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Chapter 1

Introduction

Holography is quite old scientific field. As an inventor of holography could be claimed
prof. D. Gabor [Gab49]. He proposed holographic imaging when working on enhancing
resolution of electron microscopy. However, the first holograms produced poor quality
images and the development of holography stagnated for a while. The technology was
greatly improved after introduction of the off-axis holograms and invention of the LASER
in sixties. Since then, holography found many applications including 3D imaging and
interferometry. Optical holography is introduced in the Section 3.

The efforts for bringing holography to the digital world of computers are not new
either. The first attempts were already done in 1967, however, the first useful results had
to wait for sufficient computational power which has been achieved not until nineties of
the 20th century. For example, the first digital holograms computed at interactive rates
were described in 1994 in [Luc94]. Digital holography is introduced in the Section 4.

Holography is built on quite complex physical laws of optics. These laws are referenced
many times in the text of this thesis and therefore basics of the wave optics are provided
in the Section 2 of this chapter. The described topics are wave equation, interference,
coherence and diffraction.
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Chapter 2

Holography physics

The whole holography relies heavily on quite complex rules and laws of wave optics. Wave
optics considers light as an electromagnetic wave of an arbitrary wavelength in general.
However, the most interesting, in the context of this thesis, is the interval ranging from
300 to 700 nm because this interval constitutes the visible light. Visible light, just light
from now on, interacts with its surroundings and with itself at microscopic levels and in
a quite complex manner. This interaction is referred as interference. The interference in
particular is described in the section 2.2.

The principle of the interference phenomenon is based on the wave nature of the
light and therefore a short introduction into the mathematics of waves is provided in the
section 2.1. The relation of the wave calculus to the physics of light is also presented there.

From interference the more complex phenomenon of diffraction is derived. The diffrac-
tion is responsible for forming the object beam on a photographic plate, see the Section 3
for reference. The exact mathematical model of the diffraction was not found yet. However,
there are some approximated models but, though approximated, they provide sufficiently
accurate results. The diffraction models are introduced in the Section 2.5.

2.1 Wave optics

The light is, in general, an electromagnetic wave of some wavelength spectrum. The visible
light is on the interval ranging from 300 nm to 700 nm. The light with wavelength longer
than 700 nm is called infrared and light with wavelength shorter than 300 nm is called
ultraviolet. The visible band is, of course, the most interesting one since it is visible by a
human observer.

The electromagnetic wave consists of the time varying electric and magnetic fields
which are tightly coupled as it is evident from Maxwell’s equations. These simplified
Maxwell’s equations Equation (2.1), Equation (2.2) applies for vacuum:

∇ ·E = 0 (2.1)
∇ ·H = 0 (2.2)

∇×E = −µ0
∂H
∂t

(2.3)

∇×H = ε0
∂E
∂t

(2.4)

2



CHAPTER 2. HOLOGRAPHY PHYSICS 3

The notation in the Maxwell’s equations is following: the E denotes electric field, H
denotes magnetic field, µ0 denotes permeability of vacuum, ε0 denotes permittivity of
vacuum, ∇· denotes divergence operator and ∇× denotes curl operator. The solution of
those Maxwell equations are two sinusoidal plane waves, with the electric and magnetic
field directions orthogonal to one other and the direction of travel, and with two fields in
phase, travelling at the speed of light in vacuum.

By rewriting the Maxwell’s simplified equations, one obtains the equations:

∇2E = µ0ε0
∂2

∂t2
E (2.5)

∇2B = µ0ε0
∂2

∂t2
B (2.6)

The equations Equation (2.5) and Equation (2.6) are vector equations, but under some
circumstances, all components of the vectors behaves exactly the same and a single scalar
equation can be used to describe the behavior of the electromagnetic disturbance. The
scalar equation can be written in this form:

∇2u(p, t)− n2

c2

∂2u(p, t)
∂t2

= 0, (2.7)

where u(p, t) represents a scalar field component at the given position p and time t ex-
amined in a material of refractive index n. The light travels through this material at a
speed of c/n, where c is a speed of light.

The Equation (2.7) describes the behavior of a wave in a linear, uniform, isotropic,
homogeneous, and non-dispersive material and it is a base for the scalar wave theory that
serves as base upon which all assumptions in this thesis are build on. Even thought the
scalar wave theory is an approximation rather than an exact description it is satisfactorily
as it describes the behavior of the light wave in concordance with physical experiments.
The error introduced by the approximation is small and it is recognisable only at the
distance of few wavelengths from the aperture’s boundary.

