo-
metrical coordinate.
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8.1 Kinetic Delaunay Triangulation (KDT)

The idea of video representation by the kineticabehy triangulation is based on a creation
and successive movement of the Delaunay triangulati

8.1.1 Encoding

In the first step, the method computes the Delaumaygulation of the most significant
points obtained from a frame that is consideredeantra-coded. These points can be identi-
fied either by one of mesh based heuristics desdrib Section 3 (in our experiments we use
the BRUTE heuristics) or by a meshless heuristpecislly developed for the purpose of
video encoding that works as follows.

First of all, points lying on image edges are diet#asing some of existing edge detectors
followed by a threshold operator, which filters dess important points. We experimented

with the most commonly used detectors: Marr-HildreSobel, Robinson, Roberts and

Prewitt. Apparently, the Marr-Hildreth operator, iat is also known as Laplace operator, is
the best choice (in the meaning of the achieveditgua see Figure 8.2. Next, some random

points are chosen and these points together wititgpobtained in the first step are combined
together to get the resulting set of significanihp These points then define the KDT until a
new picture group is formed, starting with the niexta-coded frame.
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Figure 8.2: The quality of the representation by the Delaunay triangulation of 20% points in the de-
pendence on the used edge detector for the Foreman video. No inter-coding is used.

The optimal ratio between edge and random pointsimeestigated and the results are sum-
marized in Figure 8.3. It can be seen that in thgecof live video with dynamic camera,

where both background and foreground changes (FRorgrthe optimal ratio is about 60:40,

while in the case of live video with static camendyere background is simple and do not
change (Miss America), the ratio is much higheis iabout 80:20. Rendered video without
noise is best represented by the ratio 50:50. Hemgeod compromise seems to be the ratio
50:50, i.e., half of significant points are chosenimage edges and half are chosen randomly.
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Figure 8.3: The quality of the Delaunay representation in the dependence on the ratio of edge and
random points to be triangulated for three videosequences - live video with DYNamic camera, live
video with STAtic camera and RENdered animation. The overall amount of selected points is 20%.

For inter-coding (i.e.P andB frames), methods for optical flow prediction ased [Hor81].
We experimented with both the block matching aliponi (BMA) [Fur97] using three differ-
ent metrics: Mean Square Difference (MSD), MeandMlte Difference (MAD) and Pel Dif-
ference Classification (PDC) and the differentiabthod Kanade-Lucas-Thomasi (KLT)
[Luc81]. According to the performed experiments iP8], the block matching with MAD
metrics outperforms the KLT method since the lattethod detects movement in the triangu-
lated image even in static places — see Figureihe further text, the BMA with MAD will
be assumed, if not explicitly expressed otherwdgdditional investigation showed that opti-
mal macroblock size is 16x16 pixels and, thereftite,size of searching window (sééin
Figure 8.1) is 31x31 pixels (it corresponds toldrgest possible movement). Let us note that
we used five inter-coded frames per one intra-cdoide.

N

Figure 8.4: Motion vectors obtained from BMA (left) and KLT (right) methods.

Once all the motion vectors in a frame are knowelpaities of their points in the KDT are
set, which gives us a new KDT — see Figure 8.5adwvantage of this approach is that, unlike
the traditional pixel based methods, the moveméathldock (triangular) of image is continu-
ous, i.e., a better quality can be expected wherirdme rate of the considered video changes.
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On the other hand, time consumption is significatdkrger and the straightforward imple-
mentations of KDT are known to suffer from the nuiced instability. A robust Kinetic De-
launay Triangulation is described in [Vom08, VomQ9]

Figure 8.5: The original KDT, detected motion vectors and the movement compensation in the KDT.

