

University of West Bohemia

Department of Computer Science and Engineering

Univerzitní 8

306 14 Plzeň

Czech Republic

Alternative Representation of Image Information

Josef Kohout

Distribution: public

Technical Report No. DCSE/TR

July, 2009

University of West Bohemia

Department of Computer Science and Engineering

Univerzitní 8

Plzeň

Czech Republic

Alternative Representation of Image Information

DCSE/TR-2009-11

Alternative Representation of Image Information

Technical Report No. DCSE/TR-2009-11

Alternative Representation of Image Information
Josef Kohout

Abstract
Information in images (as well as in volume data or video) is typically represented by an

array of pixels, where each pixel stores either greyscale luminance or colour components

values. Due to the simplicity of this representation, many algorithms from signal process-

ing can be implemented efficiently with ease. For some applications, however, this repre-

sentation may not be the best one as it is quite space consuming (although the storage

requirements can be reduced by using image compression techniques such as JPEG) and

is liable to the occurrence of aliasing artefacts. This thesis describes possibilities of alter-

native representation of image information based on the exploitation of various geomet-

rical data structures such as triangulations (e.g., Delaunay triangulation), etc. It investi-

gates various methods for the evaluation of the significance of pixels and it deals with the

problem how to reconstruct image data from significant pixels only. Various methods for

the storing of significant pixels in compact forms are also discussed. Methods proposed in

this thesis are compared with already existing methods. The thesis also describes the pos-

sible extension for video and discusses the options of direct manipulation with images

represented by triangulations.

This work was supported by the GA AV of the Czech Republic – project KJB10470701

Copies of this report are available on http://www.kiv.zcu.cz/publications/

or by surface mail on request sent to the following address:

University of West Bohemia

Department of Computer Science and Engineering

Univerzitní 8

306 14 Plzeň

Czech Republic

Copyright © 2007-2009 University of West Bohemia, Czech Republic

Background

This report describes results of the research project KJB10470701 (Alternative representation
of image information by the use of triangulations) of GA AV of the Czech Republic. The pro-
ject was being solved in 2007 – 2009 by a team composed of Ing. Josef Kohout, Ph.D. (who
was its main researcher), Doc. Dr. Ing. Ivana Koligerová and several undergraduate students
supervised either by Josef Kohout or by Ivana Kolingerová. Those students were: Tomáš
Janák (interpolations on triangulations), Radek Sýkora (extension of proposed methods for
colour images), Petr Puncman and Martin Varga (extension for video) and Josef Vyškovský
(direct manipulation with images represented by triangulations).

Important note: as the writing of this report started in 2008 and finished before the end of the
abovementioned project, some of its sections may not include the final results.

Basic terminology

In this subsection, we explain various basic terms that are used in the next text of this thesis.
Advanced terms will be explained in the text at the place where they firstly appear.

k-Simplex, with k ≤ d, is the convex combination of k +1 affinely independent points in a
point set S in Ed. These points are called vertices of the simplex. In E1 it is a line segment, in
E2 a triangle and in E3 a tetrahedron. In this thesis, we use the term simplex also as a synonym
to the term node. When we, therefore, speak about a modification of a simplex or an access to
a simplex, we mean, actually, the modification of the node that stores information about this
simplex or the access to the node data structure.

Convex hull CH(S) of a set of points S is the smallest convex geometrical object (polygon in
E2 and polyhedron in E3) such that any point from S lies inside the interior of CH(S) or it is
one of the vertices of CH(S).

Divide & Conquer denotes a recursive strategy consisting of two stages. In the first one, the
divide stage, the input data set is repeatedly subdivided as equally as possible into smaller
subsets until each subset is small enough to be solved directly. Afterwards, the solution for
each subset is found. In the second stage, the merge stage, solutions of subsets (i.e., subsolu-
tions) are repeatedly merged until the solution for the whole input set is obtained.

Used Shortcuts

The shortcuts commonly used in this thesis are summarized in the following table:

2D E2 two-dimensional case, i.e., planar case

3D E3 three-dimensional case

CH(S) convex hull of S

D&C Divide & Conquer

DT DT(S) Delaunay triangulation

MS Microsoft

1

Table of Contents

1 Introduction .. 3

2 Triangulations ... 8

2.1 Delaunay Triangulation .. 8

2.1.1 Incremental Insertion with Local Transformations .. 9

2.2 Regular (Weighted) Triangulation ... 14

2.3 Constrained Delaunay Triangulation .. 16

2.4 Data Dependent Triangulation.. 18

3 Selection of Significant Points ... 20

3.1 Random Choice (RND) .. 23

3.2 Marr-Hildreth (MARR) .. 23

3.3 Pixel Similarity (PIXSIM) .. 23

3.4 Distance Weighted (DISTW) ... 25

3.5 Error Distribution (ERRDIST) ... 26

3.6 Triangle Mean Square Error (TRIMSE) ... 27

3.7 Brute-force (BRUTE) ... 27

3.8 Nock Segmentation (NOCK).. 28

3.9 Gaussian Influence (GAUSS) ... 28

3.10 Other Heuristics .. 30

4 Experiments with Triangulation Construction ... 31

4.1 Main Meshless Heuristics ... 32

4.2 Main Mesh Based Heuristics .. 37

4.3 Comparison of Main Heuristics .. 43

4.4 Combined Heuristics .. 53

4.5 Combined Triangulation Strategy .. 56

4.6 Image Filtering ... 56

4.7 Summarization .. 60

5 Triangulation Encoding .. 61

5.1 Raw ... 61

5.2 Vertex Path (VXPATH) ... 61

5.3 Faster Vertex Path (FVXPATH) .. 63

5.4 Triangle Path (TRPATH) ... 63

5.5 Hilbert Space Filling Curve (BEHEC) ... 64

5.6 LZ Hilbert Space Filling Curve (LZHEC) ... 65

2

5.7 KORILA ... 65

5.8 LZ Image 3D Matrix (LZIM) ... 67

5.9 Mueller (MUEKD) ... 67

5.10 Demaret .. 70

5.11 Demaret06 .. 71

5.12 Edgebreaker .. 71

5.13 Coddyac .. 72

6 Experiments with Triangulation Encoding ... 73

7 Extension for Colour Images .. 79

7.1 Colour Space Systems .. 79

7.2 Separate Triangulations .. 81

7.3 Cotriangulation ... 83

7.4 Comparison & Summarization ... 86

8 Extension for Video .. 87

8.1 Kinetic Delaunay Triangulation (KDT) ... 88

8.1.1 Encoding ... 88

8.1.2 Decoding ... 91

8.1.3 Experiments and Results .. 92

8.2 3D Delaunay Triangulation .. 93

9 Triangles Interpolation ... 97

10 Direct Manipulation with Triangulated Images ... 100

11 Conclusion and Future Work .. 104

References .. 106

3

1 Introduction

A digital image, volume data or video (as the latter two can be considered as a set of images)
is typically represented by a raster of pixels (an array of pixels), where each pixel stores either
greyscale luminance or colour components values. Despite its popularity (mainly due to its
simplicity), this representation suffers from several disadvantages. First of all, it is quite space
consuming. This is especially true for video; one minute long colour video in the resolution
640×480 consumes approximately 1.3 GB (assuming 25 frames per second). That is why im-
ages are commonly transferred and stored in compact forms, such as GIF, PNG and JPEG
(MPEG or DivX for video). Unfortunately, these forms are not well-suited for applying fur-
ther image processing operations directly in the compressed domain. Next problem is that
scaling and rotation operations applied on an image in this representation typically introduce
some distortion to the image. Despite our best effort, sharp edges present in an image are
blurred (or converted into a set of squares) after the image is enlarged.

Besides raster images, there are also vector images that usually contain simple geometrical
objects described by their analytical functions or by coordinates of vertices that form them.
Vector representations (here aka geometric representations) do not suffer from distortions
caused by affine transformations and they have also a potential to be more compact. As data
acquisition devices (e.g., digital camera) produces images in raster representation, it is neces-
sary to transform these images into some geometric representation in order to exploit these
advantages. However, whilst the transformation from any geometric representation into raster
representation is straightforward, for the conversion of digital images from the traditional
raster representation into a geometric representation is complex and ambiguous.

If grey-scale images are considered only, the straightforward approach is to think about the
pixels of raster image as about 3D points in a space where x and y-coordinates are the rows
and columns of the image, and z-coordinate is the appropriate grey level. These points can be
connected to form non overlapping polygons, e.g., triangles. There are, indeed, many ways
how to do it. Another issue is that it may not be very useful to represent an image with N pix-
els by a geometric representation (e.g., triangulation) with the same number of vertices. A
representation such that it has fewer vertices but it still sufficiently approximates the original
image is very often needed to be found. No wonder that these challenges have attracted re-
cently many researches.

Existing methods for the conversion of digital images from the traditional raster representa-
tion into a geometric representation can be subdivided into three main categories according to
the goal they want to achieve as follows. First, there are methods that produce geometric rep-
resentations that enhance the quality of further image processing. The representations are not
compact as they contain usually as many vertices as the raster. Majority of these methods cre-
ates the data dependent triangulation (DDT) where triangle edges match the edges in the im-
age and they differ only in cost functions used to detect an edge and optimisations [Bat04,
Su04, Yu01].

In the second category, there are methods that produce compact (i.e., only a subset of vertices
is kept) but highly imprecise representations. They find its use in applications of non-
photorealistic rendering where details are unwanted because they make an understanding of
the information presented by the image more difficult. A typical application of such represen-
tations is described in [Gru05]. From existing methods that belong to this category, let us de-
scribe two interesting.

4

Prasad et al. [Pra06] proposed a technique that starts with the detection of edges in the input
image using the Canny operator. The detected edges are used as constraints for the con-
strained Delaunay triangulation that is afterwards constructed. For every constructed triangle
one colour computed as the average of colours of pixels covered by the triangle is assigned.
Adjacent triangles with similar colours are merged together forming a polygon for which a
common colour is chosen. The process results in the polygonal representation of the image.

Kreylos et al. [Kre01] describes an interesting approach that starts with the Delaunay triangu-
lation of a randomly chosen subset of vertices that is successively improved by choosing dif-
ferent vertices governed by a simulated annealing algorithm. A drawback of their approach is
that the final triangulation contains a lot of long and narrow triangles that may be difficult to
efficiently encode. The approach was later exploited by Cooper et al. [Coo05] for the surface
reconstruction from a set of images. Instead of picking a random subset for the initial ap-
proximation, they, however, choose detected important points (typically, corners and edges).

The last category consists of methods that attempt to balance the compactness and the quality
of the produced geometric representations that, if efficiently encoded, are suitable for the stor-
ing of digital photos. These representations are very often adaptive triangulations that differ in
the way how they were obtained. In general, we can identify two basic strategies how to cre-
ate an adaptive triangulation. The first one generates an adaptive triangular mesh by starting
with two triangles covering the whole image area and then successively splitting them in or-
der to reduce the approximation error. Alternatively, the algorithm can start with a fine mesh
and successively make it coarser until the approximation error is above the desired tolerance.
The question is which triangle should be split or which vertex should be removed in the next
step and that it is not a simple task is demonstrated by two straightforward approaches de-
scribed in [Gev97] and [Cia97] that either do not preserve well sharp edges in images or pro-
duce meshes with many vertices. Let us describe some more sophisticated approaches.

Starting with two initial triangles and their corresponding approximated image, Rila et al
[Ril98] successively construct the Delaunay triangulation as follows. A vertex, in which the
approximation is the poorest, is inserted into the triangulation, which results in the construc-
tion of new triangles. These triangles are interpolated, i.e., a new approximation is obtained,
and the next point to be inserted is found. The process stops when the required quality of the
approximation is reached. The authors also describe a technique for the storing of the created
mesh. As the Delaunay triangulation of a set of points is unique, it is necessary to store just
vertex positions and their grey levels. An array of N bits such that it contains 1 at positions
appropriate to the vertices of the constructed triangulation and 0 elsewhere is constructed and
compressed using a RLE (Run Length Encoding) approach. The grey levels are encoded using
a fixed-length uniform quantizer of 5 bits.

García et al [Gar99] choose a predefined number of pixels from image by applying a non-
iterative adaptive sampling technique, which detects pixels on edges present in the image, and
triangulate the corresponding points of these pixels using the Delaunay triangulation. After-
wards, triangles are further subdivided as long as the error of the approximation does not drop
below some threshold. Although the authors were able to achieve better results (in the com-
pression ratio as well as in the quality of the representation) than the authors of straightfor-
ward approaches, the results are, in our opinion, still far from being perfect – see Figure 1.1.

In the approach described by Galic et al [Gal05], a vertex with the poorest approximation is
found using the same criteria as Rila et al. [Ril98] in every step of their algorithm and the tri-
angle containing this vertex is split into two new triangles by the height on its hypotenuse.
The centre of the hypotenuse becomes an additional vertex of the representation. The advan-
tage of this hierarchical splitting process is that it forms a binary tree structure that can be

5

efficiently stored using just one bit per node. For the encoding of grey levels, the authors use
the Huffman compression. In their paper, they also discussed various interpolation techniques
and finally they decided to use edge-enhancing diffusion interpolation for their experiments
instead of commonly used piecewise linear interpolation.

Figure 1.1: Lena (512x512 pixels) represented by an adaptive triangular mesh of 5807 vertices con-
structed by the approach by García et al. Image was adopted from [Gar99].

More recently, Demaret et al. [Dem04] proposed an algorithm that computes the Delaunay
triangulation of all vertices and after that it successively decimates this triangulation by re-
moving the least significant vertex in every step. A vertex is considered to be the least signifi-
cant, if its removal leads to the approximation of the original image with the smallest mean
square error (MSE). The authors were able to achieve the compression ratio comparable with
JPEG and the same or, especially, for higher compression ratios, even better quality of the
image representation – see Figure 1.2. On the other hand the proposed algorithm consumes a
lot of time.

Figure 1.2: Lena (512x512 pixels) represented by an adaptive triangular mesh constructed by the
approach by Demaret et al. The compression rate is about 53:1. Image was adopted from [Dem06].

6

A hybrid approach is described in [Part03]. The original image is first segmented using an
unsupervised segmentation method for colour-texture regions. Following polygonal approxi-
mation of created regions causes the degradation of region boundaries. The triangulation is
then applied to polygons and either all short edges, or all small triangles are filtered out from
the triangular mesh (CDT or greed approach is used). It results in new smaller regions – see
Figure 1.3. Pixels in every region are then independently encoded with a code similar to JPEG
(different quantization can be applied for different regions). The proposed method is better
than JPEG representation but it offers only a limited set of advantages of the geometric repre-
sentation in comparison with previously described approaches.

Figure 1.3: Baboon (256x256 pixels) compressed by the approach by Partyk et al. The compression
rate is about 27:1. Image was adopted from [Par03].

A digital video (or 3D image information) is a stream of similar digital images. Usually, these
images are denoted as frames. Videos are commonly transferred and stored in compact form
through well-known representations, such as MPEG or DivX. These representations encode
image frames by the JPEG compression technique combined with the strategy to use previous
frame information in order to reduce the amount of information the current frame requires.

There is not so much done in the field of geometric representation of digital video. Yaoping et
al. [Yao98] proposed quite a straightforward approach that replaces the traditional JPEG rep-
resentation of frames by the alternative geometric representation by the Delaunay triangula-
tion. This triangulation is constructed by the successive application of split-merge scheme,
i.e., it is a combination of approaches described in [Gev97] and [Cia97]. The authors show
that, for very low bit-rate transmissions, their representation offers higher quality of decoded
frames than the standard approaches.

7

The main goal of this work is to represent grey-scale and colour images and videos by a geo-
metric representation that approximates the original data in an acceptable quality, yet it is
more compact than the traditional raster representation. This is achieved by keeping only
a small subset of the most significant pixels. Assuming that we deal with 8-bits grey-scale
image, this subset may contain no more than 20% of original pixels because positions of se-
lected pixels must be, unlike in the raster representations, also retained (we suppose that the
position can be stored using a pair of two bytes long integers). The computation of the small-
est subset of pixels that represents the image in the desired quality (i.e., with the given error)
is NP-hard problem. The investigation of every subset of 1 000 pixels for an image of
512×512 pixels would take several millions years1. Some heuristics is, therefore, necessary.

Let us suppose we already have an algorithm that can create a subset of pixels such that all
other pixels of the image can be reconstructed from it by some interpolation in a requested
quality. The problem is that existing interpolations of scattered points (pixels in our case) are
usually too slow to be used in interactive applications because they must investigate the rela-
tionship between every point to be reconstructed and every point from the input set. For an
instance, the interpolation of 4 000 pixels selected from an image 512×512 by the approach
proposed by Uhlíř et al. [Uhl05], which is based on radial basis functions (RBF) used in a
sliding window, takes about 90 seconds on a P4 computer with 2GB of RAM. In order to
achieve even better results, it is necessary to organize the points into some structure.

The organization of this report is as follows. In the following section, we describe the most
popular triangulations and their constructions. Section 3 proposes various heuristics selection
of most significant pixels (let us note that the triangulation and selection are two mutually
dependent tasks) for grey-scale images. The performed experiments and their results are given
in Section 4. For storing purposes, the triangulations can be further compressed. Various tri-
angulation compression strategies are described in Section 5 and they are compared in Sec-
tion 6. Section 7 deals with the interpolation of triangles. The extensions for colour images
and videos are described in Section 8 and Section 9. Direct manipulations with images repre-
sented in the proposed geometric format, e.g., smoothing, convolution, etc. is given in Sec-
tion 10. The report is concluded in Section 11, which also discusses the future work.

1 There is ����������� � � ������!
������!·����! � ������·������������

����·����� � ����������
�������� � 261���� � 10���� different sets.

8

2 Triangulations

Given a point set S in E2, the triangulation T(S) of this set is a set of triangles such that:

• The point p ∈ E2 is a vertex of a triangle from T(S) if and only if p belongs to S; i.e.,
the vertices of the triangles are some points from the input set.

• The intersection of two triangles is either empty or it is a shared face, a shared edge, or
a shared vertex.

• The set T(S) is maximal: there is no triangle that can be added into T(S) without violat-
ing previous rules; i.e., union of triangles and convex polygon formed by a convex
hull CH(S) is the same object.

One advantage of triangulation is that it divides the image space, which allows an easy detec-
tion of pixels that should be taken into account for the interpolation and those that should not.
Let us note that the bilinear interpolation on triangulations is implemented in every graphics
adapter, so it is possible to reconstruct images from triangulations in real-time.

It is clear that one set of points can be triangulated in various ways. There is also no doubt
that the interpolation of two different triangulations of the same set may produce different
results. Therefore, the choice of triangulation is as important issue as the selection of subset of
significant pixels. In this section, we describe Delaunay, constrained Delaunay, regular and
data dependent triangulations that are most suitable for the purpose of image representation.
Furthermore, we describe methods of their constructions.

2.1 Delaunay Triangulation
Delaunay triangulation was proposed by a Russian scientist Boris N. Delone [Del34a,
Del34b]. However, as his original papers are not written in English and their translations are
usually rather complex, we would recommend Radke's [Rad99] or de Berg's [Ber97] texts for
details about Delaunay triangulation.

Delaunay triangulation DT(S) of a set of points S in E2 is a triangulation such that the circum-
circle of any triangle does not contain any other point of S in its interior. In the next text, this
criterion is also called the circum-circle criterion.

There is also an alternative definition of the Delaunay triangulation: the DT is a dual of the
Voronoi diagram Vor(S), which is a set of points having the same distance from at least two
points from S and, moreover, there is no other point from S with a smaller distance. The
mathematical expression of the Vor(S) can be written as:

}:;;:;,:{)(xpxpjkikSpxpxpjiSpSpExSVor ikkjiji
d ≤≠≠∈¬∃∧=≠∈∃∈∀∈=

Figure 2.1 shows the mutual relationship of the Vor(S) and the DT(S).

The basic properties of the DT(S) are as follows [God97]:

• In the worst case, it can be computed in O(N⋅log N). However, algorithms with O(N)
expected time also exist.

• It maximizes the minimal angle and, therefore, the Delaunay triangulation contains the
most equiangular triangles of all triangulations (i.e., it limits the number of too narrow
triangles that may cause problems in further processing, e.g., in the interpolation).

• If no four points lie on a common circum-circle and no three points lie on a common
line, then the DT(S) is unique. Let us note that four points lying in the vertices of an

empty square in E2
angulation. As pixels lie in a regular grid,
pixels is typically ambiguous. However, if a small random perturbation is applied to
pixel coordinates, it is very likely to get
tion for the encoding

Figure 2.1: The Delaunay triangulation (solid lines) and the Voronoi diagram (dashed lines) of the

Due to these good properties, Delaunay triangulation is used in many areas, such as terrain
modeling (GIS) [Gon02], scientific data visualization
interpolation [Par03], robotics, pattern recognition [Pra00, Xia02], meshing for finite element
methods (FEM) [Béc02, Nis01], natural sciences [Mul03, Ada03], computer graphics and
multimedia [Ost99, Tek00], etc.

Many algorithms for construction of the Delaunay triangulation
Some of them exploit the duality and
diagram, whilst others compute the
rithms into several categories: local improvement, incremental construction, incremental i
sertion, higher dimension embedding and divide & conquer
insertion algorithms, which are also known as online, all points mu
triangulation process starts.
lation are not two separate steps (see Section
therefore, an incremental insertion algorithm is the only option we have.

2.1.1 Incremental Insertion
Starting with an initial Delaunay triangulation, e.g., an
points in its interior, the algorithm
angulation one at a time. As long as we do not consider time requirements, the order of th
insertion is not important. The points do not need to be known in advance (although their
range of coordinates is needed). If the algorithm uses a randomized order of insertion, it b
comes almost insensitive to the type of points distributions.

The insertion consists of three phases: the
inserted has to be quickly found followed by the
zation where the circum-sphere criterion is applied and if it is necessary,

9

 have a common circle and two possible configurations of th
As pixels lie in a regular grid, the Delaunay triangulation of a subset of

typically ambiguous. However, if a small random perturbation is applied to
pixel coordinates, it is very likely to get a unique triangulation, which
tion for the encoding of the computed triangulation – see Section

triangulation (solid lines) and the Voronoi diagram (dashed lines) of the
same set of points (big black dots)

Due to these good properties, Delaunay triangulation is used in many areas, such as terrain
modeling (GIS) [Gon02], scientific data visualization [Oku96, Oku97, Wal00, Att01] and
interpolation [Par03], robotics, pattern recognition [Pra00, Xia02], meshing for finite element
methods (FEM) [Béc02, Nis01], natural sciences [Mul03, Ada03], computer graphics and
multimedia [Ost99, Tek00], etc.

ithms for construction of the Delaunay triangulation of the given point set
Some of them exploit the duality and construct the Delaunay triangulation

, whilst others compute the Delaunay triangulation directly. W
into several categories: local improvement, incremental construction, incremental i

sertion, higher dimension embedding and divide & conquer [Koh05]. Except for incremental
insertion algorithms, which are also known as online, all points must be known before the
triangulation process starts. As the selection of the optimal subset of pixels
lation are not two separate steps (see Section 3), points are not known in an advance and,
therefore, an incremental insertion algorithm is the only option we have.

Incremental Insertion with Local Transformations
elaunay triangulation, e.g., an auxiliary simplex that contains all

algorithm inserts the points in the input S into existing Delaunay tr
As long as we do not consider time requirements, the order of th

insertion is not important. The points do not need to be known in advance (although their
range of coordinates is needed). If the algorithm uses a randomized order of insertion, it b
comes almost insensitive to the type of points distributions.

tion consists of three phases: the location where a simplex containing the point to be
inserted has to be quickly found followed by the subdivision of this simplex and by the

sphere criterion is applied and if it is necessary,

have a common circle and two possible configurations of their tri-
the Delaunay triangulation of a subset of

typically ambiguous. However, if a small random perturbation is applied to
unique triangulation, which opens a new op-

see Section 5.

triangulation (solid lines) and the Voronoi diagram (dashed lines) of the

Due to these good properties, Delaunay triangulation is used in many areas, such as terrain
[Oku96, Oku97, Wal00, Att01] and

interpolation [Par03], robotics, pattern recognition [Pra00, Xia02], meshing for finite element
methods (FEM) [Béc02, Nis01], natural sciences [Mul03, Ada03], computer graphics and

of the given point set exist.
Delaunay triangulation from the Voronoi

We classify direct algo-
into several categories: local improvement, incremental construction, incremental in-

Except for incremental
st be known before the
pixels and their triangu-

, points are not known in an advance and,
therefore, an incremental insertion algorithm is the only option we have.

auxiliary simplex that contains all
into existing Delaunay tri-

As long as we do not consider time requirements, the order of the
insertion is not important. The points do not need to be known in advance (although their
range of coordinates is needed). If the algorithm uses a randomized order of insertion, it be-

where a simplex containing the point to be
of this simplex and by the legali-

sphere criterion is applied and if it is necessary, the local improve-

10

ment techniques are used to restore the Delaunay triangulation. The algorithm written in
pseudocode is given in Figure 2.2.

Points already present in the triangulation can be also successively removed. The deletion
consists also of three phases: the location (the same as for the insertion) is followed by the
cavity construction where all simplices sharing the given point are removed from the triangu-
lation and by the cavity retriangulation where new Delaunay triangles are constructed to fill
the created cavity. Let us describe all steps in detail.

Input: A set S = { p0 , p1 , ..., pN - 1 } of N points in E2

for r := 0 to m - 1 do begin

 Locate the simplex S0 ∈ DT(S) containing pr;

 Subdivide S0; //in the case where pr lies on the shared edge or face
 //then subdivide also the appropriate adjacent simplices.

 //Legalize all new simplices
 while there exist an unchecked face F do
 if the face F violates DT criterion
 then perform local transformation;
end;

Figure 2.2: Construction of the DT(S) by incremental insertion with local transformations.