A time-varying scalar field for a monochromatic wave in the scalar wave theory at
position P is:

u(p, t) = A(p) cos[2πνt− ϕ(p)], (2.8)

where ν is an optical frequency of the wave in [Hz], A(p) and ϕ(p) defines amplitude
and phase respectively of the wave at the position p. This equation describes the wave
properly yet the more convenient notation is:

u(p, t) = <{ũ(p) exp(−i2πνt)} = <{ũ(p) exp(−iωt)} ,

ũ(p, t) = ũ(p) exp(−i2πνt), (2.9)

where ω is an angular speed and ũ(p) is a complex amplitude defined as:

ũ(p) = A(p) exp[iϕ(p)]. (2.10)

The function u(p, t) is known as the wavefunction. A term diffraction pattern refers
to an array a complex notations for a wavefunction u(p, t) defined by the Equation (2.9).
The wavelength of a light is defined as λ = c/nν = λ0/n, where λ0 is a wavelength in a
vacuum. The following text assumes the propagation is done in a vacuum, if not noted
otherwise.
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A wave defined by the Equation (2.9) has to satisfy the scalar wave theory, i.e. Equa-
tion (2.7). If the Equation (2.9) is substituted into the scalar wave theory a relation known
as the Helmholtz equation is obtained:

(∇2 + k2)ũ(p) = 0, (2.11)

where k = 2π/λ is known as a wavenumber. A solution to the Helmholtz equation
defines waves of various forms including basic ones such as planar wave and spherical
wave that are described further in the text. Note, that the Helmholtz equation describes
only a spatial part of a complete solution thanks to the fact that ũ(p, t) is separable, i.e.
ũ(p, t) = ũ(p)t̃(t). The temporal part of the solution is a linear combination of sine and
cosine function and thus it is not considered in following sections.

The relation between the ray and the wave optics is straightforward. A relation is
clearly visible from the specification of a wavefront. Wavefront is an iso-surface that
consist of points with wave function samples of the same phase, i.e. ϕ(p) = 2πq, q ∈ 〈0; 1〉.
A gradient of the phase ϕ is a normal of the wavefront’s surface at a given point p. Besides
that it gives a direction of a local propagation for the wave and thus it gives a direction
of a ray in a ray optics [Kra04].

Another important feature of the light is its optical power. This is important when
creating of a final image because it defines an amount of energy delivered to a photographic
material and/or sensor. Optical intensity is defined as a time average of an amount of
energy that crosses an unit perpendicular to the energy flow during a unit of time. If the
time period is short enough the intensity of wave ũ(p) is equal to |ũ|2, i.e. it is a complex
multiplication of ũ with its complex conjugate [Har96]:

I = ũ(p)ũ∗(p) = |ũ(p)|2. (2.12)

For computing a hologram, one has to compute the light field at the hologram plane
first and then the optical intensity is evaluated to create the actual interference pattern
or fringe pattern.

2.2 Interference

In the Section 2.1 the light was described as a wave. However, there is rarely just one
wave present in a space. There are usually many waves and each one can interact with
the other. This interaction is called interference.

The simplest situation is if two waves travel in the same direction. According to the
phase of each wave the resulting electrical intensity will increase or decrease. If phases at
some point in a space are the same or near the same, the constructive interference occurs
at that point. If the phases are opposite or almost opposite the destructive interference
occurs, see FigureFigure 2.1.

As a result the optical intensity due to two interfering waves is increased in the case
of constructive interference and decreased in the case of destructive interference. This is
quite surprising result that by adding two lights one can obtain less or none light. However
this is true for the coherent light only.

The coherence is described in the Section 2.3 but it basically determines the stability of
the interference effect in time. The coherent light produces stable interference pattern, i.e.
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Figure 2.1: [v0.1]Two results of interference of two waves (green and blue). Constructive
interference in upper and destructive interference in the lower.

just constructive or just destructive, on the contrary the incoherent light creates instable
interference pattern, i.e. constructive interference changes quickly into the destructive
interference. This flickering is so fast that the human eye is incapable of registering it
because the human eye integrates the incoming intensity and the average value is obtained.

The coherence is also essential in holography because during the process of creating
optical hologram a photosensitive material captures the interference pattern formed by
the interference. Such pattern has to be stable for successful capture. This is the reason
why coherent light is necessary for holography purposes and why lasers are usually used
since they are sources of very coherent light.

The interference can be described mathematically utilizing the complex algebra. The
advantage of the complex notation of the wave equation now emerges. The Equation (2.13)
demonstrates that interference can be written as a summation of the complex amplitudes
of each interfering wave assuming that monochromatic or in other words coherent wave is
considered.

ũ = ũ1 + ũ2 + · · ·+ ũn (2.13)

The optical intensity due to the interference of two waves is therefore computed ac-
cording to the Equation (2.12) as

I = |ũ1 + ũ2|2 ,

= |ũ1|2 + |ũ2|2 + ũ1ũ
∗
2 + ũ∗1ũ2,

= I1 + I2 + 2
√

I1I2 cos (φ1 − φ2) .

