

University of West Bohemia in Pilsen

Department of Computer Science and Engineering

Univerzitni 8

30614 Pilsen

Czech Republic

Regular Triangulation and Tunnels
in Proteins

Michal Zemek Ivana Kolingerová Petr Medek Jiří Sochor

Technical Report No. DCSE/TR-2007-15

December, 2007

Distribution: public

Technical Report No. DCSE/TR-2007-15
December, 2007

Regular Triangulation and Tunnels
in Proteins

Michal Zemek Ivana Kolingerová Petr Medek Jiří Sochor

Abstract
Proteins are organic compounds and are contained in every living cell. Protein
engineering studies proteins and tries to modify them. For this purpose it uses
(among others) an analysis of tunnels – paths, which lead from an interesting
place inside a protein to its surface. In this paper the geometric approximation
of tunnels in protein molecules and the application of regular triangulation for its
computation are described. Two new types of tunnel approximations are
introduced and compared with the existing method of the tunnel computation.

Keywords
Regular triangulation, tunnel, protein molecule.

This work was supported by The Ministry of Education of The Czech Republic,
project no. LC 06008.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Copyright © 2007 University of West Bohemia in Pilsen, Czech Republic

Table of Contents

Table of Contents..3

1. Introduction ..4

2. State of the Art..4

3. Regular Triangulation...4

3.1 Definition..5

3.2 The Construction Algorithm...6

4. Geometric Tunnel ...10

5. Tunnel Approximation ...11

5.1 Bottleneck sphere of a face in RT ..11

5.2 Pessimistic Tunnel..13

5.3 Optimistic Tunnel ...14

5.4 Delaunay Tunnel...14

5.5 Algorithm for Tunnel Searching...15

6. Experimental Result ...15

6.1 Comparison of Bottleneck Radii ..15

6.2 Time and Space Complexity...16

7. Conclusion ..17

References ..18

Appendix A...18

Appendix B...20

 4

1. Introduction

A protein consists of hundreds or thousands of amino acids, an amino acid consists

of a few types of atom. In a protein, amino acids are connected in a linear chain. An order

of acids determines a primary structure of a protein and has an essential influence on protein

chemical properties. A small change in primary structure can cause significant changes

of these properties. This fact is used by a protein engineering, which tries to create “improved

proteins”. These improved proteins are used in designs of new drugs and agrochemicals

or for detection and neutralization of dangerous chemicals [DAM].

A place, where a protein should be modified, is called an active place. During a protein

modification it is necessary to transport some certain molecule to the active place, and this

molecule must not affect the protein structure. Therefore an existence of a tunnel (leading

from the active place to a protein surface) and its size is an important question. In this paper

the geometric approximation of tunnels in protein molecules and the application of regular

triangulation for its computation are described. Two new types of tunnel approximations are

introduced and compared with the existing method of the tunnel computation.

Contents of the paper are as follows. Section 2 describes state of the art. Regular

triangulation is described in section 3. Sections 4 and 5 are dedicated to the tunnel definition

and to algorithm for the tunnel construction. We give and discuss results of our algorithm

in the section 6.

2. State of the Art

Computer simulation and visualization of proteins is intensively used in biochemical

research, so many papers with this topic have been published. Most of them deal with protein

visualization or with computing of a molecule surface ([B01, R05]). As far as we know, only

two papers are focused on the tunnel computation. The first is based on a space discretization

[P06] – the space with protein is divided into a regular grid and each cell of this grid

is evaluated by its distance from the nearest atom. The tunnel is constructed as a set of cells

using Dijkstra’s algorithm.

The second approach is described in [M07]. It is based on a space subdivision using

Voronoi diagram and its dual structure – Delaunay triangulation. At first, a Voronoi diagram

is created, positions of protein atoms are used as Voronoi generators. Second, the Voronoi

diagram is traversed using Dijkstra’s algorithm and a tunnel is searched as a sequence

of Voronoi edges. The Voronoi edges are evaluated by their distance from the nearest atom.

Our approach is based on the second solution. We use power diagrams and regular

triangulations instead of Voronoi diagrams and Delaunay triangulations and we use a different

evaluation of diagram edges.

3. Regular Triangulation

Regular triangulation (RT) is a generalization of well-known Delaunay triangulation

(DT). Each point in the regular triangulation is associated with a real number – a weight

of the point. If weights of all points are equal, then regular triangulation and Delaunay

triangulation of this set of points are identical. If weights of points are different, then

Delaunay and regular triangulation can be different (see Fig. 3.1). We are interested

in a 3D triangulation (and in 3D tunnels), but we often use figures of 2D triangulations

(and 2D tunnels) for a simplicity.

In this section we define the regular triangulation accordingly to the definition in [E92]

and we describe an algorithm for its construction [E92, F93].