2.1.1.1 Initialization
Let us have the input set S of N points. An auxiliary simplex large enough to hold all these
points inside its interior is constructed. We prefer this large simplex to the convex hull (see
Section 3) because it is easier and, according to our experience, more stable. One problem
with this approach is how to choose the vertices of this simplex. If they are not far enough
away, they may influence the empty circum-sphere tests, which may lead to the non-convex
boundary of the resulting Delaunay triangulation. On the other hand, if the vertices are “too
far away”, it may lead to numerical instability of the algorithm.

Therefore, in our algorithm, the vertices have coordinates (K, 0), (0, K), (-K, -K) for the ver-
sion in E2 and (K, 0, 0), (0, K, 0), (0, 0, K), (-K, -K, -K) for the version in E3. The value K is
equal to the multiple of the size of the bounding box of points – see Figure 2.3. More detailed
description is given by Žalik and Kolingerová in [Žal03].

(–K,–K)

(0, K)

(K, 0)

Figure 2.3: The selection of the auxiliary simplex in E2. The black rectangle is the bounding box.

11

2.1.1.2 Location
In the location part, it is required to find a simplex that contains the given point. It can be
done either with use of some hierarchical structures or without them by some walking tech-
nique. Walking techniques are based on the searching of simplex to be subdivided directly in
the Delaunay triangulation. Therefore, the location can take O(N) time in the worst-case. For-
tunately, the worst-case scenario is not very probable and the location is, usually, performed
in O(√N) expected time. Let us note that under special circumstances expected time O(N1/3)
can be reached [Žal03]. Although walking approach is a bit slower than the approach with a
hierarchical structure, its big advantages is that it needs no additional memory. Different
walking techniques are presented in [Dev01].

Let us describe visibility walk in E2. Starting from an arbitrary triangle, the algorithm trav-
erses through the triangulation testing the mutual position of visited triangles and the given
input point until the triangle containing this point is found. For each visited triangle, it is nec-
essary to detect an edge such that the line supporting this edge separates the triangle from the
input point, which can be reduced to a single orientation test. If there is no such edge, the tri-
angle contains the point in its interior. Otherwise, the search continues with the neighbouring
triangle sharing the detected common edge. Figure 2.4a shows an example of walk.

Unfortunately, for non-Delaunay triangulations, the walk we have just described may fall into
a cycle as illustrated in Figure 2.4b. As the constrained Delaunay triangulations (i.e., with
some prescribed edges – will be discussed in further text), which are important in practice, are
also non-Delaunay, a little bit of randomness has to be introduced into the algorithm in order
to avoid infinite loops. Instead of starting the detection with the first edge of the given trian-
gle, the algorithm starts with randomly picked edge. This ensures that, if the walk enters a
cycle in the triangulation, it cannot loop in this cycle forever. Another small improvement is
to remember, for each visited triangle, the edge that was just crossed by the walk and do not
test this edge twice. The visibility walk algorithm with these two improvements is called re-
membering stochastic walk.

a) the path of visibility walk, the dark gray
triangle is currently being tested, light gray
triangles were visited in previous steps

b) an infinite cycle for the visibility walk
[Dev01]

Figure 2.4: The visibility walk algorithm.

12

There are other possibilities for quick location. Very popular is Directed Acyclic Graph
(DAG) [Ber97], the structure that stores the history of changes. Each inner node of the DAG
stores one simplex that existed in some previous triangulation and the current triangulation is
stored in the leaves. Time O(log N) for location is ensured. In the effort to reduce memory
use, Devillers in [Dev98] suggests a hierarchical structure similar to the DAG. It consists of
several connected levels; each level contains a random sample of the level below. Other pos-
sibilities include a use of quadtrees or bucketing techniques. Various techniques for location
are compared in [Žal03].

2.1.1.3 Subdivision
Let us suppose we have successfully found the triangle pi, pj, pk containing the point pr to be
inserted. There are several mutual positions of this point and the located simplex. The sim-
plest possible configuration is that the point lies strictly inside the simplex. In this case, all
vertices of the located simplex are connected with the point by an edge and the simplex is
subdivided into three new simplices (see Figure 2.5a).

p
p

p p

p
p

p p i
i

k k

r
r

j j

p
l

a) the point to be inserted lies strictly inside b) the point to be inserted lies on an edge

Figure 2.5: Subdivision in E2.

Slightly more complicated situation occurs when the point to be inserted lies on an edge. It is
then necessary to subdivide not only the located simplex but also the adjacent simplex that
shares this edge. It results in four new triangles (see Figure 2.5b).

2.1.1.4 Legalization
After the subdivision, we have a new triangulation. However, it may not be the Delaunay one.
Therefore, all outer edges of currently created simplices have to be tested whether they do not
violate the empty circum-sphere criterion, i.e., whether the far point of the simplex adjacent to
the new one does not lie inside the circum-sphere of this new simplex. If the condition is not
fulfilled, the triangulation has to be changed by applying the local transformations. The trans-
formation in E2, which is shown in Figure 2.6, is simple: the edge is just swapped.

After that, indeed, we have new outer edges (or faces) that have to be tested. Figure 2.7 shows
an example of the propagation of the local transformations in E2. The located triangle is sub-
divided into three new triangles (Figure 2.7a– dotted line). Then, the circum-circle criterion is
tested on all these new triangles. The test for the triangle T1 fails because the far point p1 of
the adjacent triangle lies in the circum-circle of the triangle T1. The shared edge is flipped. As
the circum-circle of the just created triangle T2 is not empty, the flipping has to continue – see
Figure 2.7b. Finally, the Delaunay triangulation is achieved (Figure 2.7c).

13

Figure 2.6: Local transformations in E2. The edge is swapped.

a) subdivision b) propagation of flips c) the resulting triangulation

Figure 2.7: The incremental insertion in E2. Edges that should be flipped are bold.

2.1.1.5 Cavity Construction & Retriangulation
In two dimensions, the deletion of the point p means that m triangles must be removed from
the triangulation and m – 2 new Delaunay triangles must be created to fill the hole – see Fig-
ure 2.8. Although m may be equal to the number of points in the triangulation, it is well
known that the expected value of m is 6 without any assumption on the point distribution.

Devillers [Dev99] proposed an efficient algorithm (it requires O(m⋅log m) for the retriangula-
tion of hole is based on successive cutting of ears of this hole. For each triple of topologically
consecutive vertices qi, qi+1, qi+2 along the boundary of the hole, i.e., for a candidate for the
triangle, a weight computed as a function of coordinates qi, qi+1, qi+2 and p is assigned. All
candidates are put into a priority queue ordered by their weights. After that an iterative filling
process starts. In every step of this process, a candidate at the head of the queue is taken and
the corresponding triangle is constructed. The candidates qi-1, qi, qi+1 and qi+1, qi+2, qi+3 that
overlap the newly constructed triangle are changed to qi-1, qi, qi+2 and qi, qi+2, qi+3 and their
weights are recalculated. The process stops when the hole is filled. An example of retriangula-
tion of hole is shown in Figure 2.8.

T1 T2

p1

point to be
inserted

14

a) simplices to be removed b) the hole

c) the first ear to be tested d) Delaunay retriangulation

Figure 2.8: The deletion of the point p from the Delaunay triangulation.

2.1.1.6 Finalization
When the construction has been finished, all simplices having at least one vertex of the big
auxiliary simplex are removed from the triangulation.

2.2 Regular (Weighted) Triangulation
Regular triangulations [Ede92, Fac95] are a generalization of Delaunay triangulations offering
an extra degree of freedom by introducing weights for points. Given a point set S in Ed, a real
valued weight wp is assigned to every point p from the set. Let us note that the weighted point
can be interpreted as a sphere with center p and radius √wp. For each weighted point p, we
define so-called power distance from a not weighted point z∈Ed to the point p as
πp(z) = pz2 – wp, where pz is Euclidian distance between points p and z. The geometrical
meaning of the power distance is shown in Figure 2.9a.

For any simplex, it is possible to find a point z such that the power distances from this point to
every point of the simplex are the same – see Figure 2.9b. A weight equal to the square of the
computed value of power distance is assigned to the point z. The weighted point z is called the
orthogonal center of the simplex and the sphere with radius √wz centered at z is the ortho-
sphere of the simplex. Let us note that if the weights of points of this simplex are zero, then
the orthosphere and the circum-sphere of the simplex are identical.

p

q 2

q 3

q 4

q 5
q 7

q 8

q 6

q 1

q 9

q 2

q 3

q 4

q 5
q 7

q 8

q 6

q 1

q 9
q 2

q 3

q 4

q 5
q 7

q 8

q 6

q 1

q 9

15

a) the power distance from z to p b) the orthogonal center of simplex p1,p2,p3

Figure 2.9: The geometrical meaning of power distance and orthogonal center in E2.

A triangulation is regular only if all simplices are locally regular. A simplex p1, p2, p3 or, in
the case of E3, p1, p2, p3, p4 is locally regular if the power distance from any point q ∈ S – {p1,
p2, p3, p4} to the orthogonal center of the simplex is larger than the weight wq assigned to this
point q, i.e., πz(q) > wq. It is clear that the method of incremental insertion with local trans-
formations described in the previous text can be used also for the construction of regular tri-
angulation. All that is needed is it to supersede the Delaunay empty circum-sphere condition
by the condition of regularity. Points are successively inserted into the existing regular trian-
gulation and, as in the Delaunay triangulation, if a set of adjacent simplices violates the condi-
tion of regularity, local transformations have to be applied. Figure 2.10 shows an example of
local transformation in E2. The edge shared by two adjacent triangles is invalid, i.e., the trian-
gles are not regular, and, therefore, it is swapped.

Figure 2.10: Local transformations in E2. The edge is swapped.

If the geometrical meaning of power distance and orthogonal center is taken into account, we
can reformulate the condition of regularity as follows. A simplex is regular, if for any point q
from S (except for points in the vertices of the simplex) the point z' of contact of tangent to the
orthosphere of the given simplex going through the point q does not lie inside the sphere with
radius √wq centered at the point q – see Figure 2.10. This means that to decide whether an

p

z

)(zpπ

pz

pw

p'

p 1

z

p 2

p 3

p 1

z

p 2

p 3

q

p 1

z

p 2

p 3

q

)(qpz

z'

z'

16

edge is invalid, i.e., whether a local transformation must be applied or not, we need to test the
mutual position of some sphere and point. It is exactly the same test as the one used in the
Delaunay triangulation, only spheres and points to be checked are different.

Similarly to the Delaunay triangulation, the regular triangulation is unique and, therefore, the
topology does not need to be stored as long as we preserve weights for selected pixels. With-
out any doubt, the storing of weights negatively influences the compactness of the representa-
tion. On the other hand, the regular triangulation, if points are properly weighted, can better
represent image features and, therefore, fewer points are required – see Figure 2.11.

There is also another option for the storing of regular triangulations. Kim et al. [Kim99]
showed that the Delaunay triangulation of the given terrain data set (grey-scale images are
close to terrains) is very similar to other common triangulations of the same data set. There-
fore, instead of keeping all weights, it is possible to store coordinates of vertices (and the as-
sociated data) and save those edges that are not present in the Delaunay triangulation. Consid-
ering that weights are real numbers (hence their encoding typically requires 4 bytes per one
weight), this strategy can produce more compact result.

a) the original image b) the image reconstructed
from the DT

c) the image reconstructed
from the regular triangulation

Figure 2.11: The reconstruction of image from the Delaunay triangulation and the regular triangulation
of the same number of points.

2.3 Constrained Delaunay Triangulation
Constrained Delaunay triangulation is a generalization of Delaunay triangulation offering
a possibility to incorporate some prescribed edges or faces (i.e., constraints) into the triangula-
tion. Typically, these constraints are used either to express the shape of object whose sampled
points are to be triangulated or to introduce some physical limitations. Figure 2.12 compares
the Delaunay triangulation and the CDT of the same input set in E2. The prescribed edges are
thick. Constrained Delaunay triangulation is used in many applications, e.g., numerical analy-
sis and finite element methods (FEM), pattern recognition [Pra00, Xia02], etc.

17

a) DT b) CDT

Figure 2.12: An example of the Delaunay triangulation (DT) and the Constrained Delaunay triangula-
tion (CDT) in E2. Prescribed edges are thick.

From the point of view of the algorithm based on the incremental insertion with local trans-
formations, a constraint is an edge or a face from the triangulation that cannot be flipped, i.e.,
this edge is always considered valid in the meaning of the Delaunay criterion. This means that
the legalization stops on constraints. The best-known approach for the insertion of a constraint
into the triangulation works as follows. First, all simplices crossed by this constraint are de-
tected – see Figure 2.13. These simplices are removed from the triangulation, which results in
two adjacent holes separated just by the constraint. Then, both holes have to be retriangulated.
For this purpose, the ear cutting algorithm that was presented in the section describing the
deletion of points from the triangulation can be used.

a) the original triangulation and the con-
straint

b) the construction of the first triangle

c) the construction of the second triangle d) the result

Figure 2.13: An example of the insertion of a constraint (thick edge) into Delaunay triangulation in E2.

Unlike the deletion of a vertex, all vertices of hole lie in the same half-plane (or half-space)
defined by the constraint, which allows us to consider another, much easier, algorithm. It is
based on the D&C strategy. Starting with the constraint edge (or face), in each step of the re-
cursion, the algorithm constructs a simplex such that no vertex from the hole (naturally, ex-

p1

p2
p3 p4

p5

p6

p1

p2
p3 p4

p5

p6

18

cept for the vertices forming the simplex) lies inside the circum-sphere of this simplex. The
constructed simplex issues new two edges (faces) and may split the hole into two smaller
holes that are retriangulated in next step – see Figure 2.13. At the end of the insertion of the
constraint, the connectivity between simplices is updated.

Sloan [Slo92] suggested another algorithm for the insertion of a constraint into the triangula-
tion. Starting from any triangle containing the first vertex of the given constraint, the algo-
rithm searches the triangulation until it reaches the triangle containing the second vertex of
the constraint. For each triangle visited during the search, the algorithm checks whether there
is an edge intersected by the constraint. If the outcome of this test is positive, the edge is
flipped. It can be shown that the successive performing of flips ensures that when the second
vertex of the constraint is reached, the constraint is included in the triangulation. Afterwards,
the legalization has to be performed in order to restore the Delaunay property of the triangula-
tion. An example of such insertion of a constraint can be seen in Figure 2.14.

a) after the first swap b) after the second swap

c) after the third swap d) the result

Figure 2.14: An example of the insertion of a constraint (thick edge) into Delaunay triangulation in E2
using the successive application of local transformations.

Similarly to regular triangulations, constrained Delaunay triangulations can preserve image
feature better than Delaunay triangulation. Its construction is, however, more difficult. Let us
note that for a given set of points, it should be theoretically possible to assign a weight to
every point in such a manner that the regular triangulation of these points is identical to the
required CDT [Mau04]. As the amount of constraints is very low (in comparison with the
amount of all edges), it is, however, more convenient to store coordinates of vertices and as-
sociated data (like in the case of Delaunay triangulation) followed by the constraints.

2.4 Data Dependent Triangulation
The previously described triangulations triangulate the given set of points without taking the
associated data (i.e., grey-scale or colour components values) into account. If the data values
change rapidly, e.g., on sharp image edges, this shape information may not be well preserved
by these triangulations or its preservation requires lot of vertices. Therefore, Dyn et al. intro-
duced data dependent triangulation [Dyn90] that uses a data dependent criterion instead of the
circum-circle criterion (or a similar one). Many criteria have been proposed; some of them
consider z-coordinates directly, others deal with angles between triangle normals, etc.

19

Data dependent triangulation is typically constructed by successive application of local trans-
formations on initial triangulation (e.g., the Delaunay one). Each edge is checked whether its
cost is lower than the cost of the other diagonal of the quadrilateral formed by two triangles
sharing this edge. If the outcome of this test is negative, the edge is replaced by the other di-
agonal – see Figure 2.15.

Data dependent triangulation can be considered as a more general regular triangulation where
weights of points are not constants given explicitly in advance but they are functions whose
values dynamically change during the triangulation process. Once the triangulation is com-
pleted, however, the resulting triangulation can be processed (and stored) using the same
techniques that are available for regular triangulations.

Figure 2.15: Local transformation of quadrilateral formed by two triangles sharing the bold (red) com-
mon edge. Edge is swapped to better preserve the shape of data (slope).

20

3 Selection of Significant Points

An image represented by a raster of N×M pixels can be easily, and without any loss of infor-
mation, transformed into a point set S in E2 such that for each pixel there is one point with x
and y-coordinates defined by the position of this pixel in raster and with the associated data
corresponding to the grey-scale value (or colour components values) of this pixel. Certainly,
this transformation is reversible (and there is no loss of information).

Let us suppose that we have a subset SS of points from S (SS ⊂ S), and a point set SM created
from the remaining points, i.e., from S – SS, by preserving their x and y coordinates only,
which means that the data associated with points from SM (i.e., grey-scale or colour compo-
nent values) is unknown. This missing data can be approximated by an interpolation of the
associated data of points from Ss (see Figure 3.1), which gives a new set SR of points. The
point set S’ = SS ∪ SR is an approximation of the original point set S.

a) original data b) linear interpolation c) reconstructed data

Figure 3.1: Linear interpolation of points pa, pb and pc in E1 and the error of approximation (denoted by
horizontal line segments in the reconstructed data).

It is clear that the approximation error is influenced by the number and distribution of points
from the subset SS and by the interpolation method used for the reconstruction. Interpolation
methods can be global, which take all points from SS into account for the point reconstruction,
or local, which consider only those points from SS that lie near the point to be reconstructed.
Although global methods very often achieve lower approximation error than local, for some
particular subsets SS, they produce much worse results than local methods because of their
instability. As they consume a lot of time, they are unsuitable for real-time processing. Hence,
we decided to use local interpolation methods only.

If the points from the subset SS are triangulated first, e.g., by the Delaunay triangulation (see
the previous section), the detection of points close to the point to be reconstructed can be done
in O(1). Certainly, the approximation error depends on the kind of triangulation. If not speci-
fied otherwise, from now on, we assume that points are triangulated by the Delaunay triangu-
lation. Using the bilinear interpolation of triangles, the points from SM can be reconstructed in
real-time with an ease. In the further text, we assume, therefore, that the reconstruction is
done by this interpolation, if not specified otherwise.

Our task can be defined as follows. We want to find the subset SS such that either it is the
minimal subset from which the point set S’ can be reconstructed with an approximation error
within the given tolerance εT, or it contains the given number of points n and the approxima-
tion error of reconstruction from this subsets is lower than the error of reconstruction from
any other subset with the same number of points. Let us note that if regular or constrained
Delaunay triangulations are to be exploited, weights for these points and constraints must be

0

50

100

150

200

250I(x)

x

pa

pb

pc

0 1 2 3 4 5
0

50

100

150

200

250I(x)

x

pa

pb

pc

0 1 2 3 4 5
0

50

100

150

200

250I(x)

x

pa

pb

pc

0 1 2 3 4 5

21

also found. The points in the subset SS are furthermore denoted as the most significant (or also
the most important) points.

Even if the Delaunay triangulation, which is unique once points are slightly (within one pixel
size) randomly shifted, is to be exploited and, therefore, neither weights nor constrains are
required, the problem of finding the optimal subset SS is NP-hard as it needs to check every
subset of S. It is clearly beyond our possibilities to check everything and, therefore, some heu-
ristics is necessary.

In this section, we describe various heuristics for the detection of the most important points
for grey-scale images (the extension for colour images is discussed in Section 7). These meth-
ods can be categorized into two main groups. Meshless heuristics compute the significance of
a point directly as a function of its grey-scale value and grey-scale values of points in its
neighbourhood. All points with the significance larger than some threshold computed from
the given tolerance or the first n points (n is given) with the largest significance are taken for
the subset SS. Usually, these heuristics are very fast, however, the produced subset is often too
far from being optimal, which means that either this subset is too large or the approximation
error is too big. Let us point out that the computation of the threshold is also not well defined.

Starting with an initial subset SS, mesh based heuristics compute the significance of a point as
a function of its influence on the overall approximation error that is achieved for the triangula-
tion of points from the subset SS. According to the computed significance of points, the subset
SS is modified and the process repeats until the given requirements (i.e., the maximal ap-
proximation error or the number of points) is fulfilled. Due to the nature of mesh based heu-
ristics, it is clear that the detection of the most important points and their triangulation are not
two independent steps. These heuristics are slower than meshless heuristics (it takes some
time to compute the triangulation) but they can achieve better results than their counterparts.

There are four different strategies how to choose the initial subset and modify the current sub-
set when significances of points are recalculated. In the refinement, the initial subset Ss con-
tains only four points representing the corners of the image and this subset is successively
modified by adding the most significant point, not already included in this subset. This strat-
egy is useful especially in cases when the compactness of the produced geometrical represen-
tation is desired. The decimation works in an opposite way. It starts with the initial subset
containing all points from S from which it removes successively the least significant points.
This strategy is welcome when the quality of the final geometrical representation is preferred
to its compactness.

The problem common to both techniques we have just described is that as the subset SS, and
consequently its triangulation, changes, some of points inserted into / removed from this sub-
set in previous iterations may no longer be significant / insignificant. This is illustrated in
Figure 3.2. The third point, which was evaluated to be the most significant one in the first
iteration, becomes insignificant after the third iteration as the original data can be approxi-
mated with the error within the given tolerance without its consideration. The remedy for this
problem is to combine both strategies together. Let us note that a mechanism preventing infi-
nite loop of insertion and deletion of the same point is required.

The last strategy starts with a random initial subset of n points that is modified during the it-
erative process by a genetic or a simulated annealing approach as follows. Points that are ap-
parently not good candidates for the most significant ones are removed from the current sub-
set SS and randomly chosen points lying in their vicinity are included into the subset. In the
simulated annealing, the vicinity area decreases with every iteration. Let us note that this
strategy needs a big number of iterations and its behaviour strongly depends on a large set of
parameters such as the temperature for the annealing, etc.

22

a) initial subset SS b) after the first iteration c) after the second iteration

d) after the third iteration e) optimal subset SS

Figure 3.2: A refinement process in E1producing unnecessarily large subset of the most significant
points SS for the given tolerance εT of the overall approximation error (depicted by red dashed lines).

In the further text, we suppose that the described mesh based heuristics exploit the decimation
strategy, if not expressed explicitly otherwise.

a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.3: The significance map computed by the RND method for small areas (highlighted by red
rectangles) of three popular grey-scale images. Lighter pixels represent more significant points.

εΤ

23

3.1 Random Choice (RND)
The simplest heuristics, denoted as RND, assigns a random significance to points at the be-
ginning of the decimation process and does not modify it during the process. Actually it
means that points are removed from the triangulation in a random fashion. This heuristics can
be used in both meshless and mesh based versions and it is not limited to the decimation strat-
egy only. Figure 3.3 shows the significance of points in three popular grey-scale images. As
the RND heuristics does not exploit the shape information encoded in images, it is unlikely to
achieve good results with this method.

3.2 Marr-Hildreth (MARR)
A more sophisticated method, called MARR, computes the significance of points as the re-
sults of Marr-Hildreth edge detection operator [Mar80], which is also known as the Laplacian
operator, i.e., points that form edges in the image are more significant. Formally, the signifi-
cance s(p) of the point p can be defined by the formula:

�����, ��� � |��� 1, �� ! ��� ! 1, �� ! ���, � 1� ! ���, � ! 1� 4 · ���, ��|,
where I(x, y) is the grey-scale value of point with coordinates x and y. As in the RND method,
the significance is not recalculated during the process and the method is also suitable for any
strategy (not only for the decimation). Significances of points for three popular images are
shown in Figure 3.4.

a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.4: The significance map computed by the MARR method for small areas of three popular
grey-scale images. Lighter pixels represent more significant points.

3.3 Pixel Similarity (PIXSIM)
The PIXSIM method, another meshless heuristics, is based on the evaluation of similarity
between points (pixels). In the following description of this method, we consider that two
points are adjacent if and only if they lie on a common horizontal or vertical line and there is
no other point on this line that lies between them. In other words, the difference of coordi-
nates of these two adjacent points can be either (1, 0), (-1, 0), (0, 1) or (0, -1). We further de-
fine that two points are similar if and only if the absolute value of the difference of their grey
scale values does not exceed some given tolerance.

For each point p, the method searches for every point q (p ≠ q) such that this point and the
point p are similar and, moreover, they are either adjacent or they lie on a common horizontal
or vertical line and all points on this line lying between them are similar to the point p. In fact,

24

this corresponds to the region filling algorithm with the given tolerance and the seed in the
point p. The significance s of the point p is then calculated as:

�����, ��� � �
|#|,

where Q is a point set including the point p and all detected points q. Figure 3.5 shows the
influence of the tolerance value on significances of points.

Figure 3.5: The significance map computed by the PIXSIM method for a small area of the boat grey-
scale image when the tolerance 1, 2, 4, 8, 16 and 32 (from top left) was used. Lighter pixels represent

more significant points.

The problem with the previous formula is that it does not consider the position of points,
which means that a point surrounded by other eight points with the same grey scale value has
the same significance as an endpoint of line segment formed by nine points in total (all points
have the same grey scale value). Therefore, we propose also an alternative formula for the
evaluation of point significance:

�����, ��� � |#|
$�#�,

where A(Q) is the area of bounding box of the set Q. In the further text, we denote this variant
by the codename PIXSIM2. A comparison of significances for three popular images is given
in Figure 3.6. Let us note that significances of points are not recalculated during the process.

25

a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.6: The significance map computed by the PIXSIM (top) and PIXSIM2 (bottom) methods us-
ing the tolerance value 8 for small areas of three popular grey-scale images. Lighter pixels represent

more significant points.