(2.14)

The Equation (2.14) is very important for holography. It describes the computation
of intensity of interference of two waves with complex amplitudes ũ1 and ũ2 constituting
the scene wave and the reference wave respectively, see Section 3.1. The intensity is a
result of adding the intensities of both waves and the variation term cos (φ1 − φ2), which
represents the interference phenomenon. The angles φ1 and φ2 are starting phases of the
waves. The optical intensity therefore depends only on the phase difference. Sometimes
the cosine term is called the bi-polar intensity, see [Luc94].
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Figure 2.2: A configuration of exploring the coherence [Har96].

2.3 Coherence

The coherence is quite important property a light should exhibit to be useful for holography
purposes. It is very important in a relation to the interference which is described in the
previous section. It is therefore appropriate to explain what coherence is.

In general, coherence quantifies the ability of the light to form a visible diffraction
pattern. It directly influences the quality of the visibility of the interference pattern which
consists of areas with different degree of constructive or destructive interference. The areas
are usually referenced as fringes.

The fringes are more visible if two interfering waves are more coherent and they are
less visible if waves are less coherent – the degree of coherence. In other words, coherence
determines the ability of two interfering waves to create total destructive interference.
While perfectly coherent waves create a clean visible interference pattern that has not
boundary by any spatial or temporal constraints, the incoherent ones won’t create visible
interference fringe at all.

Let us consider a point source that emits a monochromatic wave for an infinite time
period. In such case, the configuration depicted in the Figure 2.2 forms two secondary
sources p1 and p2. Waves generated by these two sources are coherent without limitations
described below.

Yet, in the reality light sources are not ideal because they are not strictly monochro-
matic. A linearly polarized quasi-monochromatic at a given point can be represented by
an analytic signal [Har96]:

ṽ(p, t) =
∫ ∞

0
ũω(p, t) dω, (2.15)

where ũω(p, t) describes a wave of angular frequency ω.

A complex coherence of waves generated by two secondary light sources p1 and p2

formed according to the Figure 2.2 is defined as an normalized cross-correlation of two
stationary random functions. The cross-correlation of two stationary time-dependent func-
tions g(t) and h(t) is defined as follows [Har96]:

R(τ) =
1

2T

∫ T

−T
g∗(t)h(t + τ) dt = 〈g∗(t)h(t + τ)〉. (2.16)

The complex coherence depends on a time delay τ . For the viewing point q in the
Figure 2.2 the time delay represents a difference between transit times for paths p1q and
p2q. Based on the Equations Equation (2.15) and Equation (2.16), the complex coherence,
also known as the complex degree of coherence, of two light waves is a normalized cross-
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correlation between ṽ1 and ṽ2 [Har96]:

γ̃12(τ) =
〈ṽ1(t + τ)ṽ∗2(t)〉

[〈ṽ1(t)ṽ∗1(t)〉〈ṽ2(t)ṽ∗2(t)〉]1/2
=
〈ṽ1(t + τ)ṽ∗2(t)〉

(I1I2)1/2
(2.17)

The amplitude |γ̃12(τ)| of complex coherence that describes a light in terms of coherency.
If |γ̃12(τ)| = 1 then the light is considered as a coherent one, if |γ̃12(τ)| = 0 then the light
is incoherent. For other values between these two extremes, the light is said to be partially
coherent.

According to the configuration of secondary point sources p1 and p2 and their distance
the source s it is possible to distinguish between two cases of coherence: a spatial and a
temporal coherence. Both meanings for the coherence explores conditions for which the
interference pattern, i.e. fringes, becomes invisible and thus useless for the purposes of
the holography.

If two ideal and coherent light sources of intensities I1 and I2 forms an interference
patterns of intensity I then the visibility V of such pattern is [Har96]:

V =
2(I1I2)1/2

I1 + I2
cos(ψ), (2.18)

where ψ is an angle between electrical vectors of both light waves and thus represents
polarization1.

For partially coherent light sources of same intensity, i.e. I1 = I2, the visibility of the
interference pattern is [Har96]:

V = |γ̃12(τ)|. (2.19)

The temporal coherence becomes important for a very small quasi-monochromatic
light sources. For such light sources, the complex coherence depends on a difference in
transit times between each of secondary sources p1 and p2 and the primary source s.
Thus, it is, in fact, a normalised autocorrelation of the function ṽ(t). If requirements for
the Equation (2.19) are fulfilled, the amount of coherence can be determined from the
visibility V of fringes. According to [Har96], for a radiation with a mean frequency ν0

and bandwidth ∆ν the visibility V drops to zero if difference in transit times ∆τ fulfill
following condition:

∆τ∆ν ≈ 1, (2.20)

where ω = 2πν. The time ∆τ is denoted as a coherence time of given radiation. Another
forms of this property is a coherence length. If the optical path difference is smaller than
the coherence length the interference pattern is visible. The coherence length ∆l for a
radiation of mean wavelength λ0 and wavelength bandwidth ∆λ is:

∆l ≈ c∆τ ≈ c/∆ν ≈ λ2
0/∆λ. (2.21)

Spatial coherence becomes an important feature of the radiation as the difference of
optical paths sp1 and sp2 is small enough for the time difference to be τ ≈ 0. Spatial
coherence relates a range between two points and visibility of the interference pattern. If
two slits p1 and p2 are separated by a distance greater than the diameter of the coherence
area then waves generated by these two slit do not form visible interference pattern.