 5

(a) (b)
Fig. 3.1: (a) Delaunay triangulation (in 2D), (b) Regular triangulation (in 2D). The circles represent weights

of he points.

3.1 Definition

At first we need a few basic definitions, further we give the exact definition

of the regular triangulation and also two lemmas, which are useful for a construction

of the regular triangulation:

Triangulation: Triangulation T(S) of a finite set S, 3 ,| |S E S n⊂ = , is a subdivision

of the convex hull of S into a set of non-intersecting tetrahedra, whose vertices are points

from S.

Weighted points: 3 ,| |S E S n⊂ = . Each point p S∈ has an associated weight pw R∈ .

The weight pw can be negative, but usually only non-negative weights are used.

The weighted point can be interpreted as a sphere centered at the point p with a radius pw .

Power distance: For each weighted point p its power distance from an unweighted point
3x E∈ is defined as

2
()p px xp wπ = − (| |xp denotes the Euclidean distance between points

p and x). Power distance can be interpreted as a square of length of a tangent from the point x

to a sphere with the centre p and with the radius pw (if x lies outside the sphere),

see Fig. 3.2a.

Orthogonal points: Two weighted points p and q are orthogonal if
2

p qpq w w= + ,

see Fig. 3.2b.

p

wp wq

q|pq|

p

x
wp

π (x)p

(a) (b)

Fig. 3.2: (a) Power distance, (b) Two orthogonal weighted points.

Orthogonal centre: Weighted point z is an orthogonal centre of tetrahedron abcd

if z is orthogonal to the points a, b, c, d.

Regularity (global): Let us suppose that a weighted point z is the orthogonal centre

of tetrahedron abcd. Tetrahedron abcd is globally regular if ()z pp wπ > for each point

{ }, , ,p S a b c d∈ − (pw is the weight of a point p).

Regular triangulation: Triangulation RT(S) is regular if each tetrahedron in RT(S) is globally

regular.

 6

Redundant point: A point p S∈ is called a redundant point, if no globally regular

tetrahedron pabc exists in RT(S). The redundant point is not a vertex of any tetrahedron,

therefore, the vertex set of RT(S) is generally only a subset of S.

Lemma (local regularity): abcd and abce are two tetrahedra with common face abc

and z is the orthogonal centre of the tetrahedron abcd. The common face abc is locally regular

if ()z ee wπ > .

Lemma (regular triangulation): If the vertex set of T(S) contains all non-redundant points

from S and all faces of T(S) are locally regular then the triangulation T(S) is regular
1
.

3.2 The Construction Algorithm

We use an incremental flipping algorithm (published in [E92] and [F93]) for

a construction of regular triangulation. The algorithm creates a triangulation of a given set

of points 0 1{ , ,..., }nS p p p= incrementally – in each step one point is inserted into

the triangulation. At first tetrahedra, which contain the new point
2
, are located. Then the new

point is connected into these tetrahedra – they are splitted and new tetrahedra are created.

Some faces of the new tetrahedra can be non-regular – these have to be repaired using flips
3

before the next point is inserted. Further we will describe the particular steps of the flipping

algorithm.

The Starting Tetrahedron

The algorithm needs a starting triangulation, in which the points from S will be inserted.

One possibility is to create the convex hull of S. Simpler solution is to use an auxiliary

tetrahedron t. The positions of vertices 4 3 2 1, , ,p p p p− − − − of the tetrahedron t have to be chosen

so that all points from S are contained in t. When the triangulation is finished, all tetrahedra

with a vertex from { }4 3 2 1, , ,p p p p− − − − have to be removed.

The typical positions of the points 4 3 2 1, , ,p p p p− − − − are as follows:

4 (, ,)x y zp s K d s s− = + ⋅ ,

3 (, ,)x y zp s s K d s− = + ⋅ ,

2 (, ,)x y zp s s s K d− = + ⋅ ,

1 (, ,)x y zp s K d s K d s K d− = − ⋅ − ⋅ − ⋅ ,

where (, ,)x y zs s s s= is the centre of a min-max box of S, d is the longest edge of the min-max

box and K is a constant. The choice of K is problematic – when we use small K,

the triangulation do not have to be convex after we remove the auxiliary tetrahedra. If we use

a big K, numeric precision suffers. The used value of K is between 10 and 20.

Point Location

Before a point p can be inserted into a triangulation T, a tetrahedron t, which contains p,

has to be found. For this purpose we use a simple visibility walk algorithm. The expected

complexity of the walking algorithm in 3D is ()1/ 4O n for one point location. The group

1
 Due to the lemmas, we can check the regularity of a tetrahedron or of a whole triangulation using local tests.

2
 Typically a point is contained only in one tetrahedron.

3
 Later we will describe what the mentioned term “flip” means.

 7

of walking algorithms is described in [D01] in detail. We describe only the basic visibility

walking strategy. Our goal is to find the tetrahedron t, which contains the point p:

Visibility walk algorithm (3.1)

1. t := a random tetrahedron.
2. While t does not contain the point p do
3. Find a face f of t, so that the plane supporting f

 separates t and p.