3.4 Distance Weighted (DISTW)
Distance weighted method belongs to mesh based heuristics. It computes the significance of a
point p as the absolute difference of the grey value of this point and the value computed as the
distance weighted average of grey values of its neighbouring vertices q that are connected
with p by an edge:

�����, ��� � %���� ∑ ��'� · |� '|(∑ |� '|(%.
As the point p(x, y) is connected in the initial triangulation, which contains all points from S,
with points at (x - 1, y), (x + 1, y), (x, y – 1), (x, y + 1), (x – 1, y + 1) and (x + 1, y – 1), i.e.,
four of these points are the same as those used in the MARR method, the initial significance
map is very similar to the one obtained by the MARR heuristics – see Figure 3.7.

When a point (the least significant one) is deleted from the triangulation, significances of all
points that formed the hole, i.e., they were originally connected by an edge with the deleted
point, are recalculated using the formula written above.

26

a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.7: The significance map computed by the DISTW method for small areas of three popular
grey-scale images. Lighter pixels represent more significant points.

3.5 Error Distribution (ERRDIST)
This heuristics computes the initial significance of points using the same formula as the pre-
viously described DISTW method but when the least significant point is deleted from the tri-
angulation, significances of points are updated differently as follows. The triangle containing
the removed point pr is located and significances of its vertices pa, pb and pc – see Figure 3.8 –
are modified using the following formulas:

�*�+��, ��, � �-./0*�+��, ��, ! 1 · �*�.��, ��,,
�*�2��, ��, � �-./0*�2��, ��, ! 3 · �*�.��, ��,,
�*�4��, ��, � �-./0*�4��, ��, ! 5 · �*�.��, ��,,

where �-./0*�6��, ��, is the previous significance associated with the point pi and α, β and γ
are the barycentric coordinates of the point pr in the triangle pa, pb and pc. These coordinates
can be computed from this system of linear equations:

1 · �+ ! 3 · �2 ! 5 · �4 � �. ,
1 ! 3 ! 5 � 1.

Let us note that this heuristics, actually, works in a way similar to the Floyd-Steinberg error
diffusion technique [Flo76].

Figure 3.8: The deletion of point from the triangulation.

pr

pa pb

pc

pr

27

3.6 Triangle Mean Square Error (TRIMSE)
Starting with initial significances of points computed by the formula as the DISTW method,
this heuristics updates significances of points, after the least significant point is removed, as
follows. For each newly constructed triangle, it first computes its mean square error (MSE),
i.e., it computes the sum of square differences between the grey values of pixels covered by
this triangle in the original image and the corresponding values obtained by the bilinear inter-
polation of grey values of triangle vertices that is divided by the number of pixels in this tri-
angle. Formally, this can be written as:

789∆ � ∑ �;�<,=�>;?�<,=��@
A6B/�∆�∆ ,

where I’ denotes the interpolated values. The significance of a vertex is then recalculated as
the sum of MSE of triangles that share this vertex. Let us note that this method is, indeed,
slower than the previous methods.

3.7 Brute-force (BRUTE)
The BRUTE method is based on a brute-force idea to calculate the significance of a point p as
a function of the approximation error achieved for triangles that would be constructed if this
vertex was deleted. It is clear that there are many possible functions. Whilst the basic function
sums the MSE of these triangles (see the previous section), the function denoted as MAT,
originally proposed by Demaret et al. [Dem06], sums the square differences between the grey
values of pixels covered by these triangles in the original image and the corresponding recon-
structed values. This actually means that the MAT computes the sum of MSE of triangles
multiplied by the number of pixels they cover. The other two functions, we have experi-
mented with, denoted as MAT1 and MAT2 (both proposed also by Demaret et al.), return the
absolute maximal difference and the difference at the point p, respectively. In the further text,
we assume that the basic function was used unless specified otherwise.

a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.9: The significance map computed by the BRUTE method for small areas of three popular
grey-scale images. Lighter pixels represent more significant points.

28

It is without any doubt that this method is the most time consuming but we may expect the
best results. To speed up the processing, the initial significance of a vertex p is computed
simply as the square difference of the grey value held by this vertex and the average of grey
values held by two its neighbouring vertices (left and right):

�����, ��� � ����� ;�<>�,=�C;�<C�,=�
� ��.

Let us note that this corresponds to the square approximation error measured in this vertex.
Initial significances for three popular images are shown in Figure 3.9.

3.8 Nock Segmentation (NOCK)
This heuristics is an extension of the BRUTE method. It computes the initial significance of
points in a slightly different way as follows. First, the input raster image is segmented using
the technique proposed by Nock et al. [Noc05], which produces several irregular regions of
similar pixels. Every point on the boundary of these regions is marked to be not removable,
i.e., its significance is set to be maximal. Let us note that the boundary may be thicker than
one pixel. An example of the segmentation is given in Figure 3.10. Significances of the re-
maining points are calculated as in the BRUTE method. The aim of this significance evalua-
tion is to preserve such edges that define the shape encoded in the image.

a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.10: The segmentation of three popular grey-scale images using the method proposed by
Nock et al. [Noc05]. The boundary pixels are white.

3.9 Gaussian Influence (GAUSS)
Another extension of the BRUTE method computes the initial significance of a point p as the
sum of Gaussian weighted differences between its grey-scale value and the values of points in
its vicinity:

�*���, ��, � D D |���, �� ��� ! E, � ! F�| · G>6@CH@�·I@
.

HJ>.

.

6J>.
,

where constants r and K define the vicinity area and the influence factor of the point in this
area, respectively. This formula is based on the idea that when points in the vicinity of the
point p were removed and must be reconstructed, it is likely that points closer to the point p
will be influenced by its value more than distant points (which might lie even in a triangle not
having the point p as one of its vertices).

Considering the formula given above, it can be deducted that points in uniform regions have
very low significances while points lying in proximity of image edges are significant ones and
their significances depend on their distances to the nearest edge. Indeed, these values are also

29

dependent on constants r and K – see Figure 3.11 and Figure 3.12. Initial significances for
three popular grey-scale images are given in Figure 3.13. As it can be seen, for smaller con-
stants, significances are quite similar to those obtained by the Marr-Hildreth method but the
map is not so noisy, i.e., points belonging to small unimportant image edges are not evaluated
to be significant (unlike in the MARR heuristics).

Figure 3.11: The significance map computed by the GAUSS method for a small area of the Lena
grey-scale image when the influence factor (L) 24 and the vicinity area (r) 2, 4, 8, 16, 32 and 64 (from

top left) was used. Lighter pixels represent more significant points.

Figure 3.12: The significance map computed by the GAUSS method for a small area of the fruit grey-
scale image when the vicinity area (r) 32 and the influence factor (L) 2, 16 and 32 (from top left) was

used. Lighter pixels represent more significant points.

30

a) boat, 512x512 b) Lena, 512x512 c) fruits, 512x512

Figure 3.13: The significance map computed by the GAUSS method for small areas of three popular
grey-scale images when the vicinity area (r) 16 and the influence factor (L) 8 was used. Lighter pixels

represent more significant points.

3.10 Other Heuristics
In this section, we have described various heuristics for the evaluation of point significances.
Some of them are complex and tend to be slow (e.g., the GAUSS), however, they promise
a more compact representation of images within the given quality threshold. Others are much
simpler (e.g. the DISTW method) and offer fast processing, however, they are likely to pro-
duce larger representations. Let us note that heuristics described here can be combined to
achieve event better results. For instance, one can use the Marr-Hildreth heuristics to evaluate
the initial significance of points and then proceed with the BRUTE method, etc.

4 Experiments with Triangulation Construction

For our experiments, we used a set of
from 300x400 to 1024x1024 (most of them were of 512x512 size).
from the Internet from various sources, e.g., from the USC
us note that most of these images have never been s
nique (used, e.g., in JPEG)
tested images from this set

d) boat, 512x512 e)

h) Elaine, 512x512 i)

l) kodim, 465x375 m)

For each of proposed methods of the vertex significance evaluation (see the previous section),
we investigated the degradation of the quality of the geometric representation in the depen
ency on the amount of triangulated vertices.
computed for images N×M

where I(x, y) is the grey scale value in the original raster image at position
the corresponding value in the image reconstructed from the given geometric representation.

31

periments with Triangulation Construction

For our experiments, we used a set of both grey-scale and colour test images of sizes ranging
from 300x400 to 1024x1024 (most of them were of 512x512 size). They were downloaded
from the Internet from various sources, e.g., from the USC-SIPI image database [Usc07].
us note that most of these images have never been subjected to any lo

 since their capture into a lossless PNG or TIFF format.
set are shown in Figure 4.1.

e) Lena, 512x512 f) fruits, 512x512

 Lukas, 512x512 j) Masa, 512x512

m) Maran, 400x300 g) monarch, 768x512

Figure 4.1: Test images.

For each of proposed methods of the vertex significance evaluation (see the previous section),
we investigated the degradation of the quality of the geometric representation in the depen

iangulated vertices. The quality was measured as
M using the following formula:

),

,

) is the grey scale value in the original raster image at position
the corresponding value in the image reconstructed from the given geometric representation.

periments with Triangulation Construction

test images of sizes ranging
They were downloaded

SIPI image database [Usc07]. Let
ubjected to any lossy compression tech-

a lossless PNG or TIFF format. Most often

g) peppers, 512x512

k) Pirate, 1024x1024

For each of proposed methods of the vertex significance evaluation (see the previous section),
we investigated the degradation of the quality of the geometric representation in the depend-

The quality was measured as the PSNR, which is

) is the grey scale value in the original raster image at position x, y while I’ (x, y) is
the corresponding value in the image reconstructed from the given geometric representation.

32

4.1 Main Meshless Heuristics
Figure 4.2 brings examples of Lena images reconstructed by the bilinear interpolation on the
Delaunay triangulation of points selected by the random choice (the RND method). As it can
be seen, edges in images are not smooth and triangles of the underlying triangulation are
clearly visible even for triangulations with lot of vertices. On the other hand, even images
reconstructed from the Delaunay triangulation of a very few vertices (e.g., 1.9% as in Figure
4.2b) are well recognisable. Apparently, the RND heuristics could be used for very fast pre-
views or for non-realistic rendering (especially, for the pointillism).

a) 2 000, PSNR = 20.39 b) 5 000, PSNR = 22.61 c) 10 000, PSNR = 24.32

d) 15 000, PSNR = 25.30 e) 25 000, PSNR = 26.64 f) 50 000, PSNR = 28.86

Figure 4.2: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the RND method.

The results of the Marr-Hildreth (MARR) method are given in Figure 4.3. Unexpectedly, this
heuristics provide us with the results of a low quality (especially for small triangulations). The
reason is that there is not a sufficient amount of vertices to represent areas with a smooth
change of intensity (e.g., in face) in a good quality because too many vertices were wasted to
represent areas with sharp edges in an outstanding quality (see the feather).

33

a) 2 000, PSNR = 13.88 b) 5 000, PSNR = 15.57 c) 10 000, PSNR = 19.48

d) 15 000, PSNR = 20.46 e) 25 000, PSNR = 24.93 f) 50 000, PSNR = 30.95

Figure 4.3: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the MARR method.

There is no significant difference between the PIXSIM and PIXSIM2 heuristics – compare
Figure 4.4 and Figure 4.5. It is not a big surprise since significance maps for the tested image
are also very similar (see Figure 3.6). However, the issue is whether this can be expected in a
general case. Let us analyse both heuristics for different inputs. If we have an image of uni-
form colour, every point has the same number of adjacent similar points and, therefore, all
points are equally significant in both methods. For an artificial image having two regions of
the same size but different, not similar, colours (e.g., the left region is white whilst the right
region is black), significances of points are also equal. This actually means that these heuris-
tics are impropriate for images with regular patterns not separated by an edge. Fortunately,
such patterns are not very often present in real images.

In real images, regions, either gradient or uniform, are always separated by edges at least one
pixel thick that typically blends colours of one region into colours of the other region. Let us
consider an image with two uniform regions separated by such an edge. For the sake of sim-
plicity, we assume that this image has only one line of pixels (the extension for two-
dimensional case is straightforward). It can be considered to be a one-dimensional function
that maps x-coordinates into grey-scale values. This function is depicted in Figure 4.6a.

34

a) 2 000, PSNR = 17.69 b) 5 000, PSNR = 19.36 c) 10 000, PSNR = 20.02

d) 15 000, PSNR = 21.56 e) 25 000, PSNR = 22.19 f) 50 000, PSNR = 24.16

Figure 4.4: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the PIXSIM method with the tolerance value 8.

If we compute differences between adjacent pixels (i.e., the differential: I(x + 1) – I(x)), we
get zeros for uniform areas and non-zeroes for the edge with the peak in the middle of the
edge – see Figure 4.6b. The algorithm for the searching of similar points adjacent to a point p,
which was described in the previous section, can be converted now into another one. This
algorithm starts at the point p(x) with the total energy equalled to the tolerance value and it
advances to points with lower x-coordinates decreasing this energy in every step by the dif-
ference value at the current position. Naturally, the process terminates when there is not
enough energy to move to the adjacent point. After that the algorithm is repeated, this time it
advances to points with higher x-coordinates.

For instance, let us assume that we have a line of pixels with grey-scale values: 1, 2, 3, 4 and
6. The differences are then: 1, 1, 1, 2 and 0 for the last pixel as it does not have the right
neighbour. For the tolerance value 2, the region of adjacent pixels similar to the third pixel
clearly includes four pixels (1, 2, 3 and 4). The algorithm starts at the third pixel with the total
energy 2. As the cost of movement to the second pixel is just one, it moves there and de-
creases the total energy by one. As it has still enough energy, the algorithm moves then to the
first pixel. After that no energy remains and the process is restarted for the right side, where it
can move only to the fourth pixel as it lacks energy to move further. Hence, the resulting re-
gion contains the same pixels as the region produced by the original algorithm used in the
PIXSIM and PIXSIM2 heuristics.

35

a) 2 000, PSNR = 16.76 b) 5 000, PSNR = 19.13 c) 10 000, PSNR = 20.49

d) 15 000, PSNR = 21.22 e) 25 000, PSNR = 22.91 f) 50 000, PSNR = 24.24

Figure 4.5: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the PIXSIM2 method with the tolerance value 8.

a) b)

Figure 4.6: An example of one-dimensional function I(x) and its derivation I’(x).

Being at the point p(x) with an unknown amount of energy, the probability that the algorithm
can move to the adjacent point is inversely proportional to the difference between grey-scale
values of these points. It actually means that the amount of similar points adjacent to the
given one is highly dependent on the shape of the function of differences. If the slope around
the point is small, the amount is much larger than in the case of big slopes. As image edges
produce sharp peaks (and, therefore, big slopes) – see also Figure 4.7, we can conclude that
the number of similar adjacent points is small for an image edge while it is large for other
areas. Hence, the most significant points in the PIXSIM heuristics are those that represent

I(x)

x

I'(x)

x

36

image edges. Further, it can be easily shown that the ratio between the amount of similar
points adjacent to the given one and the area of bounding box of these similar points typically
decreases as this amount grows. It means that this ratio is larger for points of image edges,
which leads into conclusion that the PIXSIM2 method also assigns higher significances for
points that represent image edges. Hence, both heuristics produce almost the same results for
any digital image.

Figure 4.7: Differences in x-coordinate for a small part of the Lena image. Red line of pixels is given in
detail in the right image.

From the presented results, it is apparent that the PIXSIM and PIXSIM2 heuristics can pre-
serve the image shape better than the MARR method in the case of triangulations of a very
few vertices. However, they still cannot beat the simplest method of random choice.

a) 2 000, PSNR = 18.94 b) 5 000, PSNR = 22.57 c) 10 000, PSNR = 26.06

d) 15 000, PSNR = 28.22 e) 25 000, PSNR = 30.86 f) 50 000, PSNR = 33.38

Figure 4.8: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the DISTW method.

I'(x)

x

37

4.2 Main Mesh Based Heuristics
Figure 4.8 shows the results for the first mesh based heuristics, the DISTW. This method ap-
parently inclines to preserve those points that represent image edges. Unlike the meshless
MARR heuristics, the weighting scheme prevents the method from the keeping of improper
points and, therefore, the quality of achieved results is better (much better for smaller triangu-
lations). The most important information is preserved even if the image is represented by a
tiny triangulation (see Figure 4.8a). Nevertheless, the quality is still far from being acceptable.

Similar results were achieved for the ERRDIST heuristics – see Figure 4.9. As it can be seen,
this heuristics also tends to keep points on image edges. In comparison to the previous
method, the significance of those points is, however, a bit diminished due to the error distribu-
tion scheme, which may lead to slightly better results for smaller triangulations. Let us note
that both methods are very fast (although they are slower than meshless methods), yet they
can represent images in an acceptable quality retaining only about 6% of their pixels. Suppos-
ing that no compression technique is involved, the storage cost for this geometrical represen-
tation is, therefore, about one third of the storage cost for the raster representation.

a) 2 000, PSNR = 19.82 b) 5 000, PSNR = 20.35 c) 10 000, PSNR = 22.53

d) 15 000, PSNR = 26.72 e) 25 000, PSNR = 27.57 f) 50 000, PSNR = 32.08

Figure 4.9: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the ERRDIST method.

The results achieved by the TRIMSE heuristics are given in Figure 4.10. As this method
evaluates the significance of point according to the mean square error of triangles sharing this
point, there is a little wonder that reconstructed images, especially those reconstructed from
smaller triangulations, have visible triangular artefacts. Unlike the RND method, which also
produces similar artefacts, the results are, however, of much better quality. It is also important

38

to point out that this heuristics can achieve better quality for moderate triangulations than the
previously described methods. Nevertheless, the images reconstructed from such triangula-
tions are a bit blurred (and with visible triangular artefacts, indeed).

a) 2 000, PSNR = 21.16 b) 5 000, PSNR = 24.58 c) 10 000, PSNR = 27.09

d) 15 000, PSNR = 28.34 e) 25 000, PSNR = 29.69 f) 50 000, PSNR = 31.25

Figure 4.10: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the TRIMSE method.

Figure 4.11 and Figure 4.12 show the results achieved by all considered variants of the
BRUTE heuristics. Let us remind the reader that the MAT, MAT1 and MAT2 versions were
originally proposed by Demaret et. al [Dem06]. Except for the MAT2 variant, which is the
fastest one, the results are of an outstanding quality. This is definitely true for the basic and
the MAT versions that can represent images in a good quality retaining only about 5 000 pix-
els (2%), which reduces the storage cost to one tenth in comparison with the raster representa-
tion (assuming that no compression technique is involved).

As it can be seen, there is no significant difference between the basic and the MAT variants of
the BRUTE heuristics. This is hardly surprising, since both variants compute significances of
points in a very similar way. An interesting observation, however, is that the results obtained
by the MAT2 version are not significantly better (in the meaning of achieved quality) than
results obtained by much faster distance weighted heuristics (DISTW).

A serious drawback of the BRUTE heuristics is its time consumption. Even the fastest version
takes almost one minute to process an image of 512×512 pixels and, therefore, this method
cannot be used in real-time (or almost real-time) applications. However, we believe that with
a careful implementation exploiting modern hardware (such as GPU for interpolation of trian-
gles), it could be possible to reduce the time requirements to mere seconds.

39

a) 2 000, PSNR = 24.52 b) 5 000, PSNR = 28.57 c) 10 000, PSNR = 31.13

d) 15 000, PSNR = 32.53 e) 25 000, PSNR = 34.31 f) 50 000, PSNR = 36.30

g) 2 000, PSNR = 24.98 h) 5 000, PSNR = 29.83 i) 10 000, PSNR = 31.72

j) 15 000, PSNR = 32.74 k) 25 000, PSNR = 33.94 l) 50 000, PSNR = 35.74

Figure 4.11: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the basic version of the BRUTE method (a-f) and the MAT version (g-l).

40

a) 2 000, PSNR = 23.97 b) 5 000, PSNR = 27.94 c) 10 000, PSNR = 30.68

d) 15 000, PSNR = 32.11 e) 25 000, PSNR = 33.53 f) 50 000, PSNR = 35.45

a) 2 000, PSNR = 22.01 b) 5 000, PSNR = 25.47 c) 10 000, PSNR = 28.37

d) 15 000, PSNR = 28.37 e) 25 000, PSNR = 29.87 f) 50 000, PSNR = 33.49

Figure 4.12: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the MAT1 version of the BRUTE method (a-f) and the MAT2 version (g-l).

41

The results achieved by the NOCK method (based on the BRUTE) are given in Figure 4.13.
As it can be seen, the quality of reconstructed images quickly degrades with the decreasing
size of the triangulation. The reason of this behaviour is that too many points represent region
edges and, therefore, there is hardly any other point left to preserve the data within regions.
This is well visible especially in Figure 4.13a. This problem might not be so severe for the
Lena image that has only about 7 000 boundary pixels but it is a serious issue for complex
images with plenty of details. A possible solution could be to decimate boundaries first, i.e.,
to reduce the number of boundary pixels.

a) 7 017, PSNR = 16.43 b) 10 017, PSNR = 27.42 c) 15 017, PSNR = 30.93

a) 19 517, PSNR = 32.37 b) 27 017, PSNR = 33.94 c) 47 017, PSNR = 35.98

Figure 4.13: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the NOCK method (with one pixel thick boundaries).

42

The GAUSS heuristics, which is also based on the BRUTE heuristics, unfortunately does not
bring any further improvement – see Figure 4.14. The results are rather worse than better.
Considering that this heuristics needs O(N·M·4r2) time for the computation of initial signifi-
cances, where N and M are numbers of rows and columns in the image and r is the vicinity
area, which is typically 16, it is a big disappointment. We tried, therefore, to combine this
heuristics with the ERRDIST one in such a manner that initial significances of points are
computed using the algorithm of the GAUSS method and then the error distribution decima-
tion algorithm is applied. For smaller triangulations, the achieved results are of a better qual-
ity than those obtained by pure ERRDIST method – compare Figure 4.15 and Figure 4.9.
Hence, this combined method is apparently suitable for larger images whose processing using
BRUTE or TRIMSE methods would take too long but using much faster DISTW and
ERRDIST methods would not meet the requested quality criterion.

a) 2 000, PSNR = 22.13 b) 5 000, PSNR = 28.35 c) 10 000, PSNR = 30.99

d) 15 000, PSNR = 32.34 e) 25 000, PSNR = 33.85 f) 50 000, PSNR = 35.42

Figure 4.14: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the GAUSS method with when the influence factor (L) 8 and the vicinity area (r) 16.

43

a) 2 000, PSNR = 22.43 b) 5 000, PSNR = 25.09 c) 10 000, PSNR = 27.07

d) 15 000, PSNR = 28.39 e) 25 000, PSNR = 29.88 f) 50 000, PSNR = 31.71

Figure 4.15: The comparison of Lena images reconstructed from triangulations with various vertices
computed by the ERRDIST method combined with the GAUSS method with when the influence factor

(L) 8 and the vicinity area (r) 16.

4.3 Comparison of Main Heuristics
Figure 4.16 compares images of fruits reconstructed from Delaunay triangulations with
10 000 vertices (i.e., 96% of vertices was removed) computed using different methods for the
evaluation of vertex significance. Without any doubt, the best results were obtained by the
BRUTE method. However, it is interesting to point out that this method did not preserve some
details that might be important from the user point of view. For instance, see missing diagonal
lines on the background. On the contrary, the ERRDIST method, although not so powerful as
the BRUTE one, preserved it quite well. Hence, a smart combination of these two methods
seems to be optimal.

For each proposed heuristics, we investigated the degradation of the quality of the geometric
representation in the dependency on the amount of removed points (the number of significant
vertices in the Delaunay triangulation can be calculated as the total number of points in the
original image minus this value). The results for three popular images, all with 262 144 points
in total, are presented in Figure 4.17 – Figure 4.20. As it can be seen from graphs, the quality
of the representation degrades quite quickly until the algorithm removes approximately 25%
of vertices, after that the quality decreases almost linearly in a slow pace until another thresh-
old of about 90% removed vertices is reached. From that moment, the quality rapidly drops
down. An interesting observation is that in this last period, all methods (including the RND
method based on a random selection of vertices to be removed) produce quite similar results.

44

a) RND, PSNR = 23.53 b) MARR, PSNR = 19.53 c) PIXSIM, PSNR = 23.20

d) DISTW, PSNR=26.09 e) ERRDIST, PSNR=25.64 f) TRIMSE, PSNR = 27.82

g) BRUTE, PSNR=32.08 h) NOCK, PSNR=30.58 i) GAUSS, PSNR = 31.94

Figure 4.16: The comparison of fruit images reconstructed from triangulations with 10 000 vertices
computed by various methods. Note that for the NOCK method, the triangulation had 10 134 vertices.

It means that an application that calls for a triangulation with a few vertices only (e.g., in non-
photorealistic rendering), does not need to pay much attention which method for the evalua-
tion of vertex significance to use. Another important observation is that a heuristics that pro-
duces results of a poor quality for triangulations of medium size may overcome other more
sophisticated (and, therefore, also slower) methods when small triangulations are considered.
For instance compare the behaviour of the RND and MARR heuristics (Figure 4.17).

45

a) boat (512×512)

b) Lena (512×512)

c) fruits (512×512)

Figure 4.17 (colour): The dependency of quality (measured in PSNR) of images reconstructed from
Delaunay triangulations obtained by meshless heuristics on the number of removed vertices (higher

values mean smaller triangulations) for three popular 512x512 grey-scale images.

10

15

20

25

30

35

40

45

50

55

0 50000 100000 150000 200000 250000

P
S

N
R

N

RND

MARR

PIXSIM

10

12

14

16

18

20

22

24

240000 250000 260000

P
S

N
R

N

10

15

20

25

30

35

40

45

50

55

60

0 50000 100000 150000 200000 250000

P
S

N
R

N

RND

MARR

PIXSIM

12

14

16

18

20

22

24

26

28

240000 250000 260000

P
S

N
R

N

10

15

20

25

30

35

40

45

50

55

60

0 50000 100000 150000 200000 250000

P
S

N
R

N

RND

MARR

PIXSIM

10

12

14

16

18

20

22

24

26

240000 250000 260000

P
S

N
R

N

46

a) boat (512×512)

b) Lena (512×512)

c) fruits (512×512)

Figure 4.17: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations obtained by meshless heuristics on the number of removed vertices (higher values

mean smaller triangulations) for three popular 512x512 grey-scale images.