1Note, that the visibility drops to zero if ψ = π/2, i.e. waves of polarized light do not create a visible
interference pattern if polarization directions are perpendicular to each other.
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It can be shown that for a extended distant source, i.e. source composed of many point
sources, the visibility V is proportional to an absolute value of the sinc function [Wei]. The
argument of the sinc function is proportional to a multiply of distance a between slits and
an angle η that is a range in which the individual point sources subtends the screen. If
either a or η increases then the fringe visibility decreases. Note, that for an angle η = 0
that is valid for a point source the sinc function does not depend on distance a.

The spatial complex coherence can be expressed in terms of Fourier transform as well.
If the distance between two points p1 = (0, 0, z) and p2 = (x, y, z) is much smaller than
the distance from these points to a source s then the complex coherence of the field
follows [Har96]:

µ̃12 =
exp(iφ12)

∫∫
S I(ξ, η) exp[ik(xξ + yη)] dξ dη∫∫

S I(ξ, η) dξ dη
, (2.22)

where ξ = xS/z, η = yS/z, plane S is a XY-plane that contains the source and φ12 =
−k(x2 + y2)/2z.

An important side effect of the coherence is that if the light is coherent in both spatially
and temporally, it is possible to omit the temporal component −iωt of the wavefunction
defined by the Equation (2.9) and leave only the wave distribution to be examined or
computed. This can be interpreted as exploration of the wave distribution for an infinitely
small time period. As the intensity I that serves as the physically measurable property
of the light depends only on the complex amplitude ũ(p) for the monochromatic light, no
unacceptable approximation is applied by that. Thus, in the following text the complex
amplitude serves as a full description of the monochromatic wave distribution, if not noted
otherwise.

2.4 Elementary Waves

Elementary waves represents the simplest solution for the Helmholtz equation. There
are two forms of these waves: a planar wave and a spherical wave. The plane wave is
a wave with wavefronts that are infinite planes. The complex amplitude of such wave
is [Gra03, Kra04]:

ũ(r) = ã exp(ik · r)
= ã exp[i(kxx + kyy + kzz)], (2.23)

where k = (kx, ky, kz) is a wavevector and ã is a complex envelope that defines the phase
and the amplitude at the origin of the wave. The vector r = (x, y, z) points from the
origin to a sample for which a distribution is obtained. The length of the wavevector is
equal to the wavenumber. Intensity of the wave is constant and it is equal to I = |ã|2.
Wavefunction of the planar wave is then following:

u(r, t) = |ã| cos(arg{ã}+ k · r− ωt). (2.24)

The spherical wave is a wave where wavefronts have a form of concentric spherical
surfaces centered at the point source. The complex amplitude of the spherical wave with
an origin identical to the source of the field is:

ũ(r) =
ã

r
exp(ikr), (2.25)
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Figure 2.3: Relation between spherical and planar wave [Kra04].

where r = |r|, i.e. it is a distance from the source. The fraction ã/r compensates that
fact that the surface of the spherical surface grows quadratically. If the intensity, i.e. |ã|2,
was not modified at all then it means that the intensity per unit grows quadratically as
well. Yet, a wave cannot increase its energy on its own. Thus, the complex amplitude ã
has to be modified by 1/r to compensate the quadratical growth of the surface2 in the
Equation (2.25).

The relation between the planar and the spherical wave is more apparent when the
wave propagates further from the point source. If an observation is done along the Z-axis
through a window which is constant in size spherical wavefronts becomes a planar as it is
depicted in the Figure 2.3. This means that if the distance is large enough in comparison
to extents in X-axis and Y-axis it is possible to approximate the spherical wave with the
paraboloidal wave. This is a mechanism utilized by the Fresnel approximation, see below.
If the distance increases even further it is possible to approximate the spherical wave with
the planar one.

2.5 Diffraction

The Diffraction is basically the same phenomenon as the interference. The difference
is that the interference is referenced in a case of superposition of several light sources
and diffraction is referenced in a case of superposition of many sources. In the case of
holography, the interference is usually addressed when interference of the scene light field
and the reference beam is evaluated and the diffraction is addressed when light field of a
scene is evaluated.

The nature of the diffraction can be illustrated on the well known Huygens principle
proposed by C. Huygens. This principle states that the wavefront of a disturbance in a
time t+∆t is an envelope of wavefronts of a secondary sources emanating from each point
of the wavefront in a time t, see Figure 2.4 for reference. This principle was modified by A.
Fresnel who stated that the secondary sources interfere with each other and the amplitude
at each point of the wavefront is obtained as superposition of the amplitudes of all the
secondary wavelets. This Huygens-Fresnel principle matches many optical phenomena
and it was also shown by G. Kirchhoff how this principle can be deduced from Maxwell’s
equations.