4. t := the neighbor of t through f.
5. Return t.

Flips

A flip is an operation, which replaces a few neighboring tetrahedra with other

tetrahedra, which fill the same space. We use six types of flips in 3D. The former three flips

are used for a point connection into a triangulation and the later three flips are used

for reparations of the non-regular faces. We denote the flips according to the number

of tetrahedra before and after the flip.

Insertion Flips

Let us suppose that we are inserting a point p into the triangulation T. Three situations

may appear:

• flip 1→4: The inserted point p lies inside a tetrahedron abcd. The point p is just

connected with the points a, b, c, d – four new tetrahedra are created from one

tetrahedron (see Fig. 3.3a).

• flip 2→6: The inserted point p lies in a face abc, two tetrahedra abcd and abce share

this face. The point p is connected with the points a, b, c, d, e, six new tetrahedra are

created from two tetrahedra (see Fig. 3.3b)

• flip N→2N: The inserted point p lies on an edge ab, which is contained

in N tetrahedra. All these tetrahedra have to be found, and each of them is split in two

(for example, a tetrahedron abcd is divided into tetrahedra acdp and bcdp,

see Fig. 3.4).

p

a b

c

d

swap 1→4

p

a b

c

d

p

a b

c

d

p

a b

c

d

p

a b

c

d

e

p

a b

c

d

e

p

a b

c

d

e

a b

c

d

e

p

swap 2 6→

(a) (b)
Fig. 3.3: (a) Flip 1→4, (b) Flip 2→6.

p

a

b

p

a

b

p

a

b

p

a

b

swap N 2N→

Fig. 3.4: Flip N→2N.

 8

Repairing Flips

Let us suppose that a face abc is shared by tetrahedra abcd and abce and that the face

abc is non-regular. We have to replace the tetrahedra abcd and abce (and sometimes one

or two neighboring tetrahedra) with two, three, or four new tetrahedra, which do not contain

the face abc and fill the same space as the original tetrahedra. Again, we have to distinguish

three cases:

• flip 2→3: The edge de goes through the inside of the face abc. Then the tetrahedra

abcd and abce are replaced with three new tetrahedra abde, acde, bcde (see. Fig. 3.5a).

• flip 3→2: The edge de does not go through the face abc. If a tetrahedron exists, which

together with abcd and abce fulfills the convex hull of points a, b, c, d, e, then these

three tetrahedra are replaced with two new tetrahedra abde and acde (see Fig. 3.5b).

This operation is inverse to flip 2→3.

• flip 4→4: The edge de goes through some edge of face abc. Let us suppose that de

goes through ab. If there exist two neighboring tetrahedra abdx and abex, then the four

tetrahedra abcd, abce, abdx and abex are replaced with new four tetrahedra acde,

bcde, adex and bdex (see Fig. 3.6).

If one of these cases occurs, we call the face abc flippable and use the proper flip

to remove the non-regular face. In any other case the face abc cannot be repaired immediately

(we say that the face is not flippable). Other faces are repaired and during this process the face

abc will be repaired too.

d

a

b

c

e

d

e

a
b

cswap 2 3→

e

d d

e

a

b

c

b

c swap 3 2→

e

d

a

b

c

(a) (b)

Fig. 3.5: (a) Flip 2→3, (b) Flip 3→2

swap 4 →4

a

b

c

d

e

x
a

b

c

d

e

x

swap 4 →4

a

b
c

d

e

a

b
c

d

e
(a) (b)

Fig. 3.6: (a) Flip 4→4, (b) Flip 4→4, left part only

Orientation and Regularity Test

The incremental flipping algorithm uses two basic tests – an orientation test

and a regularity test. The orientation test of four points a, b, c, d tells, on which side of plane

passing through points a, b, c the point d lies. The regularity test of five points a, b, c, d, e

tells, whether the face abc in the tetrahedron abcd is locally regular with respect to the point e.

 9

Both these tests can be realized as a determinant computation (, ,a a ax y z denote the x, y, z

coordinates of the point a and aw is the weight of a).

1

1
(, , ,)

1

1

a a a

b b b

c c c

d d d

x y z

x y z
orient a b c d

x y z

x y z

= (3.2)

If the result of the test orient(a, b, c, d) is positive or negative, respectively, the point d lies

above or bellow, respectively, the plane ρ passing through points a, b, c. If the result is equal

to zero, d lies on the plane ρ.