As the extension for video was developed in pdrédiehe development of encoding tech-
niques that were presented in Section 5, the KD&nisoded using other, not so powerful,
methods. The employment of the FVXPATH or otherrensuitable, method belongs to the
scope of our future research. At present, intraedofilames are encoded by a modified the
RAW method that sorts all points according to theygralues associated with them and then,
starting from the second point, it replaces they gr@ue of each point by the difference in
grey values between this point and the previous Bive bytes are required to represent one
point (coordinates require two bytes). The fina¢ai is stored into the output file and further
compressed by the deflate compression techniq@eSsetion 5). In the following text, this
encoding method will be denoted as DELTA+GZip. Theck schema of the proposed tech-
nique for intra-coded frames is given in Figure. 8.6

B

Input frame Edge operator ——> Thresholding

I
v ¥
Random poi
ponnts .Delauna'y
selection triangulation

) ¥
—————————————— > KDT

v

Output stream <€ DELTA + GZip

Figure 8.6: Encoding of intra-coded (I) frames. Blocks A and B are mutually exclusive.

For inter-codedP-frame, one motion vector is stored in a raw forfoatevery point (vertex)

in the previous intra-coded frame. As the movenesimall, one byte per one vector compo-
nent is more than sufficient. The output file istifier compressed by the deflate compression
technique. In the following text, this method wilé denoted as RAWM+GZip. The block
schema of the proposed video encoding is givengare 8.7.
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Figure 8.7: Encoding of inter-coded (P) frames.

8.1.2 Decoding

As the topology is not retained, to decode an iotded frame, points have to be retrieved
from the input stream and the Delaunay triangutatibthese points must be computed first.
Triangles are then interpolated by the bilineagiipslation. In the case of inter-coded frames,
we dynamically move vertices of the Delaunay tri#agon according to motion vectors re-
trieved from the input stream. After that, eithiee triangulation can be interpolated like in the
case of intra-coded frames or feature based wanpiag be applied. The warping process
takes the edges of a triangle in the current frama corresponding transformed edges in the
previous frame. The task is to compute grey vabidble pixels within the transformed trian-
gle — see Figure 8.8. We adopted the warping farertine pairs as described in [Zar98]. Let
us note that as we have a relatively accurate appation of the grey values of all the pixels
in the last intra coded frame, we perform the wagpprocess for all the consecutive inter-
coded frames after that frame. An expected advanthghe warping process over the inter-
polation is that if a triangle changes significgnttietails are better preserved. The block
schema of the overall decoding process is depiot€thure 8.9.

Figure 8.8: Triangle warping [Mar00].
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Figure 8.9: Decoding of intra-coded (1) frames and inter-coded (P) frames. Blocks A and B are mutu-
ally exclusive.

8.1.3 Experiments and Results

The proposed encoding achieves the compressiom 28til — 4.5:1 [Pun08] for the tested
videos (both real live videos and rendered animatiwere subject to experiments). Figure
8.10 brings a comparison of the quality of the gn method with XviD for the same coded
output size. The initial amount of inserted powes 5% and the length of the pictures group
was set to 6. While the intra-coded frames providedvith the reasonable quality (although
with not as good as XviD did), the inter-frames lguadropped rapidly. Both interpolation
and warping techniques were measured to be negdivadent. A subjective comparison,
however, often prefers the warping prior to thesiipblation since it reduces the number of
triangular artefacts which may appear as a re$ukteoreconstruction.
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Figure 8.10: Quality comparison of the proposed method with XviD.
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When the BRUTE method was used for the selectiomgiortant points, the quality im-
proves significantly — see Figure 8.11. The improgat measured in PSNR is about 6 dB,
which, especially, if a more powerful encoding noetlwere used (see Section 5), could be
enough to make the proposed intra-coding an aligm# XviD encoding. Let us note that
the BRUTE method, however, requires double timepmamad to the default meshless heuris-
tics described in this section [Pun08].

An introduction of some kind of nonlinear moveméor instance the movement along ellip-
tic trajectories) may bring improvement for intexding, which is thoroughly needed to ren-
der triangular representations of video useful. fgsearch is, however, still in progress.