Although this principle works in many cases its validity is in question. For example,
it does not determine the direction of the wavefront propagation. It is only an intuitive
choice that the wavefront diverges from the source and not converges back to the source
depending on the chosen orientation of the envelope of the secondary wavelets. In this

2Note, that the intensity grows quadratically with the magnitude of the complex amplitude
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Figure 2.4: [v0.5]Huygens principle demonstrated on spherical (left) and planar (right)
waves.

work, as in many others, this principle is accepted as an appropriate description of the wave
behavior of the light and its inadequacies are neglected. Some of the synthesis methods
are based on this principle.

The intuitive way of the diffraction understanding is covered by the Huygens principle
but more formal descriptions also exists. Some of them are presented in the following
material.

The mathematical description of the diffraction is quite difficult. It’s due to the vecto-
rial nature of the problem and many propagation medium properties like linearity, isotropy,
homogeneity or dispersiveness that increase dimension of the problem. The basic diffrac-
tion model assumes an ideal material that is linear, isotropic, homogeneous, nondispersive
and nonmagnetic. Under these conditions, the electromagnetic wave behavior can be
described using only one scalar equation that described behavior of both magnetic and
electric field. There is one other condition that further simplifies the diffraction model:
diffraction structures that are large compared to the wavelength of the diffracted wave.
All those simplifications and constraints turn the diffraction model into approximation
but even thought simplifications are significant they causes only small loss of accuracy
and thus they are more then appropriate in many situations.

There are two fundamental description of the diffraction: the Kirchhoff formulation
and the Rayleigh-Sommerfeld formulation [Goo05, LBL02]. Both formulations describe
the field in front of a screen or an aperture properly and accurately. Nevertheless, the
Kirchoff one has a certain limitation as it fails when the point closes to the screen for a
distance lower than few wavelengths. Also, it assumes that the field behind the aperture
is zero and this is in contradiction with physical experiments. Despite its limitations, the
Kirchoff formulation is widely used in practice.

The Kirchhoff formulation of diffraction is based on the integral theorem of Helmholtz
and Kirchoff. It states that the field at any point can be expressed in terms of wave values
on any closed surface surrounding that point [Goo05]. The theorem is an application of
the Green’s theorem and the Helmholtz equation. While the Helmholtz equation describe
behavior of waves, the Green’s theorem defines a relation between two complex functions
ũ(p) and g̃(p) of position, closed volume V in which the observation is performed, arbitrary
boundary surface S that encloses V , and derivatives of functions ũ and g̃ along inward
normal n of boundary surface S:

−
∫∫

S

∂ũ

∂n
g̃ − ũ

∂g̃

∂n
ds =

∫∫∫

V
g̃∇2ũ− ũ∇2g̃ dv, (2.26)

where functions ũ(p) and g̃(p) provides twice continuously differentiable scalar fields map-
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pings between V and S. If both functions satisfy the Helmholtz equation then [LBL02]:

−
∫∫

S

∂ũ

∂n
g̃ − ũ

∂g̃

∂n
ds = 0 (2.27)

The goal of the Kirchoff formulation is do find a field at a point p0. For such purpose
it uses a boundary surface on a one side of the aperture. This boundary surface consist
of two parts: a plane Sp close to the aperture including its transparent portion Σ and
a spherical surface Sε. Next, a set of boundary condition known as Kirchhoff boundary
conditions3 that describes behavior of field ũ in close neighborhood to the screen. The
influence of the spherical surface vanishes as the radius of the spherical surface increases
towards infinity [BW05]. By application of there condition the Equation (2.27) is simplified
to:

ũ(p0) =
1
4π

∫∫

Σ

(
∂ũ

∂n
g̃ − ũ

∂g̃

∂n

)
ds, (2.28)

where Σ is a transparent portion of the screen, ũ is a complex function describing the wave
distribution and g̃ is a complex function, see below.

A further simplification of the Equation (2.28) is based on use of a proper Green’s
function instead of the function g̃ in the Equation (2.27). Such function that satisfies the
Helmholtz equation is:

g̃(p1) =
exp(ikr01)

r01
,

where r01 = p0 − p1 and r01 = |r01|. The derivation along normal can be approximated
according to an assumption on distances between observation point p0 in enclosed volume
and point p1 on the surface Σ. If r01 À λ then:

∂g̃

∂n
=

exp(ikr01)
r01

(
ik − 1

r01

)
cos(n, r01)

≈ ik
exp(ikr01)

r01
cos(n, r01).

Also, it is assumed that the screen or the aperture is illuminated by a spherical wave
emerging from the point p2. Hence, the field ũ at the point p1 is:

ũ(p1) =
ã exp(ikr21)

r21
,

where r21 is distance between p1 and p2.