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

1

1

(, , , ,) (, , ,) 1

1

1

a a a a a a a

b b b b b b b

c c c c c c c

d d d d d d d

e e e e e e e

x y z x y z w

x y z x y z w

regular a b c d e orient a b c d x y z x y z w

x y z x y z w

x y z x y z w

+ + −

+ + −

= ⋅ + + −

+ + −

+ + −

 (3.3)

If the result of the test regular(a, b, c, d, e) is negative, the face abc is locally regular.

Otherwise is non-regular.

Redundant points

During a point insertion it is easy to test if the new point is redundant or not. If a point p

should be inserted into a tetrahedron abcd and the test regular(a, b, c, d, p) is negative then

the point p is redundant and must not be added into the triangulation.

The situation is much more complex, if due to insertion of the point p some other points

become redundant. This problem has two parts. First, the points must be recognized

as redundant. Second, the redundant points have to be removed from the triangulation.

Neither [F93] nor [E92] describe this problem. Fortunately, if we construct the regular

triangulation of protein molecule, the redundant points do not appear
1
, therefore, we do not

need to solve the problem of redundant points.

Pseudocode

The described flipping algorithm is summarized in the following pseudocode.

Flipping algorithm (3.4)

1. Create the starting tetrahedron
2. For each point p in S do
3. t := tetrahedron, which contains the point p.
4. If p is not redundant, connect p into the tetrahedron t

 (using flip 1→4, or 2→6, or N→2N).

5. Put the outer faces of new tetrahedra (faces, which do not contain
 the point p) into the list L.

6. While L is not empty do
7. Remove the face f from the list L.
8. If f is not regular and is flippable, use a proper flip

 on f. Put outer faces of new tetrahedra into the list L.

1
 If weighted points are interpreted as spheres, then the sphere of a redundant point is totally included in a union

of the surrounding spheres. This does not happen with atoms in protein molecules.

 10

Time complexity

A time complexity of the incremental flipping algorithm in 3D is ()2O n in the worst

case (proof in [E92]), the expected complexity is ()4O n n (if a walking algorithm is used for

a point location).

4. Geometric Tunnel

A protein molecule is simplified to a set of spheres. For many protein molecules

the atom coordinates are known – they have been measured using methods as X-Ray

diffraction and nuclear magnetic resonance (files with atom coordinates can be downloaded

from internet). A radius of a sphere is dependent on a type of atom and it is given by Van der

Walls radius.

Because a penetrating molecule is approximated with a sphere, we search tunnels with

a circular cross-section. In fact, the tunnel R can be defined by a union of spheres, which do

not intersect any atom of protein. Centers of spheres form a centerline CR of the tunnel R

(see Fig. 4.1
1
). The sphere with minimal radius is called the bottleneck sphere of the tunnel

R, the centre of this sphere is called the bottleneck point of R and the radius of this sphere

is called the bottleneck radius.

C
R

Fig. 4.1: Atoms (gray circles), tunnel (blue circles), tunnel centerline CR (thick black line), bottleneck circle and

bottleneck point (red dotted circle and its center), active place (red cross).

Let us say the tunnel R leads from the point p to the point q. We call the tunnel R ideal,

if no other tunnel with a bigger bottleneck radius exists. Our approach to tunnel searching

is based on the following lemma [M07]:

Lemma: Let S be a set of spheres in 3D. Consider an ideal tunnel R with a centerline from

a point p to a point q. The bottleneck point of R is situated on some Voronoi edge

of Euclidean Voronoi
2
 diagram V(S) or in the point p or q.

Due to this lemma, we can search a tunnel centerline as a sequence of edges

in a Euclidean Voronoi diagram – we are sure that there cannot be any tunnel with bigger

bottleneck radius and also we are sure that we cannot miss any bottleneck point of the final

tunnel.

1
 We are interested in 3D tunnels, but we use figures of 2D tunnels for a simplicity.

2
 The Euclidean Voronoi diagram is also called the Voronoi diagram of spheres or the Weighted Voronoi

diagram.

 11

The construction algorithm of Euclidean Voronoi diagram (EVD) is time consuming

and hard to implement. For example the time complexity for EVD algorithm described

in [Y04] is ()3O n , where n is the number of spheres.

The differences between atom radii in proteins are not very big (the smallest

and the biggest atoms in protein are hydrogen with radius 1,2A and sulfur with radius 1,85A),

hence some approximation of EVD should be sufficient. In [M07] Voronoi diagram of points

is used. This type of diagram ignores the atom radii completely. Our idea was to try a power

diagram (PD). The power diagram reflects weights of points, it can be constructed effectively

and it is not so hard to implement as EVD.

5. Tunnel Approximation

In fact, we use rather the dual structure to the power diagram – the regular triangulation.