10

15

20

25

30

35

40

45

50

55

0 50000 100000 150000 200000 250000

P
S

N
R

N

RND

MARR

PIXSIM

10

12

14

16

18

20

22

24

240000 250000 260000

P
S

N
R

N

10

15

20

25

30

35

40

45

50

55

60

0 50000 100000 150000 200000 250000

P
S

N
R

N

RND

MARR

PIXSIM

12

14

16

18

20

22

24

26

28

240000 250000 260000

P
S

N
R

N

10

15

20

25

30

35

40

45

50

55

60

0 50000 100000 150000 200000 250000

P
S

N
R

N

RND

MARR

PIXSIM

10

12

14

16

18

20

22

24

26

240000 250000 260000

P
S

N
R

N

47

a) boat (512×512)

b) Lena (512×512)

c) fruits (512×512)

Figure 4.18 (colour): The dependency of quality (measured in PSNR) of images reconstructed from
Delaunay triangulations obtained by basic mesh based heuristics on the number of removed vertices

(higher values mean smaller triangulations) for three popular 512x512 grey-scale images.

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

DISTW

ERRDIST

TRIMSE

BRUTE

14

16

18

20

22

24

26

28

30

32

34

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

DISTW

ERRDIST

TRIMSE

BRUTE

15

17

19

21

23

25

27

29

31

33

35

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

DISTW

ERRDIST

TRIMSE

BRUTE

14

19

24

29

34

240000 250000 260000

P
S

N
R

N

48

a) boat (512×512)

b) Lena (512×512)

c) fruits (512×512)

Figure 4.18: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations obtained by basic mesh based heuristics on the number of removed vertices (higher

values mean smaller triangulations) for three popular 512x512 grey-scale images.

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

DISTW

ERRDIST

TRIMSE

BRUTE

14

16

18

20

22

24

26

28

30

32

34

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

DISTW

ERRDIST

TRIMSE

BRUTE

15

17

19

21

23

25

27

29

31

33

35

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

DISTW

ERRDIST

TRIMSE

BRUTE

14

19

24

29

34

240000 250000 260000

P
S

N
R

N

49

a) boat (512×512)

b) Lena (512×512)

c) fruits (512×512)

Figure 4.19 (colour): The dependency of quality (measured in PSNR) of images reconstructed from
Delaunay triangulations obtained by basic heuristics on the number of removed vertices (higher values

mean smaller triangulations) for three popular 512x512 grey-scale images.

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

RND MARR PIXSIM DISTW

ERRDIST TRIMSE BRUTE

10

15

20

25

30

35

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

RND MARR PIXSIM DISTW

ERRDIST TRIMSE BRUTE

10

15

20

25

30

35

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

RND MARR PIXSIM DISTW

ERRDIST TRIMSE BRUTE

10

15

20

25

30

35

240000 250000 260000

P
S

N
R

N

50

a) boat (512×512)

b) Lena (512×512)

c) fruits (512×512)

Figure 4.19: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations obtained by basic heuristics on the number of removed vertices (higher values mean

smaller triangulations) for three popular 512x512 grey-scale images.

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

RND MARR PIXSIM DISTW

ERRDIST TRIMSE BRUTE

10

15

20

25

30

35

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

RND MARR PIXSIM DISTW

ERRDIST TRIMSE BRUTE

10

15

20

25

30

35

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

RND MARR PIXSIM DISTW

ERRDIST TRIMSE BRUTE

10

15

20

25

30

35

240000 250000 260000

P
S

N
R

N

51

a) boat (512×512)

b) Lena (512×512)

c) fruits (512×512)

Figure 4.20 (colour): The dependency of quality (measured in PSNR) of images reconstructed from
Delaunay triangulations obtained by various BRUTE kind heuristics on the number of removed verti-

ces (higher values mean smaller triangulations) for three popular 512x512 grey-scale images.

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

BRUTE MAT MAT1

MAT2 NOCK GAUSS

12

17

22

27

32

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

BRUTE MAT MAT1

MAT2 NOCK GAUSS

15

17

19

21

23

25

27

29

31

33

35

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

BRUTE MAT MAT1

MAT2 NOCK GAUSS

15

20

25

30

35

40

240000 250000 260000

P
S

N
R

N

52

a) boat (512×512)

b) Lena (512×512)

c) fruits (512×512)

Figure 4.20: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations obtained by various BRUTE kind heuristics on the number of removed vertices (higher

values mean smaller triangulations) for three popular 512x512 grey-scale images.

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

BRUTE MAT MAT1

MAT2 NOCK GAUSS

12

17

22

27

32

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

BRUTE MAT MAT1

MAT2 NOCK GAUSS

15

17

19

21

23

25

27

29

31

33

35

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

BRUTE MAT MAT1

MAT2 NOCK GAUSS

15

20

25

30

35

40

240000 250000 260000

P
S

N
R

N

53

As it can be further seen in Figure 4.19, the curve of quality achieved by the slowest BRUTE
method is the upper bound for all other curves, while the lower bound is formed by the curve
achieved by the simplest (and the fastest as well) RND method in the area of large and me-
dium triangulations and by another meshless heuristics, the MARR method, in the area of
smaller triangulations.

Except for the NOCK method and the BRUTE method in its MAT2 variant, whose behave
poorly, there is no significant difference between various methods based on the brute-force
strategy in the area of small triangulations – see Figure 4.20. Let us note that although the
MAT variant, which was originally proposed by Demaret et. al [Dem06], proved to produce
results of the highest quality, we continue to use the basic version of the BRUTE method in
the further text, if not specified explicitly otherwise. Anyway, the basic version achieves only
slightly worse results in comparison with the MAT variant.

4.4 Combined Heuristics
Figure 4.21 brings the comparison of results obtained by two combined methods with results
that were obtained by their pure (not combined) counterparts. As it can be seen, when the ini-
tial significance of points is calculated by slow GAUSS technique and after that the points are
processed by fast ERRDIST method, results achieved in the area of smaller triangulations are
much better than when the pure ERRDIST method is considered. Although they do not reach
qualities of the BRUTE method, this combined method is still very important for applications
that need to convert quickly large images because it can process these images much faster
than the BRUTE method whilst reaching acceptable qualities. The reason of this is that the
time complexity of the BRUTE method grows much faster than the time complexity of the
significance evaluation used in the GAUSS method.

The other combined method, where the initial significance of points is evaluated using the
Marr-Hildreth operator, does not outperform the previous one and it might be even worse than
the ERRDIST method itself in some cases (see the results for the boat image). Nevertheless,
this combined method has also its merits as it is much faster than the previous one and, there-
fore, it can be used as a good compromise between speed and quality. It is important, how-
ever, to point out that this method is pretty useless when dealing with larger triangulations.

We also experimented with other combinations (e.g., the MARR combined with the basic
BRUTE method) but we did not find any other combination that would bring a substantial
improvement. An interesting observation from our results is that the decimation technique
always produces a set of significant points where the majority is formed by points that belong
to image edges no matter which mesh based heuristics is used. However, when we try to en-
force edge points by giving them larger initial significance, the results are typically worse
than without this interfering.

54

a) boat (512×512)

b) Lena (512×512)

c) fruits (512×512)

Figure 4.21 (colour): The dependency of quality (measured in PSNR) of images reconstructed from
Delaunay triangulations obtained by the ERRDIST combined heuristics on the number of removed

vertices (higher values mean smaller triangulations) for three popular 512x512 grey-scale images. The
results are compared with the results of ERRDIST and BRUTE methods.

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

ERRDIST

BRUTE
GAUSS+ERRDIST
MARR+ERRDIST

16

18

20

22

24

26

28

30

32

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

ERRDIST

BRUTE
GAUSS+ERRDIST
MARR+ERRDIST

16

18

20

22

24

26

28

30

32

34

36

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

ERRDIST
BRUTE

GAUSS+ERRDIST
MARR+ERRDIST

16

18

20

22

24

26

28

30

32

34

36

240000 250000 260000

P
S

N
R

N

55

a) boat (512×512)

b) Lena (512×512)

c) fruits (512×512)

Figure 4.21: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations obtained by the GAUSS combined with ERRDIST heuristics on the number of removed
vertices (higher values mean smaller triangulations) for three popular 512x512 grey-scale images. The

results are compared with the results of ERRDIST and BRUTE methods.

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

ERRDIST
BRUTE

GAUSS+ERRDIST
MARR+ERRDIST

16

18

20

22

24

26

28

30

32

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

ERRDIST
BRUTE

GAUSS+ERRDIST
MARR+ERRDIST

16

18

20

22

24

26

28

30

32

34

36

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

ERRDIST
BRUTE
GAUSS+ERRDIST
MARR+ERRDIST

16

18

20

22

24

26

28

30

32

34

36

240000 250000 260000

P
S

N
R

N

56

4.5 Combined Triangulation Strategy
In order to improve our results, we decided to mix the decimation technique with the refine-
ment strategy as follows. The algorithm keeps two priority queues, denoted as QP and QR. The
first queue (QP) contains vertices currently present in the Delaunay triangulation and the other
contains vertices removed from the triangulation in previous iterations of the algorithm.
Whilst the point at the head of the first queue is the least significant one, the point at the head
of the latter queue is the one with the highest significance of all points in this queue. In itera-
tion, the algorithm compares significances of both points at heads of queues. If the point from
the queue QR is more significant than the other one, then with the probability p, this point is
inserted into the triangulation; otherwise the point from at the head of the queue QP is re-
moved from the triangulation. In any case significances of points (both present and already
removed) in the affected area must be recalculated. The probability p is proportional to the
number of already removed points, i.e., it is more probable for the removed vertex that it will
be reinserted into the triangulation in later stages of the algorithm.

Without any doubt, the proposed algorithm consumes more time than the one based on the
decimation technique and with an improper probability function it may even ends in an infi-
nite loop when some points are removed to be inserted after a while. We insert points when
the following condition is fulfilled:

MNOPQ�RS� · TPU�� � �

V · 7,

where MNOPQ�RS� is the number of points in the queue QR, rnd() is a random function that
returns real numbers from the interval <0, 1> and N and M are width and height of the origi-
nal raster image. With this condition the algorithm terminates eventually, however, it is still
several times slower than the decimation.

Figure 4.22 compares the results obtained by the BRUTE heuristics (which has proven to be
the best one) when the decimation technique was used only and when the decimation was
mixed with the refinement strategy. Clearly the combined algorithm achieves better results in
almost all cases. The improvement is, however, not significant and if we consider the addi-
tional time requirement for this algorithm, we have to prefer the decimation algorithm.

4.6 Image Filtering
Another option how to improve the results is to apply some lossless filtering technique that
transforms the input data into a form more suitable for the considered heuristics. For an easier
understanding of the problem, let us resort to one dimensional case. Figure 4.23 shows a func-
tion that should be approximated by a piecewise linear function with the allowed approxima-
tion error ε. In its original form, an approximation that connects the ending points of the given
function, pa and pb, is not possible because its error is out of the specified tolerance. It is,
therefore, necessary to introduce the third vertex, pc, into the approximation to fulfil the crite-
rion. If the input function is, however, filtered using a simple SUB filter (will be described
later), the approximation by pa and pb is possible. It means that by the filtering we reduced the
number of vertices from three to two, i.e., we either improved the compression ratio or spared
one vertex that can be used elsewhere to improve the quality of the geometric representation.

57

a) boat (512×512)

b) Lena (512×512)

c) fruits (512×512)

Figure 4.22 (colour): The dependency of quality (measured in PSNR) of images reconstructed from
Delaunay triangulations obtained by the BRUTE heuristics with (DEC+REF) and without (DEC) re-

finement strategy on the number of removed vertices (higher values mean smaller triangulations) for
three popular 512x512 grey-scale images.

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

BRUTE DEC

BRUTE DEC+REF

20

22

24

26

28

30

32

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

BRUTE DEC

BRUTE DEC+REF

24

26

28

30

32

34

36

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

BRUTE DEC

BRUTE DEC+REF

20

22

24

26

28

30

32

34

36

240000 250000 260000

P
S

N
R

N

58

a) boat (512×512)

b) Lena (512×512)

c) fruits (512×512)

Figure 4.22: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations obtained by the BRUTE heuristics with (DEC+REF) and without (DEC) refinement strat-
egy on the number of removed vertices (higher values mean smaller triangulations) for three popular

512x512 grey-scale images.

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

BRUTE DEC

BRUTE DEC+REF

20

22

24

26

28

30

32

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

BRUTE DEC

BRUTE DEC+REF

24

26

28

30

32

34

36

240000 250000 260000

P
S

N
R

N

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

P
S

N
R

N

BRUTE DEC

BRUTE DEC+REF

20

22

24

26

28

30

32

34

36

240000 250000 260000

P
S

N
R

N

59

a) the original function b) the filtered function

Figure 4.23: An edge approximation (dashed line) of the original and filtered function (solid line).

We experimented with three image filters commonly used in PNG format. The first one is
already mentioned SUB filter that computes differences between neighbouring pixels:

8WX��� � YNU����� ��� 1��,
where x ranges from zero to the number of pixels in the image minus one, I(x) refers to the
grey value of the pixel in the image corresponding to the specified position x and mod(x) de-
notes unsigned arithmetic modulo 256, so the outputs fit into bytes (e.g., 1 – 2 = 255). For all
negative x, we assume I(x) = 0. In order to reverse the effect of the SUB filter after the inter-
polation of triangles, the output is computed simply as:

���� � YNU�8WX��� ! �� 1��.
The AVG filter transmits the difference between the value of a pixel and the average of the
two neighbouring pixels (left and above) used as a prediction of this value. The formulas for
forward and reverse filter can be written as:

Z[\��� � YNU ����� ;�<>��C;�<>]�
� �,

���� � YNU �Z[\��� ! ;�<>��C;�<>]�
� �,

where N denotes the horizontal size of the image.

As the previous filter, the PAETH filter also transmits the difference between the real value
and the predicted value of a pixel. The prediction is, however, calculated from the three
neighbouring pixels (left, above, upper left) by the algorithm developed by Alan W. Paeth.
This pseudocode of this algorithm is depicted in Figure 4.24.

p = a + b – c; pa = abs(p - a); pb = abs(p - b); pc = abs(p - c);

if pa <= pb and pa <= pc then PAETH(x) = a;

else if pb <= pc then PAETH(x) = b;

else PAETH(x) = c;

Figure 4.24: PAETH filter (see http://www.w3.org/TR/PNG/).Legend: a is the left pixel value, b is the
grey value of pixel above and c is the upper left pixel.

Despite our expectations, the experiments proved that these filtering techniques are not useful;
we obtained even worse results with them than without. Figure 4.25 shows images of fruits
that were reconstructed from triangulations with 93.4% of the original amount of vertices (i.e.,
only an insignificant amount of vertices was removed) when filtering techniques were ap-
plied. Artefacts are clearly visible.

125

130

135

140

0 10 20

I(x)

x

pa

pb

pc

>ε

0

1

2

3

4

5

0 10 20

I(x)

x

pa

pb<ε

60

a) SUB b) AVG c) PAETH

Figure 4.25: Artefacts caused by various filtering techniques.

We identified several reasons for such behaviour. The most important fact is that by filtering
we introduce a dependency between pixels and, therefore, if one pixel is reconstructed with an
error, this error is distributed over the rest of pixels, which may cause unexpected artefacts.
Let us consider the following example. The SUB filter transforms a group of adjacent pixels
0, 0, 10, 10 and 10 into filtered values 0, 0, 10, 0 and 0. If the second value is not stored and
has to be reconstructed, we get values 0, 5, 10, 0, 0. The reverse SUB filter propagates the
error and gives pixels 0, 5, 15, 15 and 15.

The problem is also that although the filtering flattens the image, it does not create suffi-
ciently large places with a constant value but, on the contrary, it introduces a lot of edges into
the image. It makes the approximation process uneasy as it leads to a rapid degradation of
quality. Actually, this is close to the MARR method.

4.7 Summarization
Let us summarize what we have learned from experiments presented in this section. In order
to get a geometric representation with an acceptable quality, the evaluation of significant
points and their triangulation must be two related, not separable, steps. Any mesh based heu-
ristics described in the previous section is suitable when used with the decimation strategy.
The best (in the achieved quality of representation) is apparently the BRUTE method. This
method is, however, quite slow and, therefore, if an application calls for fast transformation,
the ERRDIST or DISTW methods are often optimal. The majority of points in the produced
representation are points that represent edges in the original raster image, so one can be
tempted to assign higher initial significance to every point on these edges in order to help the
heuristics to get better results. This strategy, unfortunately, does not work well as many points
in the original image lie on edges. Apparently, the better results could be achieved, if only
some of those points were set to be more significant. How to detect them is, however, an is-
sue. Filtering of input image (by filters used in PNG), which was supposed to help to get tri-
angulations with fewer vertices, also proved to be useless. Nevertheless, we believe that the
idea of filtering of image in the pre-processing is not bad in general but one has to come with
the filter where the filtered values are more independent and thus less liable to errors. Another
way how to improve results is to exploit a different interpolation of triangles. This option is
discussed in Section 7.

61

5 Triangulation Encoding

Having an arbitrary triangulation representing the image, it is necessary to store both, the co-
ordinates and grey values of its vertices (i.e., the geometry) and triangles (i.e., the topology).
If the image is, however, represented by the Delaunay triangulation, it is possible to avoid
storing of the topology because, as the Delaunay triangulation of a given vertex set is unique
(if no four points lie on a common circum-circle), it may be recomputed from the geometry
during the reconstruction process. At any rate, even if it contains a few vertices only, the tri-
angulation in this raw form consumes a lot of bytes and, therefore, it is not suitable for stor-
ing. A more compact form is necessary.

In this section, we describe various triangulation encoding methods. In order to get as small
files as possible, we often employ also some of existing data compression algorithms such as
bzip2, deflate (the default algorithm used in ZIP), ppdm, lzma (both used in 7z), paq8o, lpaq1,
and quad – see [Mah07, Sou07b, Wik07a, Wik07b, Wik07c]. Let us note that we exploited
the implementation of these algorithms that is in PeaZip utilities [Sou07a]. Commands used to
compress the given source file using these utilities are shown in Table 5.1

Algorithm Command

bzip2 7z.exe a -tbzip2 -mmt=on -mx9 -md=900k -mpass=5

deflate 7z.exe a -tzip -mm=Deflate64 -mx9 -md=64k -mfb=128 -mpass=5
-mem=AES256

ppdm 7z.exe a -t7z -m0=PPMd -mx9 -mmem=192m -mo=32 -ms=on

lzma 7z.exe a -t7z -m0=LZMA -mmt=on -mx9 -md=32m -mfb=64 -ms=on

paq8o paq8o.exe -1

lpaq1 lpaq1.exe 6

quad quad.exe -x

Table 5.1: Commands used for the compression of a source file.

5.1 Raw
After a header, which contains the size of image and the number of vertices, is written into the
output file, the method proceeds with storing of vertices one after another in an uncompressed
way. For each vertex, it saves its x and y coordinates followed by its grey value using 16-bit
integer for one coordinate and 8-bit for the grey value, i.e., 5 bytes per one vertex are con-
sumed. The topology is not stored at all, i.e., this method is suitable for the Delaunay triangu-
lation only. The produced file is afterwards compressed by one of data compression algo-
rithms. As general compression algorithms usually do not take the character of data into an
account (except for paq8o), the expected compression ratio is rather small.

5.2 Vertex Path (VXPATH)
The VXPATH method successively visits all vertices storing the differences (in both coordi-
nates as well as in grey values) between the currently inspected vertex and the previously vis-
ited vertex into two arrays constructed in the memory. In the first array, denoted as V, there
are stored differences in x and y-coordinates; the second, denoted as C, keeps differences in

62

grey values (i.e., in z-coordinates). In the reconstruction process, vertex positions are then
reconstructed from the array V, whilst the second array C is used for the computation of grey
values.

Vertices are visited in such an order that the differences in x and y-coordinates are minimized.
Being in the vertex p(px, py, pgrey), the algorithm thus proceeds with such vertex q(qx, qy, qgrey)
that it has not been already visited and the Minkowski distance between these vertices
[Wik07d], i.e., the value:

|�< '<| ! ^�= '=^,

is minimal. Figure 5.1 shows the triangulation representing a tiny image of 8x8 pixels with
the displayed order of vertices, their grey values and the corresponding content of both arrays.

Figure 5.1: The storing order of vertices and the differences in both coordinates and grey values for
VXPATH.

The method then stores the header (see the Raw method) and the minimum in the arrays of
differences in x and y using 16-bits into the output file. Afterwards, all values from this array,
lowered by the minimum, are stored using as small number of bits as possible (constant for
every value). The number of used bits, naturally, is written into the file first. In our example,
the minimum is -2 and the maximum is 7, i.e., the range is 9 and, therefore, we need 4 bits.
Let us note that it is more than we would have required, if we had stored coordinates instead
of differences (only 3 bits would have been required because the largest coordinate is 7). For
larger images, however, it is highly improbably that the storing of differences would consume
more bits per vertex than the storing of coordinates themselves. Anyway, this approach lowers
the data entropy and, therefore, if we use one of already mentioned data compression utilities
on the output file, we can expect higher compression ratios.

Differences in grey values are stored otherwise. It is reasonable to expect that two adjacent
vertices may hold a completely different grey value. This is definitely true for vertices in the
vicinity of image edges where the difference can be even 255 in the worst case. If we had ap-
plied the same encoding strategy to this second array of differences, we would have needed,
typically, with at least 8 bits per one value. Therefore, values are simply stored using 8 bits.

An advantage of this approach is that it does not require the connectivity for the decoding
process and it offers a compactness as the differences should be very small. The output file
can be optionally compressed even more by one of general data compression algorithms. On
the other hand, this brute-force algorithm runs in O(N2), which means that it takes a lot of
time (especially, if the triangulation contains a large number of vertices).

0

1

2

3 4

5

6 7 8

9
10

11

12

1415

0

0

1

321 54 6 7

2

3

4

5

6

7

16
17

18 13

Grey values
grey # grey

0 4 10 9
1 2 11 15
2 5 12 18
3 5 13 20
4 7 14 12
5 6 15 9
6 4 16 4
7 10 17 3
8 12 18 0
9 7

V (Differences in x, y)
x y x y x y x y x y x y x y x y x y x y

0 1 2 3 4 5 6 7 8 9

0 0 0 1 0 1 0 1 2 0 0 -2 0 -1 2 0 1 0 -1 1
10 11 12 13 14 15 16 17 18

2 1 1 -2 0 5 0 2 -2 -3 -1 0 -2 2 -2 -1 0 2

C (Differences in grey values)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4 -2 3 0 2 -1 -2 6 2 -5 2 6 3 2 -8 -3 -5 -1 -3

63

5.3 Faster Vertex Path (FVXPATH)
This method is a slight modification of the VXPATH method. Being in the vertex p, the algo-
rithm computes its Minkowski distance from every vertex that has not been already visited
and is connected with this vertex by an edge in the triangulation and it proceeds with the ver-
tex for which the distance is minimal. If no such vertex exists, an exhaustive search is used
like in VXPATH. The algorithm, therefore, runs much faster than VXPATH but it generates a
slightly different array of differences that may contain larger values – see Figure 5.2. Let us
note that for the tiny triangulation from Figure 5.1 both algorithms produce the same results.
Unlike VXPATH, the algorithm encodes distances in x and y-coordinates separately, i.e., it
constructs two arrays, Vx and Vy, instead of just one array V.

a) FVXPATH b) VXPATH

Figure 5.2: The difference between the order of vertices in FVXPATH and VXPATH methods.

As for the differences in grey values, we decided, despite the reason given in the previous
section, to store them in the same way as the differences in coordinates, thus accepting that in
the worst case this may lead to the nine-bits per vertex representation.

5.4 Triangle Path (TRPATH)
The Triangle Path enhances the VXPATH method in two small things. First, it the processes
vertices in a different order (but by the same way, i.e., it also constructs arrays of differences)
as follows. The algorithm traverses triangles in the triangulation in the depth-first order and
whenever a new triangle is visited, its still not processed vertices are processed. An example
is given in Figure 5.3.

Figure 5.3: The storing order of vertices and the differences in both coordinates and grey values for
TRPATH. The traversal order of triangles is drawn by a dotted poly-line.

i

i+1 i+2

i+3 i

i+1 i+3

i+2

0

1

4

6 5

3

2 18 16

17
14

15

11

1213

0

0

1

321 54 6 7

2

3

4

5

6

7

8
7

9 10

Grey values
grey # grey

0 4 10 20
1 2 11 18
2 4 12 12
3 6 13 9
4 5 14 9
5 7 15 15
6 5 16 12
7 3 17 7
8 4 18 10
9 0

V (Differences in x, y)
x y x y x y x y x y x y x y x y x y x y

0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 -1 0 1 -2 1 2 1 -2 0 0 2 2 1 -2 1
10 11 12 13 14 15 16 17 18

7 0 0 -2 -2 -1 -1 0 2 -2 1 -2 -2 0 -1 1 0 -1

C (Differences in grey values)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4 -2 2 2 -1 2 -2 -2 1 -4 20 -2 -6 -3 0 6 -3 -5 3

64

As vertices are handled in a linear time, the time consumption is significantly reduced. On the
other hand, the vertex q adjacent to the vertex p in the storing order is rarely the closest one in
the meaning of Minkowski distance. Sometimes it may even happen that these vertices are
quite far away from themselves and/or separated by several triangles. This is caused by dead
ends in the traversal process – see the triangle [5, 13, 8] in Figure 5.3. All in all, it means that
we can expect larger values in the array V.