Application of assumptions and substitutions described above leads to a form known
as the Fresnel-Kirchhoff diffraction formula:

ũ(p0) =
ã

iλ

∫∫

Σ

exp[ik(r21 + r01)]
r21r01

[
cos(n, r01)− cos(n, r21)

2

]
ds, (2.29)

where ã is basic amplitude/phase of the spherical wave, n is a normal of transparent
portion Σ of the planar screen, and cos(a,b) is a cosine of angle between vectors a and b.

3The first assumption is that the distribution of the field ũ across the surface Σ including its derivate
along normal n is no different from the same configuration without the screen. The second assumption is
that a portion of the surface close to the screen Sp−Σ lies in a geometrical shadow an thus the function ũ
as well as its derivate along the normal is zero. Both assumption are not physically valid as they are never
fulfilled completely but they simplifies the equation by replacing of enclosing surface just with the surface
Σ. For more details, refer to [Goo05].
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The vectors r01 and r21 are a vectors of lengths r01 and r21 between an observation point
p0, point p1 on surface Σ, and source of the spherical wave p2.

A more practical form of the Fresnel-Kirchhoff formula can be obtained with a proper
reorganization and substitution:

ũ(p0) =
ã

iλ

∫∫

Σ
ũ′(p1)

exp(ikr01)
r01

ds. (2.30)

The interpretation of this equation is that the field at the point p0 is a superposition of
infinite number of point sources on the surface Σ with a given complex amplitude ũ′. This
is a consequence of the wave nature of the light and plays an important role in numerical
reconstruction of the hologram, see below. For more details on the Kirchhoff formulation
refer to [Goo05].

The Sommerfeld-Rayleigh formulation is a further enhancement of the Kirchhoff one
that removes inconsistencies mentioned above. It removes the boundary condition from
the function ũ by assuming that either g̃ or ∂g̃/∂n in the Equation (2.28) vanishes on a
portion of the boundary surface close to the aperture according to a proper definition of
alternate Green’s function, see below. Unlike the Kirchhoff solution, it assumes that the
screen is planar.

In order to fulfill this assumption it uses a second point p0
′ that is mirror image of

the point p0. At that second point a point source of the same wavelength as the first one
is positioned. Both wave sources are generated with π phase difference. Note, that the
behavior required is also fulfilled if both wave sources are oscillating in phase, i.e. with
zero angle difference. Yet, for the π phase difference, a formula that describes the field
commonly known as the first Rayleigh-Sommerfeld solution is:

ũ(p0) =
−1
4π

∫∫

Σ
ũ

∂g̃−
∂n

ds, (2.31)

where g̃− = [exp(ijkr01)/r01]−[exp(ijkr′01)/r′01], i.e. it is a field constructed as a difference
of fields generated by source at p0 and its mirror at p0

′. Note, that function g̃− vanishes
on the transparent portion of planar screen, i.e. surface Σ.

By applying a similar set of assumption on distances similar to that of the Kirchoff
formulation, i.e. |p0 − p′0| À λ, it is possible to approximate normal derivate of the
function g̃ by:

∂g̃

∂n
=

exp(ik|p0 − p′0|)
|p0 − p′0|

(
ik − 1

|p0 − p′0|
)

α(n,p0 − p′0)

≈ ik
exp(ik|p0 − p′0|)

|p0 − p′0|
α(n,p0 − p′0),

where α(a,b) = (a·b)/(|a||b|) is a cosine of angle between vectors a and b. By application
of this approximation to an alternate Green’s function g̃− and by the fact that g̃− vanishes
on transparent portion Σ of planar screen it is possible to obtain two formulas known as
the Rayleigh-Sommerfeld diffraction formula. For more details on derivation of these
formulas, refer to [Goo05, LBL02, Mie02]. The first configuration that has a π phase
difference in phases is:

ũI(p0) =
ã

iλ

∫∫

Σ

exp[ik(r21 + r01)]
r21r01

cos(n, r01) ds. (2.32)



CHAPTER 2. HOLOGRAPHY PHYSICS 13

The second configuration that has zero phase difference in phases is:

ũII(p0) = − ã

iλ

∫∫

Σ

exp[ik(r21 + r01)]
r21r01

cos(n, r21) ds. (2.33)

Note, the both the first and the second RayLeigh-Sommerfeld resembles the Kirchhoff-
Fresnel diffraction formula with the difference in sign and the last cosine-based component.
It can be shown that the Kirchoff solution is an average of both the first and the second
Rayleigh-Sommerfeld solution. Kirchoff and Rayleigh-Sommerfeld solutions are almost
identical for small angles and larger distance but they differs for distances closer to the
aperture. For more detail on comparison and discussion on consequences beyond scope of
this work, refer to [Goo05].

2.6 Wave Propagation

The propagation of the wave in a free space plays an important role in the hologram re-
construction as it is required for presenting of optical field or diffraction pattern generated
by a screen and/or aperture to the viewer. The propagation is driven by the Helmholtz
equation and the Huygens-Fresnel principle.