=

LN | o]

Figure 8.11: Comparison of the image reconstructed from the Delaunay triangulation of 20% points
selected by proprietary refinement technique (left), the BRUTE decimation technique (middle) with the
image that was subject to M-JPEG compression.

Detailed description of the method and presentaiwhanalysis of other results of performed
experiments can be found in thesis by P. Puncmandé].

8.2 3D Delaunay Triangulation

A video sequence represented by a set of fram&pF pixels can be transformed (without
any loss of information) into a point s&tn E® such that for each pixel there is one point with
z-coordinate defined as a function of the frame Ipeimx and y-coordinates defined by the
position of this pixel in the framer and with thesaciated data corresponding to the grey-
scale value (or colour components values) of thislpThe key issue is to determine the rela-
tionship between units in x-axis (or y-axis) unitsz-axis, i.e., if the distance between two
pixels adjacent in one frame is one, what is tlstadice between a pixel in one frame and its
corresponding pixel in the adjacent frame? Forsidiee of simplicity, we decided to assume
that this distance is also one, i.e., z-coordimdtthe point corresponds to the frame number.
In our future research, we would like to perfornpesiments to find the correct relationship.

Starting with the initial 3D Delaunay triangulatidormed by an artificial tetrahedron large
enough to contain all input points, points are sgso/ely added into this triangulation in the
order such that the next point to be inserted esaihe that participates most at the total error
of the approximation (again bilinear interpolatisrused for the reconstruction). The insertion
is repeated until either the maximum allowed eisrlchieved or the maximum allowed
number of points is inserted. In order to speedth# process, several techniques were
adopted, e.g., insertion of several points simeltarsly — see [Var07].

Let us note that the produced Delaunay triangutat&n be improved (in the meaning of the
quality of the representation) by a simulated alingaAs it can be seen in Figure 8.12, this
is especially true for small triangulations. A digrant drawback of the simulated annealing
is its enormous time consumption. While the tridagian of 256 points took 36 seconds, its
improving by the simulated annealing needed moaa thne hour. As a video sequence is
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typically represented by larger triangulations, fanose the improvement brought by the
simulated annealing is not substantial, we optedising this strategy for video encoding.

a) original data b) 256 points, c) 1024 points,
PSNR = 15.38 PSNR =23.11

d) 256 points, simulated annealing, e) 1024 points, simulated annealing,
PSNR =22.79 PSNR = 26.25

Figure 8.12: Quality comparison of volumetric data reconstructed from the 3D Delaunay triangulation
of 256 and 1024 points constructed without and with simulated annealing. Buckyball 32x32x32.

The extension for video was developed in paratiehe development of encoding techniques
that were presented in Section 5 and, therefoee3h Delaunay triangulation is encoded us-
ing another, not so powerful, method, which wastbto be the best one from several tested
methods [Var07]. This method, denoted as VarC+GZapts all vertices of the triangulation
according to X, y and z-coordinates (the ordemisimportant), computes differences in coor-
dinates between adjacent points and stores diffeeem x-coordinates followed by differ-
ences in y-coordinates and by differences in z-dioates and followed by grey values into
the output file. Due to the sorting, differencesdd be small and, therefore, more suitable
for the deflate compression algorithm that is usedhe output file to reduce its size.

The approach described above was tested on thitee sequences: a cartoon and videos with
the static and the dynamic camera. Figure 8.13 shbese videos as 3D volume data ren-
dered by the ray-tracing technique and sliced noua axes. It can be seen that a typical car-
toon scene is very coherent; a character move®me sisually not too much variable back-

ground. On the other hand, most of edges are \Jstinc, sometimes even with a black con-

tour. While the inner structure of the video progldiby a static camera is also quite simple,
the structure of dynamic camera video is complakamikely to be well compressible.
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a) ray-tracing b) slices of the video data in z-axis, x-axis and isax

Figure 8.13: Cartoon, static and dynamic camera video sequences viewed as volume data.