Consider the duality between the regular triangulation and the power diagram:

• vertex in PD � tetrahedron in RT

• edge in PD � face in RT

• face in PD � edge in RT

• cell in PD � vertex in RT

As mentioned above, an ideal tunnel in EVD can be searched as a sequence of edges

in EVD. We approximate EVD with PD and so we search an approximation of the ideal

tunnel as a sequence of edges in PD. Because an edge in power diagram is dual with a face

in regular triangulation, a sequence of edges in PD corresponds to a sequence of faces in RT.

Every two following faces in the sequence determine one tetrahedron, so in a triangulation

we can search the tunnel as a sequence of tetrahedra.

5.1 Bottleneck sphere of a face in RT

We have already defined the bottleneck sphere of a tunnel (and also the bottleneck point

and bottleneck radius of a tunnel). The bottleneck sphere of an edge h (an edge in the power

diagram) is the minimal sphere in the tunnel, whose centre lies on the edge h. The bottleneck

sphere of a face f (a face in the triangulation) is the bottleneck sphere of an edge h, which

is dual to the face f (see Fig. 5.1). The meaning of terms “bottleneck point of face”

and “bottleneck radius of face” is evident.

In the Euclidean Voronoi diagram the bottleneck point of an edge h has to be located

in the point of intersection of the edge h and the plane ρ passing through the three points,

which determine the edge h. Or, if this intersection does not exist, the bottleneck point lies

in one of the endpoint of the edge h (see Fig. 5.2). We can construct a bottleneck sphere s

with a center in the bottleneck point of edge h, such a sphere s is tangent to three or more

nearest spheres (atoms, generators of EVD).

However, in the power diagram the bottleneck point of the edge h can be located in one

endpoint of the edge h (vertex of PD) even if the intersection of edge h and plane ρ exists

(see Fig. 5.3).

 12

Fig. 5.1: (a) Tunnel in regular triangulation in 2D. The red cross marks the active place, the tunnel is given

by the shaded tetrahedra. (b) A bottleneck sphere (thick dotted circle) of a face (thick solid black line) in 2D.

Gray dotted lines are edges of power diagram. The centers of blue circles are placed on the thick edge of power

diagram.

(a) (b)

h h

Fig. 5.2: (a) The bottleneck point (dashed circle) of h lies in the point of intersection of the edge h and the plane

passing through neighboring atoms, (b) The bottleneck point in the endpoint of h.

h

a

b

h

a

b

(a) (b)
Fig. 5.3: Location of the bottleneck circle (a) In EVD, (b) In power diagram.

 13

Because we use regular triangulation instead of power diagram, we do not know

the power diagram vertices. But the vertices can be easily computed – a vertex in PD

is an orthogonal center of tetrahedron in RT.

Let us have two tetrahedra abcd and bcde with a common face bcd. The bottleneck

point and the weight of the face bcd are computed as follows:

Bottleneck computation (5.1)

1. Compute the orthogonal sphere s1 of the tetrahedron abcd.
2. Compute the orthogonal sphere s2 of the tetrahedron bcde.
3. If the face bcd separates centers of spheres s1 and s2, compute sphere

s3 with its centre in the intersection of the plane passing through

the points b, c, d and the line joining centers of s1 and s2.

Else set the radius of s3 to infinity and the centre of s3 to

an arbitrary position.

4. Set the radii 1 2,s sr r and 3sr of spheres s1, s2, s3 as follows
1:

1 1 1 1 1{| | ,| | , | | ,| | }s a b c dr as r bs r cs r ds r= − − − −min ,

2 2 2 2 2{| | , | | ,| | , | | }s b c d er bs r cs r ds r es r= − − − −min ,

3 3 3 3{| | , | | ,| | }s b c dr bs r cs r ds r= − − −min ,

5. The bottleneck sphere of the face bcd is the smallest sphere of s1, s2
and s3. We use the radius of the bottleneck sphere as a weight

of the face bcd.

However, if we construct the bottleneck sphere of the face bcd in the regular

triangulation in this way, the bottleneck sphere can still have intersections with some atoms

(see Fig. 5.4). We call this intersection a tunnel error.

a

b

c

s p

Fig. 5.4: The center of the circle s lies in the orthogonal center of a triangle abc. The circle s does not have

any intersection with the atoms a, b, c, but it still intersects the atom p.

Therefore we distinguish two types of tunnels:

• a pessimistic tunnel – the tunnel must not contain any intersection with any atom.

• an optimistic tunnel – the tunnel can contain small intersections with some atoms.

5.2 Pessimistic Tunnel

In the pessimistic tunnel computation we follow the bottleneck computation algorithm,

but we add one more step between the steps 4 and 5. After we have computed the centers

of spheres s1, s2 and s3 and we have set their radii (step 4), we compute an upper estimation

of the tunnel error for each sphere s1, s2 and s3 and reduce the radii of these spheres

by the error estimate. Then we continue with step 5. Now we briefly describe the error

estimate computation (a full derivation is in appendix A).