Basically, the propagation of the wave is reflected in a change in the phase. Yet, it
is a question whether the changes should be introduces by adding or subtracting a value
from the phase. As the time dependent component exp(−iωt) of the wavefunction in the
Equation (2.9) rotates in a clockwise direction waves emitted earlier in time have phase
greater than waves emitted later. The later the wave is emitted the closer it is to its
source. Thus, if waves are to be propagated from the source then the phase has to be
increased.

In order to minimize the confusion from signs of phases, it is assumed that the prop-
agation of the wave is examined in direction of a positive Z-axis. This also simplifies
equation for propagation in a direction parallel to the Z-axis. If other configuration is
required then it is always possible to transform the scene to fit the requirement.

2.6.1 Huygens-Fresnel Principle

The Huygens-Fresnel principle4 states that every point on a primary wavefront is a source
of spherical waves with the same optical frequency and the primary wave is. The resulting
field is a superposition of these secondary waves defined by their complex amplitude and/or
wavefunction [Wei].

The Huygens-Fresnel principle is confirmed by both Kirchoff and Rayleigh-Sommerfeld
diffraction formulas. Using the first Rayleigh-Sommerfeld solution from the Equation (2.32),
the Huygens-Fresnel principle is [LBL02]:

ũI(p0) =
1
iλ

∫∫

Σ
ũ(p1)

exp(ikr01)
r01

cos θ ds, (2.34)

4Original Huygens principle describes a new wavefront as an envelope of spherical wave sources generated
on a surface of the previous wavefront. Yet, this is not physically valid as it may ignore obstacles in wave
propagation and it allows a creating of back-waves.
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where ũ(p1) represents a secondary point source positioned at the point p1 within the
aperture Σ. The complex amplitudes of the secondary sources are proportional to the
amplitude at the point p1 of the original wave and the phase leads the phase of the original
wave by π/2 due to factor 1/i. Note, that due to the Rayleigh-Sommerfeld solution, the
aperture Σ is expected to be a plane or its portion and thus all following solutions for
the wave propagation solve the problem of propagating between two parallel planes, if not
noted otherwise.

The important aspect of the Equation (2.34) is that it is basically a convolution integral
as it can be expressed as follows:

ũ(p0) =
∫∫

Σ
h̃(p0,p1)ũ(p1) ds, (2.35)

where h̃(p0,p1) is the impulse response function that is given explicitly by:

h̃(p0,p1) =
1
iλ

exp(ikr01)
r01

cos θ.

2.6.2 Fresnel and Fraunhofer Approximation

As noted in previous subsections, it is possible to express the Huygens-Fresnel principle
in terms of the first Rayleigh-Sommerfeld solution. The angle θ is an angle between the
outward normal n and the vector r01. The cosine of this angle can be also expressed as
following:

cos θ =
z

r01
,

and if a configuration is that of the Figure 2.5 it is possible to express the Huygens-Fresnel
principle as following:

ũ(x, y) =
z

iλ

∫∫

Σ
ũ(ξ, η)

exp(ikr01)
r2
01

dξ dη, (2.36)

where r01 = [z2 + (x − ξ)2 + (y − η)2]1/2. Besides that, if the distance z is greater than
the extent in the X-axis and Y-axis then cosθ ≈ 1 and thus the whole cosine term can be
omitted completely. Nevertheless, at the end both approaches lead to the same equations.
All following approximations simplifies the expression for r01 because it contains square
root function that does not allows use of the Fourier transform that greatly reduces the
computation complexity of the expression.

The first approximation is known as the Fresnel approximation. It is based on a
value of the Z-axis component of r01 that, if large enough, allows application of binomial
expansion for the square root function. In order to apply the assumption, first, a reordering
of the expression for the distance r01 has to be applied:

r01 = z

[
1 +

(
x− ξ

z

)2

+
(

y − η

z

)2
]1/2

. (2.37)

Such expression now resembles a an expression
√

1 + b, where |b| < 1. This expression can
be decomposed by use of a binomial expansion to a form:

√
1 + b = 1 +

1
2
b− 1

8
b2 + . . . . (2.38)
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Figure 2.5: Configuration of the Fresnel/Fraunhofer approximation [Goo05].

If the extent in Z-axis is greater than the extent in both X-axis and Y-axis, i.e. if
it is valid that z À (x − ξ)2 + (y − η)2, then it is possible to apply the approximation
by dropping the third component of the binomial expansion in the Equation (2.38). In
order to avoid the degradation of the result, the third term shall not cause a change in the
distance greater than 1◦ if applied to the phase in the Equation (2.36) because the wave
propagation is sensitive to the phase [MNF+02]. This is fulfilled if the following condition
is valid:

z3 À k

8
[(x− ξ)2 + (y − η)2]2max, (2.39)

where k = 2π/λ is a wavenumber. Note, that this condition requests a viewing distance
of z À 250 mm for a circular aperture of diameter 10 mm is observed from a region of size
1 cm and the wavelength is λ = 0.5 µm. If z fulfills the condition the viewer is known to
be in a near field or Fresnel region.