Figure 8.14 brings a comparison of compression ithieved for the tested videos. From the
tested types of data, the video produced by acstainera is apparently the most proper for
our proposed method, while the video with dynamamera is improper. Surprisingly, the
cartoon type of video was also not a winning stédy.in all, results show that the proposed
method does not fit the inner structure of the wideell since the three axes are not of the
same character and, thus, they should be handifededitly. Moreover, the interpolation on
long tetrahedra (slivers), which are present infthal 3D Delaunay triangulation in not in-
significant count, blurs edges, which has a negatifluence on the quality of the represented
image. Some improvement could be achieved by amrpacation of faces and edges as con-
straints into the triangulation but this would lgrinnlikely a substantial improvement. Hence,
we can summarize our research in this field aowal Although the alternative representa-
tion of video by 3D Delaunay triangulation is pd#siand theoretically interesting, it is use-
less from the practice point of view as it canmmnpete with the traditional approaches.

Details can be found in the master thesis by Mgedkar07].
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a) 6 912 points, b) 27 648 points, c) 147 080 points,
PSNR = 21.45, PSNR = 25.30, PSNR = 34.17,
ratio =55.72 : 1 ratio=16.26 : 1 ratio=3.99:1

d) 16 384 points, e) 65 536 points, f) 74 336 points,
PSNR = 27.67, PSNR = 33.63, PSNR = 34.51,
ratio =56.96 : 1 ratio 16.69: 1 ratio15:1

¥ W '
Lx Hees b
g) 16 384 points, h) 65 536 points, i) 512 011 points,
PSNR =18.21, PSNR =22.53, PSNR = 34.36,
ratio 56.91 : 1 ratio 16.66 : 1 ratio 3 : 1

Figure 8.14: Compression ratio achieved for the tested video sequences.
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9 Triangles Interpolation

The quality of the image reconstructed from thengeiic representation, more specifice
from a triangulation, isindoubtedly influenced by the way how the triangatais interjo-

lated to get the missing pixels. Although Dyn etsilowed in [Dyn90] that a piecewise n-

ear interpolation on a De-Dependent Triangulation (DDT) can lead to plausiekults, this
simple approach obviously does not generate satsfacesults in a general case, e.g. fol
arbitrary triangulation. Main problems are thatgklr almost monotonous, areas are

smooth enough whilst image edges are not sharpgénaw this section, v investigate vari-
ous interpolation techniques for triangular mes

Without any doubt the simplest and also the fastdstpolation method is the constant r-

polation that assigns the average of -scale values held by vertices of a triangle toy

pixel of this triangle. A comparison of this intefption with commonly used bilinear int«o-

lation, which was also considered to be the basmipprevious experiments, is givenFig-

ure 9.1 It can be seen that although the bilinear intiejpan does not produce as visibli-

angular artefacts as the constant interpolatiois, still not perfect. Edges of interpolatei-

angles are clearly identifiable in ticular places of the reconstructed ime— see Fig-
ure 9.4. These flaws are apparently caused by an ignerahintensity behaviour in are
surrounding the interpated triangle

a) triangulation b) constant interpolation c) bilinear interpolatio

v

d) bilinear interpolatior detail of the reconstructed image 1024x1

Figure 9.1: The reconstruction of Lena image from the Delaunay triangulation with 4 000 using con-
stant and bilinear interpolations on triangles.
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Options which would enable us to incorporate thaseas into calculations of the resulting
intensity can be differentiated into two main grsupirst are methods, which still interpolate
the triangles individually, but use vectors respecto the continuous intensity surface vary-
ing across the whole image to correlate the outpoé other approach is to interpolate on
more complex surface structures formed by individidangles of the triangulation.

Zienkiewicz interpolation is an alternative for thiéinear interpolation. It uses gradient vec-
tors to describe the behaviour of the intensitthim area that surrounds the interpolated trian-
gle. Gradient in a vertex can be estimated as amge of normalized surface normal vectors
of each of the triangle adjacent to the vertex,gived by their areas. Zienkiewics interpola-
tion is a bit slower than the bilinear interpolatidhowever, for common applications, this
slow down can be neglected.