The second improvement is, therefore, that this method does not use a fixed number of bits
for all differences but encodes the array V using variant number of bits, i.e., different parts of
the array are encoded using different numbers of bits. This makes the method slightly more
complex but promises lower storage costs. Let us now describe the encoding in detail.

For every part, it is necessary to store the number of values present in this part (16 bits), their
minimum (another 16 bits) and, indeed, the number of bits used for their encoding (4 bits),
which gives 36 bits in total. Parts are constructed by a data stream algorithm that processes
the values in the array successively as follows. For each value, it checks whether this value
can be encoded using the current number of bits. If the outcome of this test is negative, it de-
cides if it is worth to increase the number of bits or to proceeds with a new part. The algo-
rithm in pseudo C is written in Algorithm 5.1.

nCurMin = nCurMax = V[0]; //the current minimum and maximum
nCurBits = 1; //the current number of bits
nProcessed = 1; //the very first value has been processed

for (i = 1; i < length(V); i++) {
 //get new min and max
 nNewMin = min(nMin, V[i]);
 nNewMax = max(nMax, V[i]);
 nNewBits = number of bits required to store values nNewMin..nNewMax

 //calculate the costs
 nCost1 = 36 + nProcessed*nCurBits + 37;
 nCost2 = 36 + (nProcessed + 1)*nNewBits;
 if (nCost1 < nCost2){
 //start a new part
 store last nProcessed values using nCurBits bits;

 nNewMin = nNewMax = V[i];
 nNewBits = 1;
 nProcessed = 0;
 }

 nCurMin = nNewMin; nCurMax = nNewMax; nCurBits = nNewBits;
 nProcessed++;
}

Algorithm 5.1: The encoding of the array V using variant number of bits.

5.5 Hilbert Space Filling Curve (BEHEC)
In this method, vertices are processed according to their position on a space filling Hilbert
curve [Hil81]. Unlike previously described methods (e.g., VXPATH), we do not encode dif-
ferences in x and y coordinates (i.e., differences in the Euclidian space) but differences in
positions (i.e., differences in a linear space defined by the Hilbert curve). This means that, in

65

comparison with, e.g., VXPATH, the array V has only a half of values but its values might be
larger. Figure 5.1 shows the generated arrays V and C for the image of 8x8 pixels.

Figure 5.4: The storing order of vertices and the differences in both positions and grey values. The
Hilbert curve is drawn by a dotted poly-line.

In the next stage of BEHEC, the array V is encoded into another array V’ using variant num-
ber of bits (see TRPATH for details) and the final array V’ is furthermore compressed by the
Huffman encoding [Huf52]. The result of the compression, including the constructed Huff-
man tree (i.e., the dictionary for the encoding), is written into the output file. After that, the
array C, i.e., the array of differences in grey values is also compressed by the Huffman encod-
ing and the outcome stored into the file.

An advantage of this approach is that it can process the triangulation in O(N) time in the worst
case and it is likely to produce very small files. On the other hand, its implementation might
be rather complex (especially, the implementation of the Hilbert curve for images of arbitrary
sizes). Let us also note that it is quite improbable that additional application of general data
compression algorithms would bring a significant change in compression ratio.

5.6 LZ Hilbert Space Filling Curve (LZHEC)
As one can guess from its name, this method also exploits the linearization of vertex space by
the Hilbert space-filling curve (see BEHEC). It differs from the just described BEHEC only in
the encoding of the arrays V and C. These arrays are stored in an uncompressed form as fol-
lows. Values from the array V are processed first. If the value is less than 128, it is stored us-
ing 8 bits, i.e., the highest bit is always zero, otherwise, the algorithm transmits one bit set to
one followed by bits 8 – 14 of the value and then by its lowest 8 bits, i.e., 16 bits are needed.
As it is reasonable to believe that most values will be under the threshold 128, the expected
average number of bits per vertex coordinate should not exceed nine.

After that, the array of differences in grey values, the array C, is stored using 8 bits per value,
i.e., it is processed in the same way as in the VXPATH method. In the last step, the method
compresses the output file by some of existing general data compression algorithm. An ad-
vantage of this approach roots from its simplicity and efficiency. On the other hand, an exter-
nal compression utility is required in order to achieve a good compression ratio.

5.7 KORILA
A completely different strategy is exploited in the KORILA method. It is based on the idea
presented by Rila et al. [Ril98] to store vertex coordinates as a bitmap that contains 1 at posi-

0

1

5

6 4

3

2 16 17

15
14

18

13

11
10

0

0

1

321 54 6 7

2

3

4

5

6

7

9
7

8 12

Grey values
grey # grey

0 4 10 9
1 2 11 12
2 4 12 20
3 6 13 18
4 7 14 9
5 5 15 7
6 5 16 10
7 3 17 12
8 0 18 15
9 4

V (Differences in positions)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 1 3 3 4 3 1 4 2 3 8 1 9 2 6 7 1 1 4

C (Differences in grey values)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4 -2 2 2 1 -2 0 -2 -3 4 5 3 8 -2 -9 -2 3 2 3

66

tions corresponding to the vertices of triangulation and 0 elsewhere. An example of such bit-
map is shown in Figure 5.5.

Figure 5.5: The triangulation and the corresponding bitmap for the 8x8 image.

After the bitmap is constructed, its bit values are combined in order to get a byte stream, e.g.,
for our triangulation from Figure 5.5 we would get eight values: 173, 168, 130, 160, 12, 129,
32 and 129. This byte stream is then compressed by the Huffman encoding. Let us note that
we also tried to compress the bitmap by the bitwise RLE (Run Length Encoding) [Wic07f]
algorithm but it did not bring any improvement. The Huffman has proved to outpace the RLE
in all our experiments – see Figure 5.6.

Figure 5.6: The comparison of average sizes of outputs produced by the bit RLE and the Huffman
encoding for triangulations with various numbers of points (N). It was tested on a set of 512x512 grey-

scale images.

Let us suppose to have an image of M pixels that is represented by the triangulation of N ver-
tices (naturally, N ≤ M). It is obvious that fewer vertices are in the triangulation, the sparser
the constructed bitmap is. A different encoding strategy is, therefore, used for small triangula-
tions. A triangulation is considered to be small, if it contains the ratio N/M reaches at most 4%
(this threshold was found experimentally). Instead of combining bits into bytes, the bitmap is
converted into a one dimensional bit array and this array is split into sequences of zeroes and
ones of a predefined maximal length (this value ranges from 16 to 256 according to the ratio
N/M). These sequences are, afterwards, used as an alphabet for the Huffman encoding. For the
example from Figure 5.5, the alphabet would be 0, 1, 00, 11, 000 and 00000, if the maximal
allowed length was 4. In comparison with the byte oriented Huffman encoding used for larger
triangulation, more bytes are needed to store the Huffman tree but, on the other hand, the size
of compressed data should be lower.

0 321 54 6 7

0
1
2
3
4
5
6
7

1 0 1 0 1 1 0 1
1 0 1 0 1 0 0 0
1 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

0 20 000 40 000 60 000 80 000 100 000

C
o

m
p

re
ss

e
d

 s
iz

e
 [

B
]

N

RLE

Huffman

67

When coordinates are stored, the KORILA method proceeds with storing of grey values. Dif-
ferences in grey values of vertices ordered just linearly are computed and compressed using
the Huffman approach as usual. The topology is not stored at all, i.e., this method is again
limited to the encoding of Delaunay triangulations only.

5.8 LZ Image 3D Matrix (LZIM)
Similarly to the approach described by Demaret et al. in [Dem03] (see the Demaret method),
the proposed LZIM algorithm starts with the construction of 3D binary matrix that contains
W×H×Q cells, where W and H are the width and height of the input image and Q denotes the
number of supported grey values. As we do not quantize grey values stored in vertices of the
triangulation (unlike Demaret et al.), Q is always 256. A cell at the position [i, j, k] holds one
if and only if there is a vertex having the coordinates [i, j] and the grey value equals to k, oth-
erwise zero value is stored in this cell.

In the next stage of this method, the 3D matrix, which is very sparse, is stored into the output
file using one byte per value and this file is afterwards compressed by some general data
compression algorithm. An advantage of this approach is its simplicity and efficiency. On the
contrary, the uncompressed output file is huge (e.g., for a quite small image of 512x512 pix-
els, 64 MB are consumed).

5.9 Mueller (MUEKD)
Starting with the construction of 3D binary matrix (see LZIM), here aka as the box, the
MUEKD algorithm continues with a recursive subdivision of this box by axis aligned cuts. In
each step of the recursion, the box is split into two smaller boxes having as equal number of
cells storing the value one as possible. In an ideal case, both boxes contain the same number
of ones. Let us note that we always construct a cut such that it subdivides the longest side of
the box. The recursion stops when cells in the box are uniform, i.e., they hold the same value.

In order to speed up the processing, we exploit summed-area table of the matrix [Mue97].
Summed-area table is a three-dimensional array such that the value of its cell at the position
[i, j, k] is equal to the sum of the values of the cells in the original matrix at positions [0 up to
i, 0 up to j, 0 up to k]. Figure 5.7 shows an example of binary matrix in E2 and its correspond-
ing summed-area table. Let us note that the summed-area table can be efficiently found in
O(R), where R is the total number of cells.

a) bitmap b) summed-area table

Figure 5.7: The construction of summed-area table in E2.

Let us explain the process of subdivision using the summed area table by an example in E2 –
see Figure 5.8. In the first step, we divide the summed-area table into two parts x-coordinate.
In an ideal case, both parts would contain seven ones. It is, however, impossible to find an
exact position of cut to achieve this ideal case. All that can be done is to find a cut that mini-

0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0
1 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0
1 1 2 2 3 3 3 3
2 2 3 3 4 4 5 5
3 3 5 5 6 6 7 7
3 3 5 5 7 8 9 9
4 4 6 6 8 9 10 11
4 4 7 7 9 10 11 12
5 5 8 8 10 11 12 14

68

mize the deviation from the ideal case as follows. First, the proper position of value 7 in the
one-dimensional array 5, 5, up to 14 (i.e., the last row in the table) is found. As this array is
ordered, we can use modified binary-search algorithm for this purpose. The value somewhere
lies between values 5 and 8. It is necessary to decide whether the value 8 will belong to the
first part or the second one. The former option introduces the error 7-5=2 and the latter the
error 8-7=1. Therefore, the cut between the values 8 and 10 is created and the summed-table
area updated as Figure 5.8b shows.

a) before the subdivision b) after the first step c) after the second step

d) after the third step e) after 7 steps f) the result

Figure 5.8: The recursive subdivision of the summed-area table in E2.

In the second step, we divide the first part in y-coordinate (it is the longer one). The position
of the value 4 in vector 0, 2, etc. (i.e., the last column in the area) is found. It is between val-
ues 3 and 5. The table is subdivided and its values are updated (see Figure 5.8c). The algo-
rithm continues until entirely zeroes or ones areas are achieved as shown in Figure 5.8f.

The history of subdivision process is kept in a binary tree. Its inner nodes represent areas that
were subdivided and each of these nodes can be encoded by one zero bit followed by the rela-
tive position of cut used to subdivide the corresponding area. For the position,  )1(log2 −s

bits where s is the length of divided side is used, i.e., at most 3 bits are consumed per cut for
our example from Figure 5.8. Leaves representing zeroes areas can be encoded using two bits
long code 10 and leaves representing ones areas can be encoded using code 11.

Let us, however, discuss the case when we have an area where all cells are zeroes but those on
the diagonal – see Figure 5.9. We need 18 cuts whose encoding would consume 50 bits and
the encoding of constructed 19 areas would take other 38 bits, which gives that 88 bits would
be required. If we, instead of subdividing the area, stored (linear) positions of cells with the
value one, i.e., we store numbers 0, 8, 16, 24, 32, 40 and 48, using 6 bits per one value (as
there is 49 cells, 6 bits are sufficient), only 42 bits would be consumed. As an image edge is
typically represented by more vertices than the remaining parts of image, the case we have
just discussed is very likely not a singular one but it may appear in real data quite often.

0 0 0 0 0 0 0 0
1 1 2 2 3 3 3 3
2 2 3 3 4 4 5 5
3 3 5 5 6 6 7 7
3 3 5 5 7 8 9 9
4 4 6 6 8 9 10 11
4 4 7 7 9 10 11 12
5 5 8 8 10 11 12 14

0 0 0 0 0 0 0 0
1 1 2 2 1 1 1 1
2 2 3 3 1 1 2 2
3 3 5 5 1 1 2 2
3 3 5 5 2 3 4 4
4 4 6 6 2 3 4 5
4 4 7 7 2 3 4 5
5 5 8 8 2 3 4 6

0 0 0 0 0 0 0 0
1 1 2 2 1 1 1 1
2 2 3 3 1 1 2 2
1 1 2 2 1 1 2 2
1 1 2 2 2 3 4 4
2 2 3 3 2 3 4 5
2 2 4 4 2 3 4 5
3 3 5 5 2 3 4 6

0 0 0 0 0 0 0 0
1 1 2 2 1 1 1 1
2 2 3 3 1 1 2 2
1 1 2 2 1 1 2 2
1 1 2 2 1 2 2 2
2 2 3 3 1 2 2 3
2 2 4 4 1 2 2 3
3 3 5 5 1 2 2 4

0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 0
2 0 1 1 1 1 1 1
1 1 2 2 1 1 1 1
1 1 2 2 1 2 0 0
1 1 1 1 1 2 0 1
1 1 2 2 1 2 0 1
2 2 3 3 1 2 0 2

0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0
1 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1

69

a) the bitmap b) the result of subdivision

Figure 5.9: The bitmap (in E2) and its subdivision.

Therefore, we decided to use three bits long code 110 for leaves representing zeroes areas and
four bits long code 1111 for leaves representing areas with ones cells and to modify the ap-
proach as follows. Starting from leaves, the methods checks for every inner node whether it is
worth to split the area or to store positions of its zeroes or ones. If positions are to be stored,
four bits long code 1110 for zeroes and two bits 10 for ones is written into the output stream
first followed by the number of values that follows. Figure 5.10 brings this “merging step” for
an example shown in Figure 5.8. As it can be seen, the minimal storage requirements are
achieved if the initial area is split vertically (bits 0 110 are transmitted), its left part is fur-
thermore split horizontally (bits 0 100 transmitted) and then positions of ones in areas denoted
in the figure as 18, 32 and 44 are stored.

a) leaves level b) after the first merging c) after another merging

d) in the middle e) near the end f) root level

Figure 5.10: The evaluation of encoding costs. Symbols O and Z denote areas for whose positions of
cells holding the value 1 (O) or 0(Z) are to be stored.

Although this method may seem to be complex, its implementation is quite simple. Its great
advantage is that it promises low storage costs. On the other hand, despite the use of summed-
area table, it may be rather slow and what is more important it consumes a lot of memory as 4
bytes per one cell of summed-area table are needed, i.e., to process an image of 1024x1024
pixels one would need 1GB of memory.

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

3 3 3 3 3
4 4 3 4 3
4 3 3 4 3
4 3 4 3 3
3 3 4 4 3 3
4 3 3 3 3 4
3 4 3 3 3
4 3 4

3 3 3 3 3
4 6 3 6 Z
4 Z 3 6 3
6 3 6 3 Z
Z Z 4 4 3 3
4 3 3 3 4
3 6 3 3 3
4 Z 4

3 3 8 3 3
6 O 8 Z
Z O 8
8 8 O
O O 6 Z 8
8 10 3 O
Z O 8

O

8 10 10 10
Z O O O

14
O 6 Z 14
18 3 O
O

18 17
O O

32
O 6 Z 14

3 O

18 44
O O

32
O

70

5.10 Demaret
Besides the methods we have described in previous section, we also experimented with sev-
eral existing methods. Demaret et al. [Dem03] propose an approach suitable for the compres-
sion of Delaunay triangulations representing images of 2k ×2k pixels. It stores the number of
vertices using 2⋅k bits into the output file first and then it continues with the quantization of
grey values held in vertices followed by the construction of 3D matrix (see MUEKD), here
also known as the box. Let us note that we cease the quantization in our implementation in
order to be able to compare this method with our methods.

Afterwards, the box is recursively divided. In every step of recursion, the box is successively
split by three axis-aligned cuts chosen in the middle of every side of the box into eight smaller
boxes – see Figure 5.11. The algorithm stores numbers of vertices in areas L, LT, LTN, LBN,
RT, RTN and RBN using only as many bits as necessary, e.g., in the very first step of recur-
sion, the value for the area L is encoded using k bits, values for LT an RT use k-1 bits and the
remaining values are stored on k-2 bits. Let us note that if any area is empty, i.e., it contains
no vertex in its interior, it is not divided any more. For an instance if the area R was empty,
values for RT, RTN and RBN areas would not be neither computed nor stored.

a) after the first cut b) after the second cut c) the result

Figure 5.11: The box subdivision.

The recursion stops when either the box to be subdivided is empty or it is formed by 2×2×1
cells. For the latter case, the algorithm stores a short binary code according to the configura-
tion of zeroes and ones in cells into the output file. Figure 5.12 brings these codes.

a) N/A b) 00 c) 01 d) 10 e) 11

f) 10 g) 11 h) 000 i) 001 j) 010 k) 011

Figure 5.12: Binary codes for various configurations.

A drawback of this approach is that it consumes a lot of memory (because of 3D matrix). Its
generalization for any image size is possible although not easy to be implemented. On the
other hand, according to the published results, this encoding strategy can achieve compression
ratio comparable even with JPEG 2000.

L R LT RT

LB RB

LTN RTN

LBN RBN

LTF RTF

RBF

0 0 1 1
0 0 1 1

1 0 0 1
0 0 1 1

0 1 1 0
0 0 1 1

0 0 1 1
0 1 1 0

0 0 1 1
1 0 0 1

0 1
0 1

0 1
1 0

1 1
0 0

1 0
0 1

1 0
1 0

0 0
1 1

71

5.11 Demaret06
Another method proposed by Demaret et al. [Dem06] starts with the construction of bitmap
representing coordinates of vertices (see the KORILA method). The bitmap is an initial area
that is recursively split into two smaller rectangular areas of equal size, if the area height is
larger than its width, by a horizontal cut, otherwise, by a vertical cut. The splitting terminates
at areas that are either empty, i.e., not containing any vertex or atomic, i.e., they are of one
pixel size. Whenever an area is subdivided, the number of vertices lying in the first part (i.e.,
in top or left area) is written into an array of 32-bits integers. An example of bitmap subdivi-
sion is shown in Figure 5.13.

a) the first split b) the second split c) subdivided bitmap d) the resulting array

Figure 5.13: The bitmap subdivision.

The constructed array of numbers is compressed by the Huffman encoding and the result is
stored into the output file. After that, grey values held in vertices are also compressed by the
Huffman encoding and stored. Let us note that authors perform the quantization of grey val-
ues in prior to encoding but we skip this step in our implementation so it can be compared
with the other approaches.

The method is simple to be understood and implemented. According to the results presented
by authors, it also promises a good compression ratio.

5.12 Edgebreaker
Edgebreaker proposed by Rosignac [Ros99] is probably the most often used algorithm for a
compression of an arbitrary triangulation. Edgebreaker visits triangles in a spiralling order and
generates a string of symbols from the set {C, L, E, R, S}. This string describes the topology,
i.e., it indicates how the mesh can be rebuilt. Using the Huffman compressor, it can be effi-
ciently encoded so that two bits per triangle are guaranteed. The geometry, i.e., the coordi-
nates and grey levels of vertices are encoded as follows. When a triangle, say pa, pb, pc, is vis-
ited and the far vertex p of its adjacent triangle has not been processed yet, a prediction q is
computed using the parallelogram predictor and the algorithm stores the differences between
this predictor and the vertex p into arrays V and C – see Figure 5.14.

Both arrays of differences are stored into the output file using a fixed number of bits per ver-
tex (see VXPATH). This number depends on how accurate the predictions are. Theoretically,
if the predictor were able to give always an accurate prediction (i.e., q and p are the same), it
would be possible to avoid the storing of geometry. In practice, however, this case does not
exist.

An advantage of this algorithm is that it can compress any triangulation, not only the Delau-
nay triangulation, and, if the parallelogram predictor is used, it runs incredibly fast. On the
other hand, its implementation for triangulations with boundaries is not as simple as for

0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0
1 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0
1 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0
1 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1

V (Numbers of vertices)

8 5 3 1 1 0 2 1

1 1 0 1 0 2 1 1

0 1 0 0 1 1 2 1

1 1 0 0 1 1 2 2

1 1 1 0 0 0

72

closed meshes. Another drawback is that the topology has to be stored even for the Delaunay
triangulation because it is needed for decoding of coordinates and grey values.

Figure 5.14: The prediction q of the vertex p.

5.13 Coddyac
Another approach suitable for the compression of an arbitrary triangulation, with the code-
name Coddyac, is described in [Vas07]. It is a lossy compression originally proposed for en-
coding of dynamic meshes, i.e., for triangulations whose vertices may change their location in
time. Authors clearly demonstrate that their approach outperforms EdgeBreaker and, there-
fore, a better compression ration might be expected (in trade of quality).

Similarly to Edgebreaker, the algorithm stores differences between vertices and their predic-
tions. Instead of the parallelogram predictor, a predictor based on PCA (Principal Component
Analysis) [Wic07e] is exploited. Let us note that as the PCA is very time consuming, the
compression of even small triangulation (having a couple of thousands vertices) might take
several minutes on commodity hardware.

p a p b

p c

p

q

73

6 Experiments with Triangulation Encoding

In the previous section, we described various methods for the compression of triangulations
representing grey-scale images. Most of them do not store the connectivity of vertices and,
therefore, they are suitable for the Delaunay triangulation only because this kind of triangula-
tions can be recomputed from vertices in the reconstruction process. All these methods were
tested on Delaunay triangulations of grey-scale images from the tested set that were produced
by the BRUTE decimation technique (see Section 3, 4).This section brings results of our ex-
periments.

Figure 6.1: Average compression ratios achieved by data compression utilities for outputs produced
by various methods of the Delaunay triangulation encoding.

6.1 compares average compression ratios that were achieved by various general data compres-
sion algorithms for Delaunay triangulations encoded by methods described in the previous
section. As it can be seen, there is no significant difference in these compression algorithms
for triangulations encoded by methods that use a variable number of bits for the encoding, i.e.,

0

0.5

1

1.5

2

2.5

3

3.5

4

C
o

m
p

re
ss

io
n

 r
a

ti
o

bzip2 deflate ppdm lzma

paq8o lpaq1 quad

0

1000

2000

3000

4000

5000

6000

bzip2 deflate ppdm lzma paq8o lpaq1 quad

C
o

m
p

re
ss

io
n

 r
a

ti
o

LZIM

74

TRPATH, BEHEC, LZHEC, KORILA, MUEKD, Demaret and Demaret06. For the remain-
ing methods, there is no universal compression algorithm; a good choice could be bzip2 (es-
pecially, for LZIM encoded triangulations) or paq8o. If we take all achieved compression
ratios into an account, the winning algorithm is paq8o (with the score 92.2%) followed by
lpaq1 (score 91.6%), bzip2 (90.5%) and then lzma (85.7%), ppdm (84.6%), deflate (81.4%)
and quad (80.4%). Nevertheless, both paq8o and lpaq1 algorithms are, especially for larger
files, time consuming. For an instance, a file produced by LZIM was typically compressed by
paq8o in 18 – 25 minutes, while bzip2 needed just a few seconds. Therefore, we consider
bzip2 to be the best choice.

As it can be also seen, while outputs of methods that store data without any use of sophistic
encoding techniques (e.g., the Huffman encoding, RLE) are well compressible, outputs of
BEHEC, KORILA, MUEKD and Demaret methods are not compressible at all. Surprisingly,
the Demaret06 method, although it exploits the Huffman encoding, produces files that can be
compressed by any of considered data compression algorithms. The explanation is simple, if
we recall the character of input data processed by the Huffman encoding (see Figure 5.13d).
The most frequent value in the input data is zero and, therefore, it will be likely encoded using
one zero bit only. As there are long sequences of zeroes in the input data, it is very likely to
have sequences of zero bytes also in the output files that can be, indeed, well compressed in
the post-processing by some general data compression algorithm.

Last thing visible in the graph is that by storing differences in coordinates instead of storing
pure coordinates we get results that are better compressible – compare the compression ratio
for RAW and VXPATH methods. Without any surprise, data encoded using a fixed number
of bits per value are also better compressible than data encoded using a variable number of
bits – see VXPATH, FVXPATH vs. TRPATH.

A comparison of methods for the encoding of Delaunay triangulations (i.e., they do not store
the connectivity of vertices) is given in Figure 6.3 – Figure 6.7. Unsurprisingly, the RAW
method produces much larger files (even if they are compressed by bzip2) than others. Poor
results are also achieved by the TRPATH method. The reason roots probably from larger dif-
ferences (see Section 5.4), whose storing require a lot of bits.

Figure 6.2: The comparison of file sizes achieved by various encoding methods for Delaunay triangu-
lations of various numbers of vertices (N) that represent the Maran image (400x300).

0

10 000

20 000

30 000

40 000

50 000

60 000

0 5 000 10 000 15 000 20 000

F
il

e
 s

iz
e

 [
B

]

N

RAW + bzip2 VXPATH + bzip2

FVXPATH + bzip2 TRPATH + bzip2

BEHEC LZHEC + bzip2

KORILA LZIM (bzip2)

MUEKD Demaret

Demaret06 + bzip2

75

Figure 6.3: The comparison of file sizes achieved by various encoding methods for the image of boats
(512x512) represented by Delaunay triangulations of various numbers of vertices (N).

Figure 6.4: The comparison of file sizes achieved by various encoding methods for the image of fruits
(512x512) represented by Delaunay triangulations of various numbers of vertices (N).

Figure 6.5: The comparison of file sizes achieved by various encoding methods for the Lena image
(512x512) represented by Delaunay triangulations of various numbers of vertices (N).