1
 A sphere with a center in a vertex of power diagram and tangent to the nearest three or more generators of PD

does not have to exist in power diagram. ar denotes the radius of the atom a, i.e. a ar w= .

 14

Let us have a tetrahedron abcd, a sphere s with a center in the orthogonal center of abcd

and with a radius, which is set accordingly to the step 4 in the algorithm (5.1). Further we

assume that the weight of the point a is greater then or equal to the weights of points b, c, d.

Then the maximal possible tunnel error of sphere s fulfills an inequality (5.2)

 ()2 2

max max max_ 2 , ,s s a s s apossible error r r r r r r F r r r≤ + − + + = , (5.2)

where sr is the radius of the sphere s, ar is the radius of the point a and maxr is the radius

of the point with the biggest weight in the triangulation. If we reduce the radius of the sphere s

by ()max, ,s aF r r r , the resulting sphere cannot intersect any point in the triangulation (atom

in protein).

Let us note that the tunnel error estimation is dependent on the radii max, ,s ar r r . In other

words, the error estimate is dependent on the local geometry, therefore, it is evaluated

for each tunnel sphere again. The time complexity of one error estimate calculation

is clearly O(1).

5.3 Optimistic Tunnel

In the optimistic tunnel computation we just follow the algorithm (5.1) without

any extra correction of the tunnel spheres radii and so the resulting tunnel can intersect some

points in a triangulation. But an analyses of the error function F proves that the size of the

maximal intersection between a tunnel and any point of a triangulation has to be equal

to or smaller then max minr r− , where maxr , minr , respectively, is the radius of the biggest,

smallest point, respectively, in a triangulation. So the upper bound of tunnel error

is independent on the protein geometry. Let us note that we do not reduce the tunnel spheres

radii by max minr r− .

5.4 Delaunay Tunnel

In section 6 the comparison of our tunnels and tunnels defined in [M07] is given.

We call this type of tunnels the Delaunay tunnel and we describe it in this section.

Medek et al. use simple Delaunay triangulation of a set of points for tunnel

computation. The main difference between Medek’s and our approach is the computation

of a weight of a face. The weight of a face abc (shared by tetrahedra abcd and bcde)

is computed as follows:

Delaunay bottleneck computation (5.3)

1. Compute a circumscribed sphere s1 of the tetrahedron abcd.
2. Compute a circumscribed sphere s2 of the tetrahedron bcde.
3. If the face bcd separates the centers of spheres s1 and s2, compute

the sphere s3 tangent to the spheres b, c, d. The centre of s3 lies

in the plane passing through points b, c, d.

Else set the radius of s3 to infinity and the centre of s3 to

an arbitrary position.

4. Set radii
1 2,s sr r and

3sr of the spheres s1, s2, s3, so that s1, s2 and s3

do not intersect any sphere in vertices of tetrahedron abcd, bcde

and their neighboring tetrahedra.

5. Bottleneck sphere of the face bcd is the smallest sphere of s1, s2
and s3. The radius of the bottleneck sphere is used as a weight

of the face bcd.

 15

Let us note that this tunnel type is independent on a triangulation type. In the Delaunay

triangulation of a set of spheres it produces ideal tunnels, in other triangulations (Delaunay

triangulation of a set of points, regular triangulation, etc.) it produces only approximation

of ideal tunnels.

5.5 Algorithm for Tunnel Searching

Our current interest is a tunnel radius – i.e. we search the tunnel with the maximal

bottleneck radius. Therefore we can use a simple greedy algorithm.

The algorithm distinguishes two types of tetrahedra – unknown tetrahedra and expanded

tetrahedra. An unknown tetrahedron is a tetrahedron, to which the ideal tunnel is not known

yet. The expanded tetrahedron is a tetrahedron, to which an ideal tunnel is already known.

The triangulation is traversed from the tetrahedron containing the active place

to the triangulation border. In each step the algorithm goes throw a face with the biggest

weight from an expanded tetrahedron to an unknown tetrahedron. The algorithm stops, when

it finds a tetrahedron, which lies on the triangulation border. The algorithm is described

by the following pseudocode.

Tunnel computation (5.3)

1. t := tetrahedron, which contains the active place.
2. Mark t as expanded, for each unknown neighbor n of t do
3. Insert a triplet (target tetrahedron n, previous tetrahedron t,

 a weight w of the face between n and t) into the heap H

 according to the weight w.

4. Remove a triplet Q from the top of H. t := Q.target_tetrahedron.
5. If t has less then 4 neighbors, continue with step 8.
6. Else if t is already expanded, continue with step 4.
7. Else if t is unknown, remember the Q.previous_tetrahedron for t

 and continue with step 2.

8. Reconstruct the tunnel - traverse the triangulation back from
the last tetrahedron (on the triangulation border) to the starting

tetrahedron (with the active place) using the saved information about

the previous tetrahedron.