The Bezier and Coons patch methods interpolatel @vatlapping surfaces formed by a cou-
ple of adjacent triangles. Their advantage is thay successfully remove traces of the trian-
gulation, making the image smoother than in casbilofear or Zienkiewicz interpolation.
However, this also introduces an unwanted blendihgolour edges in the image, which
might lead produce artefacts — see Figure 9.2.Ttwexethese methods are not suitable as
universal interpolation methods. Nevertheless, #pproach could be exploited more and
used for partial interpolation of smooth areasasrifterpolation of specially prepared trian-
gulations that would ensure that the artefacts dadt appear. Another drawback of these
methods is an extremely large computational timt@ckvrenders these methods useless.
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Figure 9.2: Part of the Fruits image, interpolated by the Coons patch method from triangulations with
6000 vertices in red, 9000 vertices in green and 9000 vertices in blue component.

The last tested approach exploits a dual configawadf the Delaunay triangulation, the Vo-
ronoi diagram. Whilst the piecewise linear integimn over Voronoi cells proved to be a
complete failure (see Figure 9.3a), the naturagimsour interpolation, which is based on
measuring change of areas of Voronoi cells wheninttexpolated pixel is inserted into the
diagram, brought some promising results —see FiguBie. It requires a significantly higher
time than the bilinear or Zienkiewicz interpolatibat this is still within reasonable bounds.
Although the quality of natural neighbour intergala does not outperform the Zienkiewicz
interpolation, it is close enough to take it intwaunt in the further development.
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a) piecewise linear interpolation ov b) natural neighbour interpolati
Voronoi cells

Figure 9.3: Lena image reconstructed from the Delaunay triangulation of 10 000 vertices.

We experimented with both greyscale and colouresiges. Coloured images may be e-
sented by either separate triangulations for eatthuc compinent or the c-triangulation. Co-
triangulations are more suitable when a more affectompression is required but theis-
ual quality is usually worse. On the other hanaytlavoid the problem of colour leakir
which is present in the case of sepe triangulations (see Figure 9.2).

Detailed description of interpolation methods arefgrmed experiments can be found
bachelor thesis by T. Janak [Jan09] and in paper [Jan08].
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10 Direct Manipulation with Triangulated Images

Real images captured by digital cameras are oftenitable for many applications and so
image enhancement techniques, such as resizinggehaf contrast or brightnesgamma
correction anéggmoothing of edges, must be applied. These techaigtewell established for
images represented by raster of pixels but, aadave know, their extension for imagep-
resented by triangulations has not been discusskigiature. Indeed, it ialways possible to
perform the required enhancement operation ingbernstructed raster image and after thi
compute a new triangular representation of the enag this straightforward approach brir
two drawbacks. First of all, the transformatifrom raster form into geometric one tal
some time and, therefore, it might be impracticause this strategy always. More inr-
tantly, it could lead to severe degradation of fuaince the considered transformatior
lossy one, i.e., an informati loss is present in every transformation.

Scaling of theamage represented by the triangular mesh is theleghoperation. All that i
needed is t@pply the scaling to the vertices of triangles #reh interpolate triangles. Eve
if the Delaunay triangulation is used, insteadh®f Data Dependent Triangulation, whict
more suitable for representation of images thatukhde scaled (see Secti2.4), the
achieved visual quality can be betperceived tharthe visual quality obtained from tl
commonly used bicubic resampliof raster images. As it can Been inFigure 10.1, the im-
age reconstructed from the scaled Delaunay triatigul is sharp (in comparison with bicul
resampling) but on the other hand, somengular artefacts are visible. Let us note that
visibility of these artefactsoulc be reduced in the post-processiiygsmoothing

a) bicubic resampling b) Delaunaytriangulation
+ bilinear interpolatio

Figure 10.1: 8 times scaled a part of monarch wing.