0

50

100

150

200

250

300

0 20 000 40 000 60 000 80 000 100 000

F
il

e
 s

iz
e

 [
K

B
]

N

RAW + bzip2 VXPATH + bzip2

FVXPATH + bzip2 TRPATH + bzip2

BEHEC LZHEC + bip2

KORILA LZIM (bzip2)

MUEKD Demaret

Demaret06 + bzip2

0

5 000

10 000

15 000

20 000

25 000

F
il

e
 s

iz
e

 [
B

]

N

0

20

40

60

80

100

120

140

0 10 000 20 000 30 000 40 000 50 000

F
il

e
 s

iz
e

 [
K

B
]

N

RAW + bzip2 VXPATH + bzip2

FVXPATH + bzip2 TRPATH + bzip2

BEHEC LZHEC + bip2

KORILA LZIM (bzip2)

MUEKD Demaret

Demaret06 + bzip2

0

5 000

10 000

15 000

20 000

25 000

F
il

e
 s

iz
e

 [
B

]

N

0

50

100

150

200

250

0 20 000 40 000 60 000 80 000 100 000

F
il

e
 s

iz
e

 [
K

B
]

N

RAW + bzip2 VXPATH + bzip2

FVXPATH + bzip2 TRPATH + bzip2

BEHEC LZHEC + bip2

KORILA LZIM (bzip2)

MUEKD Demaret

Demaret06 + bzip2

0

5 000

10 000

15 000

20 000

25 000

F
il

e
 s

iz
e

 [
B

]

N

76

Figure 6.6: The comparison of file sizes achieved by various encoding methods for the image of mon-
arch (768x512) represented by Delaunay triangulations of various numbers of vertices (N).

Figure 6.7: The comparison of file sizes achieved by various encoding methods for the image of pirate
(1024x1024) represented by Delaunay triangulations of various numbers of vertices (N).

As it can be seen, there is no significant difference between Demaret and MUEKD methods.
For larger triangulations (with more than 10 000 vertices), these methods are slightly out-
paced by Demaret06. The smallest files were achieved by the VXPATH encoding combined
with additional compression by bzip2. This technique is typically followed by its faster ver-
sion, the FVXPATH. All other methods produce files with sizes between sizes achieved by
VXPATH and TRPATH.

We also tested Edgebreaker and Coddyac methods that are suitable for encoding of arbitrary
triangulations. Table 6.1 compares the results obtained by Edgebreaker for triangulations with
50 000 vertices. While VXPATH and TRPATH methods achieved a similar compression ratio
for all three triangulations, Edgebreaker shows a different behaviour. The explanation is quite
simple. The regularity of constructed triangulations is significantly influenced by the amount
of sharp edges and the richness of objects as well as by the range of grey values in the image.
For an instance, the Lena image contains 28 grey values and a few objects only, whilst the
image of fruits consists of many objects of 256 grey values. If the triangulation is very irregu-

0

20

40

60

80

100

120

140

0 10 000 20 000 30 000 40 000

F
il

e
 s

iz
e

 [
K

B
]

N

RAW + bzip2 VXPATH + bzip2
FVXPATH + bzip2 TRPATH + bzip2
BEHEC LZHEC + bzip2
KORILA LZIM (bzip2)
MUEKD Demaret
Demaret06 + bzip2

0

5 000

10 000

15 000

20 000

25 000

F
il

e
 s

iz
e

 [
B

]

N

0

100

200

300

400

500

600

700

800

0 20 000 40 000 60 000 80 000 100 000

F
il

e
 s

iz
e

 [
K

B
]

N

RAW + bzip2 VXPATH + bzip2 FVXPATH + bzip2

TRPATH + bzip2 BEHEC LZHEC + bip2

KORILA LZIM (bzip2) MUEKD

Demaret Demaret06 + bzip2

0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

16 000

18 000

20 000

F
il

e
 s

iz
e

 [
B

]

N

lar, as it can be seen in Figure
inaccurate predictions, which leads to lower compression ratio.

Image

Lena

Fruits

Boat

Table 6.1: The comparison of sizes of output files produced by various compression schemes for
triangulations with 50

While the VXPATH method in its basic form needs typically less than 3.5 bytes
to encode one vertex (both coordinates and grey values), Edgebreaker requires 2.5 up to 4.5
bytes per vertex and at most 2 bits per triangle
triangles as vertices in a triangulation, it gives us that
40 bits to encode one vertex.
less than Edgebreaker. It means that if we have an image represented by the Delaunay tria
gulation of N vertices, Edgebreaker is worth
this image (in the same quality) by an arbitrary triangulation of 2/3
opinion, this is a very difficult (if not even impossible) task.

Figure 6.8: The Delaunay triangulation with 15 000 vertices and the corresponding reconstructed

When we tried to zip output files in order to achieve a better compression ratio
has never outperformed the VXPATH method

77

Figure 6.8, the predictor used in Edgebreaker often produces highly
inaccurate predictions, which leads to lower compression ratio.

PSNR Edgebreaker VXPATH TRPATH

36.29 152 624 175 012 138 450

39.95 171 464 162 512 156 106

35.30 273 648 175 012 144 288

The comparison of sizes of output files produced by various compression schemes for
triangulations with 50 000 vertices of three popular 512x512 grey-scale images.

While the VXPATH method in its basic form needs typically less than 3.5 bytes
to encode one vertex (both coordinates and grey values), Edgebreaker requires 2.5 up to 4.5
bytes per vertex and at most 2 bits per triangle. If we consider that there are twice as many
triangles as vertices in a triangulation, it gives us that the Edgebreaker method

bits to encode one vertex. In an average case, VXPATH takes about four bits per vertex
than Edgebreaker. It means that if we have an image represented by the Delaunay tria

vertices, Edgebreaker is worth using only in such a case that one can represent
this image (in the same quality) by an arbitrary triangulation of 2/3⋅N
opinion, this is a very difficult (if not even impossible) task.

The Delaunay triangulation with 15 000 vertices and the corresponding reconstructed
image (PSNR = 33.90).

zip output files in order to achieve a better compression ratio
the VXPATH method – see Table 6.2.

the predictor used in Edgebreaker often produces highly

TRPATH

450

106

288

The comparison of sizes of output files produced by various compression schemes for
scale images.

While the VXPATH method in its basic form needs typically less than 3.5 bytes, i.e., 28 bits,
to encode one vertex (both coordinates and grey values), Edgebreaker requires 2.5 up to 4.5

. If we consider that there are twice as many
method needs 24 up to

case, VXPATH takes about four bits per vertex
than Edgebreaker. It means that if we have an image represented by the Delaunay trian-

using only in such a case that one can represent
N vertices only. In our

The Delaunay triangulation with 15 000 vertices and the corresponding reconstructed

zip output files in order to achieve a better compression ratio, Edgebreaker

78

Image PSNR Edgebreaker VXPATH TRPATH

Lena 36.29 66 566 52 470 90 602

Fruits 39.95 79 620 57 135 100 998

Boat 35.30 110 419 53 677 115 788

Table 6.2: The comparison of sizes of zipped output files produced by various compression schemes
for triangulations with 50 000 vertices of three popular 512x512 grey-scale images.

The Coddyac method has proven to be useless. This method required almost half an hour to
encode a triangulation of 3991 vertices, while the remaining methods do this in a couple of
seconds or at most in several minutes. It, moreover, produced files with sizes that range from
12 to 38 KB according to the chosen encoding quality (let us remind reader that Coddyac is a
lossy compression technique). It leads to an obvious conclusion that it makes no sense to em-
ploy neither Edgebreaker nor Coddyac for the encoding of triangulations.

We compared the achieved results also with JPEG and JPEG2000. As it can be seen from
Table 6.3, both compression techniques outpace even the best VXPATH method. Let us note
that both Demaret and Demaret06 methods, if the quantisation of grey values were used,
should have been, according to authors claims, competitive to wavelet encoding exploited in
JPEG2000. Without the quantisation, however, both methods are beaten by LZHEC,
FVXPATH and even by VXPATH. Thus it seems reasonable to believe that if grey values
were quantized, VXPATH should outperform JPEG2000.

 VXPATH + bzip2 JPEG JPEG2000

Lena Size 44 310 19 866 3 329 38 467 16 159 3 147 25 538 11 948

 PSNR 36.26 33.41 24.68 36.22 33.46 24.73 36.34 33.37

Fruits Size 46 345 19 521 3 002 45 584 21 367 2 677 33 081 15 755

 PSNR 39.95 35.27 24.52 39.31 35.28 24.58 39.97 35.31

Boat Size 46 724 21 404 3 996 39 357 16 295 3 024 26 378 12 325

 PSNR 35.30 31.00 23.35 35.36 31.00 23.03 35.26 30.95

Table 6.3: Sizes of zipped output files produced by the VXPATH method for different triangulations of
popular 512x512 grey-scale images in comparison with sizes produced by JPEG and JPEG2000.

From results presented in this section, it is quite clear that the compression of computed trian-
gulation is a very important issue. Even a small change of an existing method could dramati-
cally change its typical compression ratio. Performed experiments show that it would be
probably fruitless to construct an arbitrary triangulation instead of the Delaunay one because,
although it would contain fewer vertices, it cannot be stored using fewer bytes. Apparently,
the storing of differences using a fixed number of bits followed by a general data compression
is better than storing them using a variable number of bits. It seems furthermore that the quan-
tization of grey values plays an important role. In our future work, techniques identified dur-
ing our experiments to be worthy should be combined together in a new method.

79

7 Extension for Colour Images

A pixel in a colour image is represented by a vector of three (or four) components whose
meaning depends on the colour model used for the representation. Therefore, a straightfor-
ward extension of the proposed alternative representation of images by the Delaunay triangu-
lation (see sections above) is to deal with each colour component independently and construct
three (or four) component triangulations that are afterwards encoded giving three (four) out-
put files. In our research, we experimented with images represented using RGB, HSV, L*u*v
and YCbCr colour models.

7.1 Colour Space Systems
The RGB colour model (see Figure 7.1a) is an additive colour model in which red, green, and
blue light are added together in various ways to reproduce a broad array of colours. The main
purpose of this model is for the display of digital images in electronic systems (such as televi-
sions and computers), which renders this model to be the most commonly used one.

The HSV colour model better corresponds to the human perception of colours (and their
blending) as the colour is defined by hue, saturation and lightness value – see Figure 7.1b.
This model is widely used in applications for user manipulation with digital photographs.

a) RGB model b) HSV model

c) CIE L*u*v model

Figure 7.1: Various colour models [MSDN09, Nik09].

The CIE L*u*v* colour model, also known as the CIELUV colour model, is a device ind
pendent colour space system based on the idea that red and green and blue and yellow as well
are distant colours. Hence, it is possible to introduce values describing the position of colour
between red and green (component *u) and between blue and yellow (
component L then defines lightness
for applications such as computer graphics which deal wit

a) original

e) HSV – H

i) L*u*v – *u

m) YCbCr – Cr

Figure 7.2: Separated colour components of Lena colour image in various colour systems.

80

The CIE L*u*v* colour model, also known as the CIELUV colour model, is a device ind
pendent colour space system based on the idea that red and green and blue and yellow as well
are distant colours. Hence, it is possible to introduce values describing the position of colour
between red and green (component *u) and between blue and yellow (
component L then defines lightness – see Figure 7.1c. The L*u*v model is extensively used
for applications such as computer graphics which deal with coloured lights.

b) RGB – R c) RGB – G

f) HSV – S g) HSV – V

j) L*u*v – *v k) YCbCr – Y

Separated colour components of Lena colour image in various colour systems.

The CIE L*u*v* colour model, also known as the CIELUV colour model, is a device inde-
pendent colour space system based on the idea that red and green and blue and yellow as well
are distant colours. Hence, it is possible to introduce values describing the position of colour
between red and green (component *u) and between blue and yellow (component *v). The

c. The L*u*v model is extensively used
h coloured lights.

d) RGB – B

h) L*u*v – L

l) YCbCr – Cb

Separated colour components of Lena colour image in various colour systems.

81

In the YCbCr model, Y is the luminance component and Cb and Cr are the blue-difference
and red-difference chromatic components, respectively. Originally it was developed for SE-
CAM TV system and later adopted in various video and image encoding methods such as
JPEG or MPEG. Its main advantage is that due to the separation of luminance, it is possible to
transmit the luminance (Y component), which is more important for human perception, in a
high resolution and chromatic components (Cb and Cr), not so important for human percep-
tion, in a lower resolution.

A colour represented in one colour space model can be easily transformed to be represented in
another colour space model. This transformation, however, is not always without a loss of
information (especially in case of device dependent colour systems). Colour components of
Lena image represented using various colour models are shown in Figure 7.2. As it can be
seen, while the range of values of RGB and HSV components is large, i.e., it is reasonable to
expect lot of vertices in component triangulations in order to achieve a good quality, the range
of values of components *u, *v, Cb and Cr is quite low, i.e., these components can be likely
represented by triangulations with fewer vertices than in case of L and Y components.

7.2 Separate Triangulations
Figure 7.3 presents the dependency of the quality of the component triangulation (measured in
PSNR) on the number of vertices for Lena colour image. Let us note that similar results are,
indeed, achieved also for other tested colour images. Unsurprisingly, the degradation in the
quality might be significantly faster in one component than in the other one (for instance,
compare L with *u or *v components). The performed experiments confirmed our hypothesis
that Cb and Cr components need fewer vertices than the component Y to be represented in the
same quality. This is especially true for airplane, baboon, fruits, tulips and other images
whose results are not presented in this report. Unlike our expectation, however, experiments
show that the component L (in L*u*v colour model) is less important than the remaining
components, i.e., it needs fewer vertices.

Figure 7.3: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations on the number of vertices in component triangulations for colour 512x512 Lena image.

20.00

30.00

40.00

50.00

60.00

70.00

0 50 000 100 000 150 000 200 000 250 000

P
S

N
R

 [
d

B
]

N

RGB (R) RGB (G) RGB (B)

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 50 000 100 000 150 000 200 000 250 000

P
S

N
R

 [
d

B
]

N

HSV (H) HSV (S) HSV (V)

20.00

30.00

40.00

50.00

60.00

70.00

0 50 000 100 000 150 000 200 000 250 000

P
S

N
R

 [
d

B
]

N

L*u*v (L) L*u*v (*u) L*u*v (*v)

20.00

30.00

40.00

50.00

60.00

70.00

0 50 000 100 000 150 000 200 000 250 000

P
S

N
R

 [
d

B
]

N

YCbCr (Y) YCbCr (Cb) YCbCr (Cr)

82

Component triangulations with the same (or at least similar) quality are grouped together to
form the final geometric representation the colour image. Figure 7.4 brings a comparison of
the achieved quality for various colour models in the dependence on the overall amount of
vertices in component triangulations. While the RGB model clearly outpaces the other tested
models when larger triangulations are considered, it achieves almost the same results as the
other models (except for the HSV model) for smaller triangulations. As smaller triangulations
are typically required to get a good compression ratio (see Section 6), we could conclude that
any colour space except for the HSV is suitable for the proposed geometric representation.

Figure 7.4: The dependency of quality (measured in PSNR) of images reconstructed from Delaunay
triangulations on the overall number of vertices (in all component triangulations) for colour 512x512

Lena image.

A relationship between the size of final triangulation (composed of three independent compo-
nent triangulations) and the size of output file (every component triangulation is encoded in-
dependently producing three output files whose sizes are summed to get the final size) is de-
picted in Figure 7.5.Obviously triangulations under YCbCr and L*u*v colours models are
more suitable for the used encoding technique (based on Huffman encoding).

Figure 7.5: The dependency of sizes of output files encoded by FVXPATH + bzip2 technique on the
overall number of vertices for colour 512x512 fruits image.

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 200 000 400 000 600 000 800 000

P
S

N
R

 [
d

B
]

N

RGB HSV L*u*v YCbCr
15.00

20.00

25.00

30.00

35.00

0 20 000 40 000

0

100

200

300

400

500

600

700

0 200 000 400 000 600 000 800 000

F
il

e
si

ze
 [

K
B

]

N

RGB HSV L*u*v YCbCr
0

10

20

30

40

50

0 10 000 20 000

N

83

However, it is important to point out that the quality of the geometric representation using
these colour space systems degrades faster and, therefore, we must take into account also this
information – see Figure 7.6. Now, there is no doubt that the most suitable colour model is the
YCbCr model followed by the RGB model unless we work with large triangulations for
whose the RGB model is the best one.

Figure 7.6: The sizes of output files (encoded by FVXPATH + bzip2 technique) for three test cases of
colour 512x512 fruits image. Information in brackets denotes the overall number of vertices in the tri-

angulation (in thousands) / the PSNR of the representation.

7.3 Cotriangulation
A drawback of the straightforward approach described in the previous section is that it intro-
duces different approximation error for different colour components. It might results in colour
bleeding. For an example, let us suppose to have a pixel of pastel pink colour with RGB val-
ues 235, 205 and 220 in the original colour image. Let us further suppose that whilst the red
and green components are reconstructed without an error, the reconstructed value of the blue
component is 180. While in a grey-scale image, an approximation error of this scale would be
hardly spotted, in the considered colour image, it is well visible as the reconstructed pixel has
a beige colour instead of ping one – see Figure 7.7.

Figure 7.7: Illustration of colour bleeding – top: the original colour, its RGB components and the cor-
responding grey-scale value; bottom: the colour reconstructed with an error in the blue component.

105

110

115

120

125

130

135

140

RGB (75K / 35.58)

HSV (90K / 35.19)

L*u*v (120K / 35.60)

YCbCr (90K / 35.46)

0

5

10

15

20

25

30

35

40

RGB (18K / 30.85)

HSV (24K / 30.61)

L*u*v (24K / 30.60)

YCbCr (18K / 30.45)

0

2

4

6

8

10

12

14

16

18

20

RGB (6K / 27.18)

HSV (9K / 26.35)

L*u*v (6K / 26.24)

YCbCr (6K / 26.80)

84

Colour bleeding can be diminished, if we use one cotriangulation [Wei98], instead of three
separated triangulations. In general, the cotriangulation is constructed from n d-dimensional
triangulations by their transformation into one d-dimensional triangulation in (d+n)-
dimensional space. For the purpose of the triangular representation of colour image, this
means that the inputs are three component triangulations and the output is one triangulation
that includes all the colour channels. Hence, the resulting structure is the Delaunay triangula-
tion with five parameters x, y, R, G, B assigned to each vertex (instead of three parameters x,
y, grey value as in the case of grey-scale images).

As the spatial distribution of vertices in input triangulations usually does not match, i.e., for
some vertex of one triangulation, there is no vertex at the same position in the other two trian-
gulations, the number of vertices in the cotriangulation ranges from the vertex count in the
smallest component triangulations to the sum of vertex counts of all input triangulations. An
important property of the cotriangulation is that it might represent some vertices from the in-
put triangulations with additional approximation error, which also reduces the storage costs.
Detailed description of cotriangulations and their use for our purpose is given in the bachelor
thesis by T. Janák [Jan09] and in the bachelor thesis R. Sýkora [Syk08].

Figure 7.8: The dependency of quality (measured in PSNR) of images reconstructed from the Delau-
nay cotriangulation on the overall number of vertices (in all component triangulations) for colour

512x512 Lena image.

Figure 7.9: The dependency of sizes of output files encoded by FVXPATH + bzip2 technique on the
overall number of vertices in the Delaunay cotriangulation for colour 512x512 fruits image.

15

20

25

30

35

40

45

50

55

60

0 100 000 200 000 300 000

P
S

N
R

 [
d

B
]

N

RGB HSV
L*u*v YCbCr

17

19

21

23

25

27

29

31

33

0 15 000 30 000 45 000

N

0

100

200

300

400

500

0 100 000 200 000 300 000

F
il

e
si

ze
 [

K
B

]

N

RGB HSV
L*u*v YCbCr

5

15

25

35

45

55

65

75

85

95

0 15 000 30 000 45 000

N

85

Figure 7.8 and Figure 7.9 show the dependence of the quality (measured in PSNR) of the rep-
resentation by the cotriangulation on the number of vertices in this cotriangulation and the
relationship between the number of vertices in cotriangulations and the sizes of files produced
by FVXPATH + bzip2 method extended for cotriangulations (instead of one array of grey
values, three arrays are stored – one for each component) and. As it can be seen the curves
have similar trends as curves for separate triangulations (see Figure 7.4 and Figure 7.5) with a
small exception of L*u*v colour model whose quality degrades in cotriangulations faster.

The dependency of quality on output file sizes is given in Figure 7.10. It is obvious that
YCbCr colour model outperforms the other colour models, although, save for the HSV model,
differences are not big. Figure 7.11brings another comparison. Supposedly, L*u*v model
provides us with such good results that it could be considered as the second best model. How-
ever, this model was found unstable; it may perform poorly (see Figure 7.12) for some im-
ages. Hence, the most suitable model is the YCbCr model followed by the RGB model.

Figure 7.10: The dependency of quality (measured in PSNR) on sizes of output files with cotriangula-
tions that were encoded by FVXPATH + bzip2 technique for colour 512x512 fruits image.

Figure 7.11: The sizes of output files (encoded by FVXPATH + bzip2 technique) for three test cases
of colour 512x512 fruits image. Information in brackets denotes the overall number of vertices in the

cotriangulation (in thousands) / the PSNR of the representation.

20

25

30

35

40

45

50

55

60

0 100 200 300 400 500

P
S

N
R

 [
d

B
]

Filesize [KB]

RGB HSV
L*u*v YCbCr

20

22

24

26

28

30

32

34

36

0 50 100

Filesize [KB]

0

50

100

150

200

250

300

350

RGB (66K / 35.99)

HSV (156K / 36.01)

L*u*v (138K / 36.07)
YCbCr (78K / 35.99)

0

20

40

60

80

100

120

140

RGB (16K / 30.67)
HSV (46K / 30.78)
L*u*v (29K / 30.96)
YCbCr (16K / 30.68)

0

5

10

15

20

25

30

RGB (3K / 24.87)
HSV (10K / 25.68)
L*u*v (3K / 25.01)
YCbCr (3K / 25.74)

86

Figure 7.12: The sizes of output files (encoded by FVXPATH + bzip2 technique) for three test cases
of colour 512x512 Lena image. Information in brackets denotes the overall number of vertices in the

cotriangulation (in thousands) / the PSNR of the representation.

7.4 Comparison & Summarization
When we compare separated triangulations with cotriangulations (see Figure 7.13), we can
see that separated triangulations outperforms cotriangulations in case of RGB model, whilst in
case of YCbCr model the situation is vice versa. The improvement of cotriangulations is,
however, negligible considering the increased complexity of the algorithm. Hence, we rec-
ommend the use of separated triangulations (three) for the representation of colour images and
these triangulation should exploit YCbCr colour model, when low bit rates are demanded,
otherwise RGB model is more suitable.

 Figure 7.13: Quality comparison of separated triangulations with cotriangulations for colour 512x512
Lena image.

Detailed description of performed experiments can be found in thesis by R. Sýkora [Syk08].

0

50

100

150

200

250

300

350

400

450

500

RGB (123K / 36.58)
HSV (256K / 37.72)

L*u*v (208K / 36.52)

YCbCr (162K / 37.25)

0

50

100

150

200

250

300

350

400

450

RGB (19K / 30.17)

HSV (232K / 29.98)

L*u*v (98K / 30.34)
YCbCr (16K / 30.24)

0

20

40

60

80

100

120

140

160

180

RGB (3K / 25.27)

HSV (72K / 25.47)

L*u*v (16K / 26.05)

YCbCr (3K / 25.71)

20

25

30

35

40

45

0 50 100 150 200 250 300

P
S

N
R

 [
d

B
]

Filesize [KB]

3xTriangulations - YCbCr
Cotriangulation - YCbCr

20

25

30

35

40

45

0 50 100 150 200 250 300

P
S

N
R

 [
d

B
]

Filesize [KB]

3x Triangulations - RGB
Cotriangulation - RGB

87

8 Extension for Video

A digital video is a sequence of usually similar images called frames. The most widely used
representation of video is based on the partition of these frames into groups containing intra-
coded I-frames, inter-coded P-frames and optional bidirectionally inter-coded B-frames – see
Figure 8.1. Each I-frame is considered to be a standalone image and is processed independ-
ently, i.e., it is encoded without using any information from the previous (or the following)
frames in the video sequence. For the encoding, the majority of algorithms for lossy video
compression used nowadays exploits either the discrete cosine transform (MPEG1-2, DV,
MJPEG, H261-4), the discrete wavelet transform (MJPEG 2000, Intel Indeo 5) or the vector
quantization (Cinepak, Sorenson Video).

The inter-coded and bidirectionaly inter-coded P-frames and B-frames exploit their similarity
to the surrounding frames (in one or both directions) for the encoding. In most cases, some
block matching algorithm is used. For each macroblock in the frame (typically, 16×16 pixels
group of four 8×8 pixel blocks – a basic element for JPEG based compression), it searches for
such movement vectors that, if applied to the macroblock, describe the following frame with
the minimal error. The process is illustrated in Figure 8.1 that shows a block B that has been
found to be similar to the block B’ in the same window in the next frame.

Figure 8.1: Typical compression scheme (left) and block matching principle (right).

The most common problems connected with traditional video compression schemes (de-
scribed above) are the appearance of new block elements between two frames and a serious
loss of detail at low bitrates. Moreover, when there is a need to transform or interpolate a vid-
eosequence, handling these video representations is a bit impractical as the corresponding
frames have to be decompressed and all their pixels processed. Both drawbacks could be
solved (or at least diminished) by using an alternative triangulation-based representation.

A straightforward approach would be to represent intra-coded frames by the Delaunay trian-
gulation (see Section 3, 4) of subset of important pixels, encoded into a compact form by
some of our encoding methods (see Section 5, 6), and process inter-coded frames in a tradi-
tional way (like in MPEG). In our research, we investigated two other options of exploitation
of triangulations in a digital video. First one uses the kinetic Delaunay triangulation where
vertices move in time (in directions computed by a block matching algorithm). The other one
is based on the idea that video could be represented by 3D triangulation, a tetrahedrization,
since it can be considered as a 3D matrix of pixel data taking the time axis as the third geo-
metrical coordinate.