6. Experimental Results

In this section we give a comparison of various tunnel types. Also we show the typical

number of tetrahedra in the regular triangulations of protein molecules and time for their

computation. A few pictures of tunnels are showed in appendix B.

6.1 Comparison of Bottleneck Radii

Three different proteins were used for tests – their basic characteristics are given

in the Table 6.1.

Protein # atoms # atoms according to type H, N, S, C

awj 1250 600, 132, 106, 1, 407

dbja 2332 0, 418, 412, 7, 1491

dhaa 4710 2319, 426, 401, 9, 1551

Tab. 6.1: The basic characteristics of the three tested proteins.

For each protein, two hundreds pseudo-active places were generated. We have got two

requests on a pseudo-active place location – it must not lie inside an atom and it should not lie

near the protein surface.

 16

Four different types of tunnel were tested: the optimistic and pessimistic tunnel

in regular triangulation (see the section 5.2 and 5.3) and the Delaunay tunnel in regular

and Delaunay triangulation (see the section 5.3). These four tunnels were searched for each

pseudo-active place. We observed a few simple statistics on the resulting tunnels.

In Tab. 6.2 we show the average bottleneck radius. The Delaunay tunnels in Delaunay

triangulation achieve the best result, but the differences are only hundredths of angstrom
1
.

 Average bottleneck radius [A]

Protein Optimistic in RT Pessimistic in RT Delaunay in RT Delaunay in DT

1awj 1,048 0,927 1,073 1,080

1dbja 0,875 0,828 0,877 0,879

dhaa 0,899 0,788 0,928 0,942

Tab. 6.2: Average bottleneck radii of four different tunnel types in three proteins.

Further we focus on comparison of couples of tunnels (of different types) to the same

active-place. The Table 6.3 shows the average ratios of tunnels bottleneck radii, standard

deviations are in the brackets. The ratios of optimistic and Delaunay tunnels are near to 1

and their standard deviations are only a few tenths, so the radii of the corresponding tunnels

are very close. The bottleneck radii of pessimistic tunnels are slightly narrower.

 Average ratio of tunnels bottleneck radii, (standard deviation)

Protein
Optimistic in RT/
Delaunay in RT

Optimistic in RT /
Delaunay in DT

Delaunay in RT/
Delaunay in DT

1awj 1,022 (0,36) 1,059 (0,73) 1,020 (0,22)

1dbja 0,999 (0,11) 0,996 (0,09) 0,999 (0,04)

dhaa 0,993 (0,2) 1,003 (0,3) 0,985 (0,35)

Pessimistic in RT/
Optimistic in RT

Pessimistic in RT/
Delaunay in RT

Pessimistic in RT/
Delaunay in DT

1awj 0,884 (0,06) 0,940 (0,69) 0,940 (0,69)

1dbja 0,943 (0,02) 0,939 (0,09) 0,939 (0,09)

dhaa 0,875 (0,07) 0,869 (0,2) 0,881 (0,28)

Tab. 6.3: Average ratio and standard deviation of tunnels bottleneck radii.

Although the bottleneck radii are often very similar, sometimes are the differences

bigger. In the protein dhaa, 10% of optimistic tunnels are 1,25 times wider then

the corresponding Delaunay tunnels. We might use this fact and combine both strategies.

We can compute the regular triangulation of protein, then search the optimistic and Delaunay

tunnels and simply choose the one with the bigger bottleneck radius.

6.2 Time and Space Complexity

In this section we show the typical space complexity of triangulation of protein

molecules and also the time complexity of the flipping algorithm (see section 3)

for the triangulation of protein. The graph 6.4 shows the dependence of number of tetrahedra

on the number of atoms – the dependence is linear for a typical protein. The time complexity

of the flipping algorithm (see graph 6.5) is greater then O(n) but smaller then ()4/3O n , where

n denotes the number of atoms in the protein.

1
 1 angstrom = 1A = 1.0 × 10

-10
 meters

 17

0

1

2

3

4

5

6

7

8

50 150 250 350 450 550 650 750 850 950

number of atoms [in thousands]

n
u
m

b
e
r

o
f
 t
e
tr

a
h
e
d
ra

 [
in

 m
ill

io
n
s
]

Graph 6.3: The dependence of the number of tetrahedra on the number of atoms.

0

100

200

300

400

500

600

700

800

50 150 250 350 450 550 650 750 850 950

number of atoms [in thousands]

ti
m

e
 o

f
tr

ia
n
g
u
la

ti
o
n
 [
s
]

Graph 6.4: The time complexity of the flipping algorithm.

7. Conclusion

In this paper we have described the regular triangulation and the known algorithm for its

computation. Further we have designed two methods for tunnel computation in regular

triangulation: the pessimistic tunnels, which cannot contain any error, and optimistic tunnels,

which may contain small errors but are wider than the pessimistic tunnels. The results of our

solution and the comparison with the existing method are described. The proposed solution

does not bring a big improvement, but it can be used in combination with the existing method.