Change of brightness in vertices of triangulatiohofved by the interpolation brings rest
comparable with traditional approach. The behavafuhe operation is demonstratedrig-
ure 10.2 An example of gamma correction is giverFigure 10.3 Again, in our opinion, th
behaviour is reasonable.
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a) original b) double brightness ¢) half brightness

Figure 10.2: Direct brightness change for 512x512 Lena image represented by the Delaunay triangu-
lation of 4 000 vertices.

a) y=05 b) y=1.3

Figure 10.3: Gamma correction for 512x512 Lena image represented by the Delaunay triangulation of
4 000 vertices.

Smoothing is the most complex operation that wesiclared in our experimen Although
the transformation from the raster form itself sithes the edges, additional smoothing r
be required.The proposed methoprocessessertices of the triangulation one by one
searches for verticaa the neighbourhooQ of the tested verteg and sums their weighte
grey values (or colours) to get a new value fontbexp. This can be written as formu

where denotes the grey values associated with the vi . The weight can be
either onewhich means theall vertices have the same influencecalculated aa function
of the distance between the verp and the vertex]. We experimented with both Euclidie
and topological distance# the former case, ttsize of theneighbourhood? is definedby

the circle of radiugmax given in pixel units.Naturally, alarger valueof rn. leads into a
smoother image. Thellowing formula:

is then usedo compute the weig. Note that weights decreases linearly with Euclidian
distance between verticpsandg.
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If topological distance are considert, the size of thaneighbourhood? is defined by the
valuedmax (@gain larger values mean smoother images). Axq lies in the neighbourhoc
of the vertexp only, if thele is a graph path from the vertgxo the vertexp of at mostdnax
edges. The weight decreases linearly accordingegantimber of edged on the path; it is 1
for the most distant verticednax for vertices connected to the verggx

Figure 10.4displays results of the smoothing with Euclidiarstdices. When constant
weights are used, the triangular artefacts occtinenmage even fca very small neighbour-
hood size(compare the hat iFigure 10.4a and Figure 1@) whilst the image is still tc
sharp. Larger values bring a larger degree of shmasis but also more artefacts that me
the image noisy. Linear weights beh much better. The amount of artefacts is lower e
details are well smootheas expected (seFigure 10.4e).

d) rmax=4lineal €) I'max= 6, linear f) rma =10, linear

Figure 10.4: 512x512 Lena image represented by the Delaunay triangulation of 4 000 vertices after
smoothing by the method using Euclidian distances with constant and linear weights for various
neighbourhood size ryax.

Smoothing with topological distances is depicte Figure 10.5As it can be seen, the mett
does not introduce so many triangular artefacth@snethod with Euclidian distances but
the other hand, the degref smoothing is probably too big foypical applications. Even wit
the lowest possible neighbourhood size, the mauthiready too smooth no matter whet
constant or linear weights are used. All in all,osthing of an acceptable quality can
reachedby repeating the smoothing by the method with Elial distances, linear weigt
and small neighbourhood size (e.g., 2 ol
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a) Omax=1, b) dmax= 2, C) dmax=1, d) dmax=2,
const const linear linear

Figure 10.5: 512x512 Lena image represented by the Delaunay triangulation of 4 000 vertices after
smoothing by the method using topological distances with constant and linear weights for various
neighbourhood size dax.

Apparently, it ispossible to apply some image enhancement techn{gftes some modifa-
tions, indeed) directly on the triangulated imagéhvacceptable results. Especially, ca-
tions that deal with pixels independently (suchchange of contra or brightness, gamma
correction or curves operations, change of cola# dr saturatiornegation) can run withol
any unexpected probler Further research in this area would be welcomeibig not
planned as its benefit would be margin
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11 Conclusion and Future Work

This report describes the most important resulthefresearch project KJB10470701 (Alter-
native representation of image information by tise of triangulations) that was funded by
GA AV of the Czech Republic in 2007 — 2009. It does$ aim to be extensive and also it may
not reflect last changes (especially, those in 2009

In this report, we proposed and described varioethads for the lossy transformation of

raster of pixels into the Delaunay triangulationttoed most significant points (corresponding

to pixels) for both grey-scale and colour imagedse Tajority of these methods start with a
complete Delaunay triangulation of all points andcessively remove points evaluated to be
the least significant; a few of them start with iaitial Delaunay triangulation and succes-

sively insert important points (see Section 3; B.1What makes them different is the heuris-
tics used for the significance evaluation.