88

8.1 Kinetic Delaunay Triangulation (KDT)
The idea of video representation by the kinetic Delaunay triangulation is based on a creation
and successive movement of the Delaunay triangulation.

8.1.1 Encoding
In the first step, the method computes the Delaunay triangulation of the most significant
points obtained from a frame that is considered to be intra-coded. These points can be identi-
fied either by one of mesh based heuristics described in Section 3 (in our experiments we use
the BRUTE heuristics) or by a meshless heuristics specially developed for the purpose of
video encoding that works as follows.

First of all, points lying on image edges are detected using some of existing edge detectors
followed by a threshold operator, which filters out less important points. We experimented
with the most commonly used detectors: Marr-Hildreth, Sobel, Robinson, Roberts and
Prewitt. Apparently, the Marr-Hildreth operator, which is also known as Laplace operator, is
the best choice (in the meaning of the achieved quality) – see Figure 8.2. Next, some random
points are chosen and these points together with points obtained in the first step are combined
together to get the resulting set of significant points. These points then define the KDT until a
new picture group is formed, starting with the next intra-coded frame.

Figure 8.2: The quality of the representation by the Delaunay triangulation of 20% points in the de-
pendence on the used edge detector for the Foreman video. No inter-coding is used.

The optimal ratio between edge and random points was investigated and the results are sum-
marized in Figure 8.3. It can be seen that in the case of live video with dynamic camera,
where both background and foreground changes (Foreman), the optimal ratio is about 60:40,
while in the case of live video with static camera, where background is simple and do not
change (Miss America), the ratio is much higher, it is about 80:20. Rendered video without
noise is best represented by the ratio 50:50. Hence, a good compromise seems to be the ratio
50:50, i.e., half of significant points are chosen on image edges and half are chosen randomly.

89

Figure 8.3: The quality of the Delaunay representation in the dependence on the ratio of edge and
random points to be triangulated for three videosequences – live video with DYNamic camera, live
video with STAtic camera and RENdered animation. The overall amount of selected points is 20%.

For inter-coding (i.e., P and B frames), methods for optical flow prediction are used [Hor81].
We experimented with both the block matching algorithm (BMA) [Fur97] using three differ-
ent metrics: Mean Square Difference (MSD), Mean Absolute Difference (MAD) and Pel Dif-
ference Classification (PDC) and the differential method Kanade-Lucas-Thomasi (KLT)
[Luc81]. According to the performed experiments [Pun08], the block matching with MAD
metrics outperforms the KLT method since the latter method detects movement in the triangu-
lated image even in static places – see Figure 8.4. In the further text, the BMA with MAD will
be assumed, if not explicitly expressed otherwise. Additional investigation showed that opti-
mal macroblock size is 16×16 pixels and, therefore, the size of searching window (see W in
Figure 8.1) is 31×31 pixels (it corresponds to the largest possible movement). Let us note that
we used five inter-coded frames per one intra-coded frame.

Figure 8.4: Motion vectors obtained from BMA (left) and KLT (right) methods.

Once all the motion vectors in a frame are known, velocities of their points in the KDT are
set, which gives us a new KDT – see Figure 8.5. An advantage of this approach is that, unlike
the traditional pixel based methods, the movement of a block (triangular) of image is continu-
ous, i.e., a better quality can be expected when the frame rate of the considered video changes.

90

On the other hand, time consumption is significantly larger and the straightforward imple-
mentations of KDT are known to suffer from the numerical instability. A robust Kinetic De-
launay Triangulation is described in [Vom08, Vom09].

Figure 8.5: The original KDT, detected motion vectors and the movement compensation in the KDT.

As the extension for video was developed in parallel to the development of encoding tech-
niques that were presented in Section 5, the KDT is encoded using other, not so powerful,
methods. The employment of the FVXPATH or other, more suitable, method belongs to the
scope of our future research. At present, intra-coded frames are encoded by a modified the
RAW method that sorts all points according to the grey values associated with them and then,
starting from the second point, it replaces the grey value of each point by the difference in
grey values between this point and the previous one. Five bytes are required to represent one
point (coordinates require two bytes). The final stream is stored into the output file and further
compressed by the deflate compression technique (see Section 5). In the following text, this
encoding method will be denoted as DELTA+GZip. The block schema of the proposed tech-
nique for intra-coded frames is given in Figure 8.6.

Figure 8.6: Encoding of intra-coded (I) frames. Blocks A and B are mutually exclusive.

For inter-coded P-frame, one motion vector is stored in a raw format for every point (vertex)
in the previous intra-coded frame. As the movement is small, one byte per one vector compo-
nent is more than sufficient. The output file is further compressed by the deflate compression
technique. In the following text, this method will be denoted as RAWM+GZip. The block
schema of the proposed video encoding is given in Figure 8.7.

B

A

Input frame

Delaunay

triangulation

Decimation

Random points

selection

Thresholding

Delaunay

triangulation

KDT

Edge operator

DELTA + GZipOutput stream

91

Figure 8.7: Encoding of inter-coded (P) frames.

8.1.2 Decoding
As the topology is not retained, to decode an intra-coded frame, points have to be retrieved
from the input stream and the Delaunay triangulation of these points must be computed first.
Triangles are then interpolated by the bilinear interpolation. In the case of inter-coded frames,
we dynamically move vertices of the Delaunay triangulation according to motion vectors re-
trieved from the input stream. After that, either the triangulation can be interpolated like in the
case of intra-coded frames or feature based warping may be applied. The warping process
takes the edges of a triangle in the current frame and corresponding transformed edges in the
previous frame. The task is to compute grey values of the pixels within the transformed trian-
gle – see Figure 8.8. We adopted the warping for more line pairs as described in [Žar98]. Let
us note that as we have a relatively accurate approximation of the grey values of all the pixels
in the last intra coded frame, we perform the warping process for all the consecutive inter-
coded frames after that frame. An expected advantage of the warping process over the inter-
polation is that if a triangle changes significantly, details are better preserved. The block
schema of the overall decoding process is depicted in Figure 8.9.

Figure 8.8: Triangle warping [Mar00].

Input frameInput frame KDT change

Movement

compensation
KDT

Motion

predictor

RAWM + GZipOutput stream

KDT

92

Figure 8.9: Decoding of intra-coded (I) frames and inter-coded (P) frames. Blocks A and B are mutu-
ally exclusive.

8.1.3 Experiments and Results
The proposed encoding achieves the compression ratio 20:1 – 4.5:1 [Pun08] for the tested
videos (both real live videos and rendered animations were subject to experiments). Figure
8.10 brings a comparison of the quality of the proposed method with XviD for the same coded
output size. The initial amount of inserted points was 5% and the length of the pictures group
was set to 6. While the intra-coded frames provided us with the reasonable quality (although
with not as good as XviD did), the inter-frames quality dropped rapidly. Both interpolation
and warping techniques were measured to be nearly equivalent. A subjective comparison,
however, often prefers the warping prior to the interpolation since it reduces the number of
triangular artefacts which may appear as a result of the reconstruction.

Figure 8.10: Quality comparison of the proposed method with XviD.

Inter-coded frame

Intra-coded frame

A

Input stream
Delaunay

triangulation

KDT

Decoding

DELTA+GZip

Bilinear

interpolation

Output frame

B
Warping

KDT change

KDT

Decoding

RAWM+GZip

Bilinear

interpolation

93

When the BRUTE method was used for the selection of important points, the quality im-
proves significantly – see Figure 8.11. The improvement measured in PSNR is about 6 dB,
which, especially, if a more powerful encoding method were used (see Section 5), could be
enough to make the proposed intra-coding an alternative to XviD encoding. Let us note that
the BRUTE method, however, requires double time compared to the default meshless heuris-
tics described in this section [Pun08].

An introduction of some kind of nonlinear movement (for instance the movement along ellip-
tic trajectories) may bring improvement for inter-coding, which is thoroughly needed to ren-
der triangular representations of video useful. The research is, however, still in progress.

Figure 8.11: Comparison of the image reconstructed from the Delaunay triangulation of 20% points
selected by proprietary refinement technique (left), the BRUTE decimation technique (middle) with the

image that was subject to M-JPEG compression.

Detailed description of the method and presentation and analysis of other results of performed
experiments can be found in thesis by P. Puncman [Pun08].

8.2 3D Delaunay Triangulation
A video sequence represented by a set of frames of N×M pixels can be transformed (without
any loss of information) into a point set S in E3 such that for each pixel there is one point with
z-coordinate defined as a function of the frame number, x and y-coordinates defined by the
position of this pixel in the framer and with the associated data corresponding to the grey-
scale value (or colour components values) of this pixel. The key issue is to determine the rela-
tionship between units in x-axis (or y-axis) units in z-axis, i.e., if the distance between two
pixels adjacent in one frame is one, what is the distance between a pixel in one frame and its
corresponding pixel in the adjacent frame? For the sake of simplicity, we decided to assume
that this distance is also one, i.e., z-coordinate of the point corresponds to the frame number.
In our future research, we would like to perform experiments to find the correct relationship.

Starting with the initial 3D Delaunay triangulation formed by an artificial tetrahedron large
enough to contain all input points, points are successively added into this triangulation in the
order such that the next point to be inserted is the one that participates most at the total error
of the approximation (again bilinear interpolation is used for the reconstruction). The insertion
is repeated until either the maximum allowed error is achieved or the maximum allowed
number of points is inserted. In order to speed up the process, several techniques were
adopted, e.g., insertion of several points simultaneously – see [Var07].

Let us note that the produced Delaunay triangulation can be improved (in the meaning of the
quality of the representation) by a simulated annealing. As it can be seen in Figure 8.12, this
is especially true for small triangulations. A significant drawback of the simulated annealing
is its enormous time consumption. While the triangulation of 256 points took 36 seconds, its
improving by the simulated annealing needed more than one hour. As a video sequence is

94

typically represented by larger triangulations, for whose the improvement brought by the
simulated annealing is not substantial, we opted out using this strategy for video encoding.

a) original data b) 256 points,
PSNR = 15.38

c) 1024 points,
PSNR = 23.11

d) 256 points, simulated annealing,
PSNR = 22.79

e) 1024 points, simulated annealing,
PSNR = 26.25

Figure 8.12: Quality comparison of volumetric data reconstructed from the 3D Delaunay triangulation
of 256 and 1024 points constructed without and with simulated annealing. Buckyball 32x32x32.

The extension for video was developed in parallel to the development of encoding techniques
that were presented in Section 5 and, therefore, the 3D Delaunay triangulation is encoded us-
ing another, not so powerful, method, which was found to be the best one from several tested
methods [Var07]. This method, denoted as VarC+GZip, sorts all vertices of the triangulation
according to x, y and z-coordinates (the order is not important), computes differences in coor-
dinates between adjacent points and stores differences in x-coordinates followed by differ-
ences in y-coordinates and by differences in z-coordinates and followed by grey values into
the output file. Due to the sorting, differences should be small and, therefore, more suitable
for the deflate compression algorithm that is used on the output file to reduce its size.

The approach described above was tested on three video sequences: a cartoon and videos with
the static and the dynamic camera. Figure 8.13 shows these videos as 3D volume data ren-
dered by the ray-tracing technique and sliced in various axes. It can be seen that a typical car-
toon scene is very coherent; a character moves on some usually not too much variable back-
ground. On the other hand, most of edges are very distinct, sometimes even with a black con-
tour. While the inner structure of the video produced by a static camera is also quite simple,
the structure of dynamic camera video is complex and unlikely to be well compressible.

95

a) ray-tracing b) slices of the video data in z-axis, x-axis and y-axis

Figure 8.13: Cartoon, static and dynamic camera video sequences viewed as volume data.

Figure 8.14 brings a comparison of compression ratio achieved for the tested videos. From the
tested types of data, the video produced by a static camera is apparently the most proper for
our proposed method, while the video with dynamic camera is improper. Surprisingly, the
cartoon type of video was also not a winning story. All in all, results show that the proposed
method does not fit the inner structure of the video well since the three axes are not of the
same character and, thus, they should be handled differently. Moreover, the interpolation on
long tetrahedra (slivers), which are present in the final 3D Delaunay triangulation in not in-
significant count, blurs edges, which has a negative influence on the quality of the represented
image. Some improvement could be achieved by an incorporation of faces and edges as con-
straints into the triangulation but this would bring unlikely a substantial improvement. Hence,
we can summarize our research in this field as follows. Although the alternative representa-
tion of video by 3D Delaunay triangulation is possible and theoretically interesting, it is use-
less from the practice point of view as it cannot compete with the traditional approaches.

Details can be found in the master thesis by M. Varga [Var07].

96

a) 6 912 points,
PSNR = 21.45,
ratio = 55.72 : 1

b) 27 648 points,
PSNR = 25.30,
ratio = 16.26 : 1

c) 147 080 points,
PSNR = 34.17,
ratio = 3.99 : 1

d) 16 384 points,
PSNR = 27.67,
ratio = 56.96 : 1

e) 65 536 points,
PSNR = 33.63,
ratio 16.69 : 1

f) 74 336 points,
PSNR = 34.51,
ratio 15 : 1

g) 16 384 points,
PSNR = 18.21,
ratio 56.91 : 1

h) 65 536 points,
PSNR = 22.53,
ratio 16.66 : 1

i) 512 011 points,
PSNR = 34.36,
ratio 3 : 1

Figure 8.14: Compression ratio achieved for the tested video sequences.

9 Triangles Interpolation

The quality of the image reconstructed from the geometric representation, more specifically
from a triangulation, is undoubtedly influenced by the way how the triangulation is interp
lated to get the missing pixels. Although Dyn et al. showed in [Dyn90] that a piecewise bili
ear interpolation on a Data
simple approach obviously does not generate satisfactory results in a general case, e.g. for an
arbitrary triangulation. Main problems are that large, almost monotonous, areas are not
smooth enough whilst image edges are not sharp enough. In this section, we
ous interpolation techniques for triangular meshes.

Without any doubt the simplest and also the fastest interpolation method is the constant inte
polation that assigns the average of grey
pixel of this triangle. A comparison of this interpolation with commonly used bilinear interp
lation, which was also considered to be the base of our previous experiments, is given in
ure 9.1. It can be seen that although the bilinear interpolation does not produce as visible tr
angular artefacts as the constant interpolation, it is still not perfect. Edges of interpolated tr
angles are clearly identifiable in par
ure 9.1d. These flaws are apparently caused by an ignorance of intensity behaviour in areas
surrounding the interpolated triangle.

a) triangulation

d) bilinear interpolation

Figure 9.1: The reconstruction of Lena image from the Delaunay triangulation with 4 000 using co
stant and bilinear interpolations on triangles.

97

Triangles Interpolation

The quality of the image reconstructed from the geometric representation, more specifically
undoubtedly influenced by the way how the triangulation is interp

lated to get the missing pixels. Although Dyn et al. showed in [Dyn90] that a piecewise bili
ear interpolation on a Data-Dependent Triangulation (DDT) can lead to plausible results, this

mple approach obviously does not generate satisfactory results in a general case, e.g. for an
arbitrary triangulation. Main problems are that large, almost monotonous, areas are not
smooth enough whilst image edges are not sharp enough. In this section, we
ous interpolation techniques for triangular meshes.

Without any doubt the simplest and also the fastest interpolation method is the constant inte
polation that assigns the average of grey-scale values held by vertices of a triangle to ever
pixel of this triangle. A comparison of this interpolation with commonly used bilinear interp
lation, which was also considered to be the base of our previous experiments, is given in

. It can be seen that although the bilinear interpolation does not produce as visible tr
angular artefacts as the constant interpolation, it is still not perfect. Edges of interpolated tr
angles are clearly identifiable in particular places of the reconstructed image

d. These flaws are apparently caused by an ignorance of intensity behaviour in areas
lated triangle.

b) constant interpolation c) bilinear interpolation

d) bilinear interpolation – detail of the reconstructed image 1024×1024

The reconstruction of Lena image from the Delaunay triangulation with 4 000 using co
stant and bilinear interpolations on triangles.

The quality of the image reconstructed from the geometric representation, more specifically
undoubtedly influenced by the way how the triangulation is interpo-

lated to get the missing pixels. Although Dyn et al. showed in [Dyn90] that a piecewise bilin-
Dependent Triangulation (DDT) can lead to plausible results, this

mple approach obviously does not generate satisfactory results in a general case, e.g. for an
arbitrary triangulation. Main problems are that large, almost monotonous, areas are not
smooth enough whilst image edges are not sharp enough. In this section, we investigate vari-

Without any doubt the simplest and also the fastest interpolation method is the constant inter-
scale values held by vertices of a triangle to every

pixel of this triangle. A comparison of this interpolation with commonly used bilinear interpo-
lation, which was also considered to be the base of our previous experiments, is given in Fig-

. It can be seen that although the bilinear interpolation does not produce as visible tri-
angular artefacts as the constant interpolation, it is still not perfect. Edges of interpolated tri-

ticular places of the reconstructed image – see Fig-
d. These flaws are apparently caused by an ignorance of intensity behaviour in areas

c) bilinear interpolation

detail of the reconstructed image 1024×1024

The reconstruction of Lena image from the Delaunay triangulation with 4 000 using con-

98

Options which would enable us to incorporate those areas into calculations of the resulting
intensity can be differentiated into two main groups. First are methods, which still interpolate
the triangles individually, but use vectors respective to the continuous intensity surface vary-
ing across the whole image to correlate the output. The other approach is to interpolate on
more complex surface structures formed by individual triangles of the triangulation.

Zienkiewicz interpolation is an alternative for the bilinear interpolation. It uses gradient vec-
tors to describe the behaviour of the intensity in the area that surrounds the interpolated trian-
gle. Gradient in a vertex can be estimated as an average of normalized surface normal vectors
of each of the triangle adjacent to the vertex, weighted by their areas. Zienkiewics interpola-
tion is a bit slower than the bilinear interpolation, however, for common applications, this
slow down can be neglected.

The Bezier and Coons patch methods interpolate small overlapping surfaces formed by a cou-
ple of adjacent triangles. Their advantage is that they successfully remove traces of the trian-
gulation, making the image smoother than in case of bilinear or Zienkiewicz interpolation.
However, this also introduces an unwanted blending of colour edges in the image, which
might lead produce artefacts – see Figure 9.2.Therefore, these methods are not suitable as
universal interpolation methods. Nevertheless, this approach could be exploited more and
used for partial interpolation of smooth areas or for interpolation of specially prepared trian-
gulations that would ensure that the artefacts would not appear. Another drawback of these
methods is an extremely large computational time, which renders these methods useless.

Figure 9.2: Part of the Fruits image, interpolated by the Coons patch method from triangulations with
6000 vertices in red, 9000 vertices in green and 9000 vertices in blue component.

The last tested approach exploits a dual configuration of the Delaunay triangulation, the Vo-
ronoi diagram. Whilst the piecewise linear interpolation over Voronoi cells proved to be a
complete failure (see Figure 9.3a), the natural neighbour interpolation, which is based on
measuring change of areas of Voronoi cells when the interpolated pixel is inserted into the
diagram, brought some promising results –see Figure 9.3b. It requires a significantly higher
time than the bilinear or Zienkiewicz interpolation but this is still within reasonable bounds.
Although the quality of natural neighbour interpolation does not outperform the Zienkiewicz
interpolation, it is close enough to take it into account in the further development.

a) piecewise linear interpolation over
Voronoi cells

Figure 9.3: Lena image reconstructed from the Delaunay triangulation of 10

We experimented with both greyscale and coloured images. Coloured images may be repr
sented by either separate triangulations for each colour compo
triangulations are more suitable when a more effective compression is required but their vi
ual quality is usually worse. On the other hand, they avoid the problem of colour leaking,
which is present in the case of separate

Detailed description of interpolation methods and performed experiments can be found in
bachelor thesis by T. Janák [Jan09] and also

99

piecewise linear interpolation over

Voronoi cells
b) natural neighbour interpolation

Lena image reconstructed from the Delaunay triangulation of 10

We experimented with both greyscale and coloured images. Coloured images may be repr
sented by either separate triangulations for each colour component or the co
triangulations are more suitable when a more effective compression is required but their vi
ual quality is usually worse. On the other hand, they avoid the problem of colour leaking,
which is present in the case of separate triangulations (see Figure 9.2).

Detailed description of interpolation methods and performed experiments can be found in
bachelor thesis by T. Janák [Jan09] and also in paper [Jan08].

natural neighbour interpolation

Lena image reconstructed from the Delaunay triangulation of 10 000 vertices.

We experimented with both greyscale and coloured images. Coloured images may be repre-
nent or the co-triangulation. Co-

triangulations are more suitable when a more effective compression is required but their vis-
ual quality is usually worse. On the other hand, they avoid the problem of colour leaking,

Detailed description of interpolation methods and performed experiments can be found in

10 Direct Manipulation with Triangulated Images

Real images captured by digital cameras are often unsuitable for many applications and some
image enhancement techniques, such as resizing, change of contrast or brightness,
correction and smoothing of edges, must be applied. These techniques are
images represented by raster of pixels but, as far as we know, their extension for images re
resented by triangulations has not been discussed in literature. Indeed, it is
perform the required enhancement operation in the reconstructed raster image and after that to
compute a new triangular representation of the image but this straightforward approach brings
two drawbacks. First of all, the transformation
some time and, therefore, it might be impractical to use this strategy always. More impo
tantly, it could lead to severe degradation of quality since the considered transformation is
lossy one, i.e., an information

Scaling of the image represented by the triangular mesh is the simplest operation. All that is
needed is to apply the scaling to the vertices of triangles and then interpolate triangles. Even,
if the Delaunay triangulation is used, instead of the Data Dependent Triangulation, which is
more suitable for representation of images that should be scaled (see Section
achieved visual quality can be better
commonly used bicubic resampling
age reconstructed from the scaled Delaunay triangulation is sharp (in comparison with bicubic
resampling) but on the other hand, some tria
visibility of these artefacts could

a) bicubic resampling

Figure

Change of brightness in vertices of triangulation followed by the interpolation brings results
comparable with traditional approach. The behaviour of the operation is demonstrated in
ure 10.2. An example of gamma correction is given in
behaviour is reasonable.

100

Direct Manipulation with Triangulated Images

Real images captured by digital cameras are often unsuitable for many applications and some
image enhancement techniques, such as resizing, change of contrast or brightness,

smoothing of edges, must be applied. These techniques are
images represented by raster of pixels but, as far as we know, their extension for images re
resented by triangulations has not been discussed in literature. Indeed, it is
perform the required enhancement operation in the reconstructed raster image and after that to
compute a new triangular representation of the image but this straightforward approach brings
two drawbacks. First of all, the transformation from raster form into geometric one takes
some time and, therefore, it might be impractical to use this strategy always. More impo
tantly, it could lead to severe degradation of quality since the considered transformation is
lossy one, i.e., an information loss is present in every transformation.

image represented by the triangular mesh is the simplest operation. All that is
apply the scaling to the vertices of triangles and then interpolate triangles. Even,

if the Delaunay triangulation is used, instead of the Data Dependent Triangulation, which is
more suitable for representation of images that should be scaled (see Section
achieved visual quality can be better perceived than the visual quality obtained from the
commonly used bicubic resampling of raster images. As it can be seen in
age reconstructed from the scaled Delaunay triangulation is sharp (in comparison with bicubic
resampling) but on the other hand, some triangular artefacts are visible. Let us note that the

could be reduced in the post-processing by smoothing.

 b) Delaunay triangulation
+ bilinear interpolation

Figure 10.1: 8 times scaled a part of monarch wing.

Change of brightness in vertices of triangulation followed by the interpolation brings results
comparable with traditional approach. The behaviour of the operation is demonstrated in

An example of gamma correction is given in Figure 10.3. Again, in our opinion, the

Direct Manipulation with Triangulated Images

Real images captured by digital cameras are often unsuitable for many applications and some
image enhancement techniques, such as resizing, change of contrast or brightness, gamma

smoothing of edges, must be applied. These techniques are well established for
images represented by raster of pixels but, as far as we know, their extension for images rep-
resented by triangulations has not been discussed in literature. Indeed, it is always possible to
perform the required enhancement operation in the reconstructed raster image and after that to
compute a new triangular representation of the image but this straightforward approach brings

from raster form into geometric one takes
some time and, therefore, it might be impractical to use this strategy always. More impor-
tantly, it could lead to severe degradation of quality since the considered transformation is

image represented by the triangular mesh is the simplest operation. All that is
apply the scaling to the vertices of triangles and then interpolate triangles. Even,

if the Delaunay triangulation is used, instead of the Data Dependent Triangulation, which is
more suitable for representation of images that should be scaled (see Section 2.4), the

the visual quality obtained from the
seen in Figure 10.1, the im-

age reconstructed from the scaled Delaunay triangulation is sharp (in comparison with bicubic
ngular artefacts are visible. Let us note that the

by smoothing.

triangulation
+ bilinear interpolation

Change of brightness in vertices of triangulation followed by the interpolation brings results
comparable with traditional approach. The behaviour of the operation is demonstrated in Fig-

. Again, in our opinion, the

a) original

Figure 10.2: Direct brightness

a) γ = 0.5

Figure 10.3: Gamma correction for 512x512 Lena image represented by the Delaunay

Smoothing is the most complex operation that we considered in our experiments.
the transformation from the raster form itself smoothes the edges, additional smoothing may
be required. The proposed method
searches for vertices in the neighbourhood
grey values (or colours) to get a new value for the vertex

where denotes the grey values associated with the vertex
either one, which means that
of the distance between the vertex
and topological distances. In the former case, the
the circle of radius rmax given in pixel units.
smoother image. The following formu

is then used to compute the weight
distance between vertices p

101

b) double brightness

Direct brightness change for 512x512 Lena image represented by the Delaunay triang
lation of 4 000 vertices.

b) γ = 1.3

Gamma correction for 512x512 Lena image represented by the Delaunay
4 000 vertices.