 18

References

[A91] Aurenhammer, F.: Voronoi Diagrams – A Survey of a Fundamental Geometric Data

Structure. ACM Computing Surveys 23, 345-405, 1991.

[B01] Bajaj, C.L., Pascucci, V., Shamir, A., Holt, R.J., and Netravali, A.N.: Dynamic

maintenance and visualization of molecular surfaces. Discrete Applied Mathematics

127, 23–51, 2001.

[D01] O. Devillers, S. Pion, M. Teillaud: Walking in a Triangulation. ACM Annual

Symposium on Computational Geometry 17, 106-114, 2001.

[DAM] Damborský, J.: Proteinové inženýrství: od laboratorních testů k biotechnologiím.

 http://www.otevrena-veda.cz/ov/users/Image/default/C2Seminare/MultiObSem/106.pdf

 (in czech only).

[E92] Edelsbrunner, H., Shah, N. R.,: Incremental Topological Flipping Works for Regular

Triangulations. ACM Annual Symposium on Computational Geometry 8, 43-52,

1992.

[M07] Medek, P., Beneš, P., Sochor, J.: Computation of tunnels in protein molecules using

Delaunay triangulation. Journal of WSCG 15, 107-114, 2007.

[P06] Petřek, M., Otyepka, M., Banáš, P., Košinová P., Koča, J., Damborský J.: CAVER:

a new tool to explore routes from protein clefts, pockets and cavities. BMC

Bioinformatics, 2006.

[R05] Ryu, J., Kim, D., Cho, Y., Park, R. Kim, D.-S: Computation of molecular surface

using Euclidean Voronoi Diagram. Computer-Aided Design & Applications 2,

439-448, 2005.

Appendix A

Lemma

A set of weighted points S, a power diagram PD(S) and a regular triangulation RT(S)

of the set S are given. Let us have tetrahedra abcd and bcde ()RT S∈ with the common face

bcd and an edge h ()PD S∈ such that the edge h is dual to the face bcd. Further a sphere s

is given, the center of the sphere s lies on the edge h, and the radius of s is

min{| | ,| | , | | ,| | ,| | }s a b c d er as r bs r cs r ds r es r= − − − − − (where 2

ar is the weight of the point a

and |as| denotes the Euclidean distance between points a and s). We assume that the weight

of the point b is greater then or to the weights of points a, c, d, e. Then

the { }max | |;s perror r r sp p S= + − ∈ fulfils the inequality

2 2

max max2s s b serror r r r r r r≤ + − + +
 (A1)

where rmax is the radius of the point S∈ with the biggest weight.

Proof

The edge h is the intersection of the three bisectors of points b, c, d, which means that

the power distance of any point x h∈ has the same power distance from the points b, c, d.

 () () ()b c dx x x wπ π π= = = (A2)

Further it holds that the power distance of x h∈ from any point { , , }p S b c d∈ − is greater

than or equal to w:

 () () () ()p b c dx w x x xπ π π π≥ = = = (A.3)

 19

The center of s lies on the edge h:

 () () () ()p b c ds w s s sπ π π π≥ = = = (A.4)

We assume that the weight of the point b is greater then or equal to the weights of points c, d.

Then we determine the radius of sphere s as:

 s br bs r= − (A.4)

Now the sphere s cannot intersect the spheres a, b, c, d, e. We are interested, how “deeply”

can s penetrate into any p S∈ :

 p p serror r r ps= + − (A.5)

The equation (A.3) implies:

2 22 2() ()p p b bs ps r bs r sπ π= − ≥ − =

2 2 2 2

b pps bs r r≥ − +

2 2 2

b pps bs r r≥ − + (A.6)

If we replace | |bs in (A.6) with (A.4), we obtain:

 ()
2 22 2 2 2 2 22b p s b b p s b s pps bs r r r r r r r r r r≥ − + = + − + = + + (A.7)

We substitute (A.7) to (A.5) and so get the upper estimation of the perror :

 2 22p p s p s s b s perror r r ps r r r r r r= + − ≤ + − + + (A.8)

In expression (A.8) an unknown point p still remains. If we replace the unknown rp by radius

rmax (radius of the point S∈ with the biggest weight) in the right side of expression, we get:

 2 2

max max2p p s s s b serror r r ps r r r r r r= + − ≤ + − + + (A.9)

The inequality (A.1) is proved.

 20

Appendix B

The pictures show the protein 1lin, its triangulation and the tunnel in triangulation.

Fig. B.1: Protein 1lin.

Fig. B.2: Protein and the tunnel (red).

Fig. B.3: Protein, its triangulation and the tunnel.

Fig. B.4: The triangulation and the tunnel (red).