The best quality of representation is achievednieyBRUTE method (or one of its variants)
that considers the point to be the least significénts removal from the triangulation would
harm the quality least. If the image does not darlta of edges, this method, when combined
with powerful encoding techniques (see Sectior&)performs JPEG in low bit rates and can
more or less compete with JPEG2000,. On the otaed,hthe method is the slowest one; the
transformation of 512x512 grey-scale image takesibbne minute on a common hardware.

As for the colour images, given the required gqyadit representation, the best compression
ratio is achieved, if the colour image is transfednnto YCbCr or RGB colour model first
and then each component processed separately epemidknt grey-scale image. YCbCr
model is preferable for lower qualities, RGB foglmer qualities. Cotriangulations proved to
be not very useful for our purpose (see Section7Z4.

Further experiments [Rul09] with the other triarggidns (e.g., with weighted triangulations)

proved that the differences in the quality achiebgdthe Delaunay triangulation and these
triangulations are insignificant. As the Delaunaprtgulation of a given set of points is

unique (if some conditions are met) and, therefitrean be encoded storing vertices (points)
only and reconstruct from these vertices in theodec, we consider the Delaunay triangula-
tion (or CDT since the number of constraints igoflimited) to be the favourite for the alter-

native representation of images.

Various methods for the encoding of the Delaun#gngulation were proposed (see Sec-
tion 5, 8.1.1, 8.2) and tested. The FVXPATH+bzip@tinod, which encodes the Minkowski
differences in coordinates between two points ajag) an array of points ordered in such a
manner that the Minkowski differences are minimizachieves the highest compression ra-
tio. On the other hand, the method is quite timaakeding. A good compromise between the
compression ratio and the consumed time is broooghthe BEHEC method, which performs
a linearization of vertices using the Hilbert cuaed then it stores the differences in their
positions of this curve compressed by the Huffmaeoding.

The raster image is reconstructed (in the decddam) the Delaunay triangulation by an in-
terpolation. From all interpolations we experimehteith (see Section 9), the Zienkiewicz
interpolation slightly outperforms the bilinearenpolation since it takes gradients in vertices
into account. On the other hand, it needs sligimibye time.

We also investigated the option of representinggdal video by the kinetic Delaunay trian-
gulation (see Section 8.1) or by the 3D Delaunengulation (see Section 8.2). Although we
do not consider the research in this area to behia, we can conclude that while the repre-
sentation by the 3D Delaunay triangulation sourmtsdgirom the theoretical point of view, it
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is unlikely to be used in practice since the ackiteompression ratio is far below compres-
sion ratios reached by traditional MPEG techniglige kinetic Delaunay triangulation be-

haves in a better way, however, due to its quggblems for inter-coding, it is also quite

impractical. If inter-coding were improved, it cdumore or less compete with traditional

techniques when low bit rates are required (engnobile phones broadcasting).

Direct application of common image enhancementrtiggtes on the vertices of triangulation
and its effect on the reconstructed raster image wescussed (Section 10). According to the
experiments, operations that deal with pixels imhelently (such as change of contrast or
brightness, gamma correction or curves operaticmsnge of colour hue or saturation, nega-
tion) can run without any unexpected problems, otdperations (such as smoothing) can be
applied directly on the triangulated image witheggt@able results.

Further research in this area should focus on atstoebination of triangulations and wave-
let representations because, as it seems, trigranpdatself are not sufficient enough to repre-
sent everything in the desired quality.
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