Smoothing is the most complex operation that we considered in our experiments.
the transformation from the raster form itself smoothes the edges, additional smoothing may

The proposed method processes vertices of the triangulation one by one. It
in the neighbourhood Ω of the tested vertex p and sums their weighted

grey values (or colours) to get a new value for the vertex p. This can be written as formula:

denotes the grey values associated with the vertex . The w
which means that all vertices have the same influence, or calculated as

the distance between the vertex p and the vertex q. We experimented with both Euclidian
. In the former case, the size of the neighbourhood
given in pixel units. Naturally, a larger value

following formula:

to compute the weight. Note that weights decreases linearly with the
p and q.

c) half brightness

for 512x512 Lena image represented by the Delaunay triangu-

c) γ = 2

Gamma correction for 512x512 Lena image represented by the Delaunay triangulation of

Smoothing is the most complex operation that we considered in our experiments. Although
the transformation from the raster form itself smoothes the edges, additional smoothing may

vertices of the triangulation one by one. It
and sums their weighted

. This can be written as formula:

The weight can be
calculated as a function

experimented with both Euclidian
neighbourhood Ω is defined by

larger value of rmax leads into a

Note that weights decreases linearly with the Euclidian

If topological distances are considered
value dmax (again larger values mean smoother images). A vertex
of the vertex p only, if ther
edges. The weight decreases linearly according to the number of edges
for the most distant vertices,

Figure 10.4 displays results of the smoothing with Euclidian distan
weights are used, the triangular artefacts occur in the image even for
hood size (compare the hat in
sharp. Larger values bring a larger degree of smoothness but also more artefacts that makes
the image noisy. Linear weights behave
details are well smoothed as expected (see

a) rmax = 2, const

d) rmax = 4, linear

Figure 10.4: 512x512 Lena image represented by the Delaunay triangulation of 4
smoothing by the method using Euclidian distances with constant and linear weights for various

Smoothing with topological distances is depicted in
does not introduce so many triangular artefacts as the method with Euclidian distances but on
the other hand, the degree o
the lowest possible neighbourhood size, the mouth is already too smooth no matter whether
constant or linear weights are used. All in all, smoothing of an acceptable quality can be
reached by repeating the smoothing by the method with Euclidian distances, linear weights
and small neighbourhood size (e.g., 2 or 4).

102

s are considered, the size of the neighbourhood
(again larger values mean smoother images). A vertex q lies in the neighbourhood

there is a graph path from the vertex q to the vertex
edges. The weight decreases linearly according to the number of edges
for the most distant vertices, dmax for vertices connected to the vertex p.

displays results of the smoothing with Euclidian distan
weights are used, the triangular artefacts occur in the image even for a

(compare the hat in Figure 10.4a and Figure 10.2a), whilst the image is still too
sharp. Larger values bring a larger degree of smoothness but also more artefacts that makes
the image noisy. Linear weights behave much better. The amount of artefacts is lower and the

as expected (see Figure 10.4e).

= 2, const b) rmax = 4, const c) rmax

linear e) rmax = 6, linear f) rmax

512x512 Lena image represented by the Delaunay triangulation of 4
smoothing by the method using Euclidian distances with constant and linear weights for various

neighbourhood size rmax.

Smoothing with topological distances is depicted in Figure 10.5. As it can be seen, the method
does not introduce so many triangular artefacts as the method with Euclidian distances but on
the other hand, the degree of smoothing is probably too big for typical applications. Even with
the lowest possible neighbourhood size, the mouth is already too smooth no matter whether
constant or linear weights are used. All in all, smoothing of an acceptable quality can be

by repeating the smoothing by the method with Euclidian distances, linear weights
and small neighbourhood size (e.g., 2 or 4).

neighbourhood Ω is defined by the
lies in the neighbourhood

to the vertex p of at most dmax
edges. The weight decreases linearly according to the number of edges d on the path; it is 1

.

displays results of the smoothing with Euclidian distances. When constant
a very small neighbour-

a), whilst the image is still too
sharp. Larger values bring a larger degree of smoothness but also more artefacts that makes

much better. The amount of artefacts is lower and the

max = 6, const

max = 10, linear

512x512 Lena image represented by the Delaunay triangulation of 4 000 vertices after
smoothing by the method using Euclidian distances with constant and linear weights for various

. As it can be seen, the method
does not introduce so many triangular artefacts as the method with Euclidian distances but on

typical applications. Even with
the lowest possible neighbourhood size, the mouth is already too smooth no matter whether
constant or linear weights are used. All in all, smoothing of an acceptable quality can be

by repeating the smoothing by the method with Euclidian distances, linear weights

a) dmax = 1,
const

Figure 10.5: 512x512 Lena image represented by the Delaunay triangulation of 4
smoothing by the method using topological distances with constant and linear weights for various

Apparently, it is possible to apply some image enhancement techniques (after some modific
tions, indeed) directly on the triangulated image with acceptable results. Especially, oper
tions that deal with pixels independently (such as change of contrast
correction or curves operations, change of colour hue or saturation,
any unexpected problems.
planned as its benefit would be marginal.

103

b) dmax = 2,
const

c) dmax = 1,
linear

512x512 Lena image represented by the Delaunay triangulation of 4
smoothing by the method using topological distances with constant and linear weights for various

neighbourhood size dmax.

possible to apply some image enhancement techniques (after some modific
tions, indeed) directly on the triangulated image with acceptable results. Especially, oper
tions that deal with pixels independently (such as change of contrast
correction or curves operations, change of colour hue or saturation, negation) can run without
any unexpected problems. Further research in this area would be welcome but it is not
planned as its benefit would be marginal.

d) dmax = 2,
linear

512x512 Lena image represented by the Delaunay triangulation of 4 000 vertices after
smoothing by the method using topological distances with constant and linear weights for various

possible to apply some image enhancement techniques (after some modifica-
tions, indeed) directly on the triangulated image with acceptable results. Especially, opera-

 or brightness, gamma
negation) can run without

Further research in this area would be welcome but it is not

104

11 Conclusion and Future Work

This report describes the most important results of the research project KJB10470701 (Alter-
native representation of image information by the use of triangulations) that was funded by
GA AV of the Czech Republic in 2007 – 2009. It does not aim to be extensive and also it may
not reflect last changes (especially, those in 2009).

In this report, we proposed and described various methods for the lossy transformation of
raster of pixels into the Delaunay triangulation of the most significant points (corresponding
to pixels) for both grey-scale and colour images. The majority of these methods start with a
complete Delaunay triangulation of all points and successively remove points evaluated to be
the least significant; a few of them start with an initial Delaunay triangulation and succes-
sively insert important points (see Section 3; 8.1.1). What makes them different is the heuris-
tics used for the significance evaluation.

The best quality of representation is achieved by the BRUTE method (or one of its variants)
that considers the point to be the least significant, if its removal from the triangulation would
harm the quality least. If the image does not contain lot of edges, this method, when combined
with powerful encoding techniques (see Section 5), outperforms JPEG in low bit rates and can
more or less compete with JPEG2000,. On the other hand, the method is the slowest one; the
transformation of 512x512 grey-scale image takes about one minute on a common hardware.

As for the colour images, given the required quality of representation, the best compression
ratio is achieved, if the colour image is transformed into YCbCr or RGB colour model first
and then each component processed separately as independent grey-scale image. YCbCr
model is preferable for lower qualities, RGB for higher qualities. Cotriangulations proved to
be not very useful for our purpose (see Section 7.3, 7.4).

Further experiments [Rul09] with the other triangulations (e.g., with weighted triangulations)
proved that the differences in the quality achieved by the Delaunay triangulation and these
triangulations are insignificant. As the Delaunay triangulation of a given set of points is
unique (if some conditions are met) and, therefore, it can be encoded storing vertices (points)
only and reconstruct from these vertices in the decoder, we consider the Delaunay triangula-
tion (or CDT since the number of constraints is often limited) to be the favourite for the alter-
native representation of images.

Various methods for the encoding of the Delaunay triangulation were proposed (see Sec-
tion 5, 8.1.1, 8.2) and tested. The FVXPATH+bzip2 method, which encodes the Minkowski
differences in coordinates between two points adjacent in an array of points ordered in such a
manner that the Minkowski differences are minimized, achieves the highest compression ra-
tio. On the other hand, the method is quite time demanding. A good compromise between the
compression ratio and the consumed time is brought by the BEHEC method, which performs
a linearization of vertices using the Hilbert curve and then it stores the differences in their
positions of this curve compressed by the Huffman encoding.

The raster image is reconstructed (in the decoder) from the Delaunay triangulation by an in-
terpolation. From all interpolations we experimented with (see Section 9), the Zienkiewicz
interpolation slightly outperforms the bilinear interpolation since it takes gradients in vertices
into account. On the other hand, it needs slightly more time.

We also investigated the option of representing a digital video by the kinetic Delaunay trian-
gulation (see Section 8.1) or by the 3D Delaunay triangulation (see Section 8.2). Although we
do not consider the research in this area to be finished, we can conclude that while the repre-
sentation by the 3D Delaunay triangulation sounds good from the theoretical point of view, it

105

is unlikely to be used in practice since the achieved compression ratio is far below compres-
sion ratios reached by traditional MPEG technique. The kinetic Delaunay triangulation be-
haves in a better way, however, due to its quality problems for inter-coding, it is also quite
impractical. If inter-coding were improved, it could more or less compete with traditional
techniques when low bit rates are required (e.g., in mobile phones broadcasting).

Direct application of common image enhancement techniques on the vertices of triangulation
and its effect on the reconstructed raster image were discussed (Section 10). According to the
experiments, operations that deal with pixels independently (such as change of contrast or
brightness, gamma correction or curves operations, change of colour hue or saturation, nega-
tion) can run without any unexpected problems, other operations (such as smoothing) can be
applied directly on the triangulated image with acceptable results.

Further research in this area should focus on a smart combination of triangulations and wave-
let representations because, as it seems, triangulations itself are not sufficient enough to repre-
sent everything in the desired quality.

106

References

[Ada03] Adamian L, Jackups R, Binkowski AT, Liang J. Higher-order interhelical spatial in-
teractions in membrane proteins. Journal of Molecular Biology 2003; 327(1):251-
272.

[Att01] Attali D, Lachaud OJ. Delaunay conforming iso-surface, skeleton extraction and
noise removal. Computational Geometry 2001; 19(2-3):175-189.

[Bat04] Battiato, S., Gallo, G., Messina, G. SVG rendering of real Images using data depend-
ent triangulation. Proceedings of SCCG 2004 (2004) 185–192

[Béc02] Béchet E, Cuilliere JC, Trochu F. Generation of a finite element MESH from stereo-
lithography (STL) files. Computer-Aided Design 2002; 34(1):1-17.

[Ber97] de Berg M, van Kreveld M, Overmars M, Schwarzkopf O. Computational Geometry.
Algorithms and applications, Springer-Verlag Berlin Heidelberg, 1997.

[Cia97] Ciampalini, A., Cignoni, P., Montani, C., Scopigno, R. Multiresolution decimation
based on global error. The Visual Computer, Vol. 13. Springer-Verlag (1997) 228–
246

[Coo05] Cooper, O., Campbell, N., Gibson, D. Automatic augmentation and meshing of sparse
3D scene structure. Proceedings of 7th IEEE Workshop on Applications of Computer
Vision, Breckenridge, USA, IEEE Computer Society (2005) 287–293

[Del34a] B. Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i
Estestvennyka Nauk 7 (1934), 793-800.

[Del34b] Б. Н. Дeлohe, А.Д. Александров, Н. Падуровым. Математические основы
структурного анализа кристаллов, Москва, Матем. литература, 1934.

[Dem03] Demaret L., Iske A. Scattered data coding in digital image compression. In: Curve
and Surface Fitting: Saint-Malo 2002, Nashboro Press, Brentwood, 2003, p. 107-117

[Dem04] Demaret, L., Dyn, N., Floater, M.S., Iske, A. Adaptive thinning for terrain modelling
and image compression.Advances in Multiresolution for Geometric Modelling (2004)
321–340

[Dem06] Demaret L., Dyn N., Iske A. Image compression by linear splines over adaptive trian-
gulations. Signal Processing 2006, 86(7):1604-1616

[Dev01] Devillers O, Pion S, Teillaud M. Walking in triangulation. In: Proceedings of 17th
Annual Symposium on Computational Geometry, ACM, Medford, Massachusetts,
USA, June 3-5, 2001. p. 106-114

[Dev98] Devillers O. Improved incremental randomized Delaunay triangulation. In: Proceed-
ings of 14th Annual Symposium on Computational Geometry, ACM, 1998. p. 106-
115.

[Dev99] Devillers O. On deletion in Delaunay triangulations. In: Proceedings of SCG'99, Mi-
ami Beach Florida, ACM, 1999. p. 181-188

[Dyn90] Dyn N, Levin D, Rippa S. Data dependent triangulations for piecewise linear interpo-
lation. IMA Journal of Numerical Analysis 1990; 10: 127-154

[Ede92] Edelsbrunner H, Shah NR. Incremental topological flipping works for regular triangu-
lations. In: Proceedings of 8th Annual Computational Geometry, 6/92, Berlin, Ger-
many, ACM, 1992. p. 43-52

107

[Fac95] Facello MA. Implementation of randomized algorithm for Delaunay and regular tri-
angulations in three dimensions. Computer Aided Geometric Design, Elsevier, 1995;
12:349–370.

[Flo76] Floyd RW, Steinberg L. An adaptive algorithm for spatial grey scale. In: Proceedings
of the Society of Information Display (1976) 75–77

[Fur97] Furht B, Greenberg J,Westwater R. Motion Estimation Algorithms For Video Com-
pression. Kluwer Academic Publishers, 1997, pp. 61-95

[Gal05] Galic, I., Weickert, J., Welk, M. Towards PDE-based image compression. In: Pro-
ceedings of VLSM 2005, Beijing, China, (2005) 37–48

[Gar99] García, M.A., Vintimilla, B.X., Sappa, A.D. Efficient approximation of grey-scale
images through bounded error triangular meshes. In: Proceedings of IEEE Interna-
tional Conference on Image Processing, Kobe, Japan, IEEE Computer Society (1999)
168–170

[Gev97] Gevers, T., Smeulders, A.W. Combining region splitting and edge detection through
guided Delaunay image subdivision. In: Proceedings of IEEE International Confer-
ence on Computer Vision and Pattern Recognition (1997) 1021–1026

[God97] Godman JE, O'Rourke J. Handbook of discrete and computational geometry. CRC
Press, 1997

[Gol97] Golias NA, Dutton RW. Delaunay triangulation and 3D adaptive mesh generation.
Finite Elements in Analysis and Design 1997; 25(1997):331-341

[Gon02] Gonçalves G, Julien P, Riazanoff S, Cervelle B. Preserving cartographic quality in
DTM interpolation from contour lines. ISPRS Journal of Photogrammetry and Re-
mote Sensing 2002; 56(3):210-220.

[Gru05] Grundland, M., Gibbs, Ch., Dodgson, N.A. Stylized rendering for multiresolution
image representation. In: Proceedings of SPIE, Vol. 5666, (2005) 280–292

[Gui85] Guibas LJ, Stolfi J. Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams. ACM Transactions on Graphics 1985; 4(2):75-
123.

[Gui92] Guibas LJ, Knuth D.E, Sharir M. Randomized incremental construction of Delaunay
and Voronoi diagrams. Algorithmica 1992; 7:381-413.

[Hil81] Hilbert D. Über die stetige Abbildung einer Linie auf ein Flächenstück. Mathema-
tische Annalen 1981; 38 (1891): 459–460

[Hor81] Horn BKP, Schunck BG. Determining Optical Flow. Artificial Inteligence 1981;
17(1): 185–203

[Huf52] Huffman D. A. A method for the construction of minimum-redundancy codes. Pro-
ceedings of IRE 1952; 40(9): 1098-1101

[Jan08] Janák T. On interpolation for triangulation-represented digital image. In: Proceedings
of CESCG 2008, Budmerice, Slovakia, pp. 51-58

[Jan09] Janák T. Interpolation methods for triangulation represented digital image. Bachelor
thesis, University of West Bohemia, Czech Republic, 2009

[Kim99] Kim SS, Kim YS, Cho MG, Cho HG. A geometric compression algorithm for mas-
sive terrain data using Delaunay triangulation. In: Proceedings of WSCG, February
1999, Plzeň, Czech Republic, pp. 124-131

108

[Koh05] Kohout J. Delaunay triangulation in parallel and distributed environment, PhD The-
sis, University of West Bohemia, Czech Republic, 2005

[Kre01] Kreylos, O., Hamann, B. On simulated annealing and the construction of linear spline
approximations for scattered data. IEEE Transactions on Visualization and Computer
Graphics, Vol. 7, IEEE Computer Society (2001) 17–31

[Luc81] Lucas BD, Kanade T. An Iterative Image Registration Technique with an Application
to Stereo Vision. In: Proceedings of Imaging Understanding Workshop, 1981, pp.
121-130

[Mah07] Mahoney M. Data compression programs. December 2007.
http://www.cs.fit.edu/~mmahoney/compression/

[Mar00] Marquant G. Reprèsentation par Maillage Adaptatif Dèformable pour la Manipulation
et la Communication d'Objets Vidèo. Universit de Rennes, 2000.

[Mar80] Marr D, Hildreth EC. Theory of edge detection. In: Proceedings of the Royal Society,
Vol. 207, London, 1980, p. 187–217

[MSDN09] Microsoft Corporation. Color. Microsoft Developer Network; July 2009.
http://msdn.microsoft.com/en-us/library/aa511283.aspx

[Mue97] Mueller C. Hierarchical graphics databases in sort-first. In: Proceedings of IEEE
Symposium on Parallel Rendering, 1997. p. 49-57

[Mul03] Mulchrone KF. Application of Delaunay triangulation to the nearest neighbour
method of strain analysis. Journal of Structural Geology 2003; 25(5):689-702.

[Nik09] Nikon. Creation and Light; July 2009.
http://www.nikon.com/about/feelnikon/light/chap03/sec01.htm

[Nis01] Nishioka T, Tokudome H, Kinoshita M. Dynamic fracture-path prediction in impact
fracture phenomena using moving finite element method based on Delaunay auto-
matic mesh generation. International Journal of Solids and Structures 2001; 38(30-
31):5273-5301.

[Noc05] Nock R, Nielsen F. Semi-supervised statistical region refinement for color image
segmentation. Pattern Recognition, Elsevier, 38 (2005):835 – 846

[Oka92] Okabe A, Boots B, Sugihara K. Spatial tesselations: Concepts and applications of
Voronoi diagrams. John Wiley & Sons Ltd, 1992.

[Oku96] Okusanya T, Peraire J. Parallel unstructured mesh generation, Presented at 5th Int.
Conf. on Numerical Grid Generation in Computational Fluid Dynamics and Related
Fields, Mississippi, 1996

[Oku97] Okusanya T, Peraire J. 3D Parallel unstructured mesh generation,
http://citeseer.nj.nec.com/article/okusanya97parallel.html

[Ost99] Ostromoukhov V, Hersch RD. Stochastic clustered-dot dithering. Color Imaging:
Device-independent Color, Color Hardcopy, and Graphic Arts IV, SPIE 1999;
3648:496 – 505.

[Par03] Park JH, Park HW. Fast view interpolation of stereo images using image gradient and
disparity triangulation. Signal Processing: Image Communication 2003; 18(5):401-
416.

[Part03] Partyk M., Polec J., Kolingerová I. Hybrid scheme with triangulations for transform
coding. Radioengineering, 12(3), September 2003

109

[Pra00] Prasad L, Rao L.R. A geometric transform for shape feature extraction. In: Proceed-
ings of the 45th SPIE Annual Meeting, San Diego,CA, 2000.

[Pra06] Prasad, L., Skourikhine, A.N. Vectorized image segmentation via trixel agglomera-
tion. Pattern Recognition, Vol. 39, Elsevier (2006) 501–514

[Pun08] Puncman P. Použití triangulací pro reprezentaci videa. Master thesis, University of
West Bohemia, Czech Republic, 2008.

[Rad99] Radke J, Flodmark A. The use of spatial decomposition for constructing street center-
lines. Geographic Information Services 1999; 5(1):15-23.

[Ril98] Rila L. Image coding using irregular subsampling and Delaunay triangulation. In:
Proceedings of SIBGRAPI, 1998, p. 167–173

[Ros99] Rosignac J. Edgebreaker: connectivity compression for triangle meshes. IEEE Trans-
actions of Visualization and Computer Graphics 1999; 5(1999): 47–61

[Rul09] Rulf M. Využití triangulizací pro reprezentaci digitalizovaného obrazu. Bachelor the-
sis, University of West Bohemia, Czech Republic, 2009.

[Sch99] Schewchuk JR. Lectures notes on Delaunay mesh generation. Department of Electri-
cal Engineering and Computer Science, University of California at Berkley, CA
94720, 1999.

[Slo92] Sloan SW. A fast algorithm for generating constrained Delaunay triangulations.
Computers & Structures 1992; 47(3):441-450

[Sou07a] SourceForge contributors. PeaZip – free archiver utility. SourceForge.net; December
2007. http://peazip.sourceforge.net/

[Sou07b] SourceForge contributors. QUAD. SourceForge.net; December 2007.
http://quad.sourceforge.net/

[Su04] Su D., Willis P. Image interpolation by pixel level data-dependent triangulation.
Computer Graphics Forum, Vol. 23 (2004) 189–201.

[Syk08] Sýkora R. Komprese barevných digitálních obrazů s využitím triangulace. Bachelor
thesis, University of West Bohemia, Czech Republic, 2008.

[Tek00] Tekalp AM, Ostermann J. Face and 2D mesh animation in MPEG4. Signal Process-
ing: Image Communication 2000; 15(4-5):387-421.

[Uhl05] Uhlíř K, Skala V: Reconstruction of damaged images using radial basis functions. In:
Proceedings of EUSIPCO 2005, Istanbul, Turkey, 2005, p. 160.

[Usc07] University of Southern California. The USC-SIPI Image Database. Signal & Image
Processing Institution, University of Southern California, ed. Allan Weber; December
2007. http://sipi.usc.edu/database/

[Var07] Varga M. Využití tetrahedralizace jako alternativy k objemovým datům. Master the-
sis, Charles University, Czech Republic, 2007

[Vas07] Váša L., Skala V. CoDDyAC: Connectivity driven dynamic mesh compression. In:
Proceedings of IEEE 3DTV Conference, Kos, Greece, May 7-9, 2007.

[Vig97] Vigo M. An improved incremental algorithm for construting restricted Delaunay tri-
angulations. Computers & Graphics 1997; 22:215-223.

[Vig00] Vigo M, Pla N. Computing directional constrained Delaunay triangulations. Com-
puter & Graphics 2000; 24:181-190.

110

[Vom08] Vomáčka T. Delaunayova triangulace pohybujících se bodů v rovině. Master thesis,
University of West Bohemia, Czech Republic, 2008

[Vom09] Vomáčka T, Puncman P. A novel video compression scheme based on kinetic Delau-
nay triangulation. In: Proceedings of Algoritmy 2009, Podbanske, Slovakia, March
2009, pp. 372-381

[Wal00] Walkington NJ, Antaki JF, Blelloch GE, Ghattas O, Melcevic I, Miller GL. A parallel
dynamic-mesh Lagrangian method for simulation of flows with dynamic interfaces.
In: Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM),
November 2000, Dallas, Texas, United States. p.26

[Wat81] Watson DF. Computing the n-dimensional Delaunay tessellation with application to
Voronoi polytopes, Computer Journal 1981, 24(2):167-172.

[Wei98] Weimer H, Warren J, Troutner J, Wiggins W, Shrout J. Efficient Co-Triangulation of
Large Data Sets. IEEE Visualization 98, 1998, p. 119 – 126

[Wik07a] Wikipedia contributors. 7z. Wikipedia, The Free Encyclopedia; December 2007.
http://en.wikipedia.org/7z

[Wik07b] Wikipedia contributors. Bzip2. Wikipedia, The Free Encyclopedia; December 2007.
http://en.wikipedia.org/wiki/bzip2

[Wik07c] Wikipedia contributors. PAQ. Wikipedia, The Free Encyclopedia; December 2007.
http://en.wikipedia.org/wiki/PAQ

[Wik07d] Wikipedia contributors. Distance. Wikipedia, The Free Encyclopedia; December
2007. http://en.wikipedia.org/wiki/Distance

[Wik07e] Wikipedia contributors. Principal components analysis. Wikipedia, The Free Ency-
clopedia; December 2007.
http://en.wikipedia.org/wiki/Principal_components_analysis

[Wik07f] Wikipedia contributors. Run-length encoding. Wikipedia, The Free Encyclopedia;
December 2007. http://en.wikipedia.org/wiki/Run-length_encoding

[Wik08a] Wikipedia contributors. Run-length encoding. Wikipedia, The Free Encyclopedia;
March 2008. http://en.wikipedia.org/wiki/Phong_shading

[Xia02] Xiao Y, Yan H. Text region extraction in a document image based on the Delaunay
tessellation. Pattern Recognition 2003, 36(3):799-809

[Yu01] Yu, X., Morse, B.S., Sederberg, T.W. Image reconstruction using data-dependent
triangulation. IEEE Computer Graphics and Applications, Vol. 21, IEEE Computer
Society (2001) 62–68

[Žal03] Žalik B, Kolingerová I. An incremental construction algorithm for Delaunay triangu-
lation using the nearest-point paradigm. International Journal of Geographical Infor-
mation Science 2003, 17(2):119-138.

[Žar98] Žára J, Beneš B, Felkel P. Moderní počítačová grafika. Computer Press, 1998, ISBN
80-7226-049-9