The above mentioned condition is sufficient but it is also very strict. In fact it is overly
strict. As it is shown in [Goo05] for a diffraction aperture illuminated with an uniform
plane wave the Fresnel approximation is valid even for closed distances than distances
forced by the Equation (2.39).

Nevertheless, by fulfilling the condition it is possible to apply the Equation (2.37) to
the first two components of the binomial expansion according to the Equation (2.38) and
obtain:

r01 ≈ z +
(x− ξ)2 + (y − η)2

2z
. (2.40)

Then, this approximation of the distance r01 is applied for the phase component in the
Equation (2.36) as it is required to keep it as accurate as possible. As the distance in the
phase is multiplied by a wavenumber k ≈ 107 a small error in r01 may cause significant
change in phase. The distance used in the denominator is approximated by much coarser
approximation because it modifies only the amplitude. For such purpose r01 ≈ z provides
reasonable amount of error. This leads to a resulting expression known as the Fresnel
diffraction integral:

ũz(x, y) =
exp(ikz)

iλz

∫∫ ∞

−∞
ũ0(ξ, η) exp

[
ik

(x− ξ)2 + (y − η)2

2z

]
dξ dη, (2.41)

where ũ0(ξ, η) is a diffraction pattern at the aperture. This expression can be reorga-
nized to a form that resembles the Fourier transform and thus it can be utilized for its



CHAPTER 2. HOLOGRAPHY PHYSICS 16

Figure 2.6: Tilted plane configuration for application of Fresnel approximation [YAC02].

computations reducing the computational complexity significantly at the same time:

ũz(x, y) =
exp(ikz)

iλz
exp

(
ik

x2 + y2

2z

)

×
∫∫ ∞

−∞

{
ũ0(ξ, η) exp

(
ik

ξ2 + η2

2z

)}
exp

(
−ik

xξ + yη

z

)
dξ dη. (2.42)

As the distance in the Z-axis increases it is possible to widen the Fresnel approxima-
tion and omit another components of the integral. Such modification is known as the
Fraunhofer approximation and it is applicable only if:

z À k(ξ2 + η2)max

2
.

This condition has even higher demands on the Z-axis component value than the condition
in the Equation (2.39). For a circular aperture with a diameter of 10mm and for a wave
with wavelength 0.5µm the distance along the Z-axis has to be z À 300m. If z fulfills the
condition the viewer is denoted to be in far field or Fraunhofer region. By satisfaction of
the condition the Equation (2.42) is reduced to the following form:

ũz(x, y) =
exp(ikz)

iλz
exp

(
ik

x2 + y2

2z

)
×

∫∫ ∞

−∞
ũ0(ξ, η) exp

(
−j2π

xξ + yη

λz

)
dξ dη. (2.43)

This form resembles a Fourier transformation of the aperture distribution ũ0. Note, the
if a normalized intensity is the required result then the Fraunhofer approximation leads
to a Fourier transform of ũ0. In that case, multiplicative phase factors are not applied as
they have no influence on the intensity, see Equation (2.12). Given elements of the result
distribution can be extracted on corresponding frequencies:

fX = x/λz,

fY = y/λz.

The Fresnel approximation explores a propagation of diffraction pattern between two
planes along the Z-axis where both planes are parallel and their origins lie on the Z-axis.
Yet, it is possible to enhance the Fresnel approximation formula so it can handle tilted
planes such as that depicted in the Figure 2.6 as well [YAC02].

The approach is based on simplification of the expression for the distance. If the
target diffraction pattern ũz,θ(x, y) is examined on a plane that is tilted as depicted in
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the Figure 2.6 then the expression for the distance required for the Rayleigh-Sommerfeld
integral is:

r =
[
(y0 sin θ − z)2 + (x0 − x)2 + (y0 cos θ − y)2

]1/2
. (2.44)

By introduction of r′ = (x2 + y2 + z2)1/2 to the Equation (2.44) a binomial expansion
can be applied. After the expansion, it is possible to omit all terms but first two similar to
the Fresnel approximation. The resulting expression is substituted to a modified Rayleigh-
Sommerfeld integral:

ũz,θ(x, y) = − ã

iλ

∫∫

Σ
ũ0(x0, y0)

exp(ikr)
r

χ(x0, y0, x, y) dx0 dy0,

where ũ0(x0, y0) is a source of the diffraction pattern and χ(x0, y0, x, y) is an inclination
factor that is close to 1 if condition for the Fresnel approximation is valid. After a reorga-
nization and further substitution a form is obtained that resembles the Fourier transform:

ũz,θ(ξ, η) = exp(ikr′)
∫∫

Σ
ũ0(x0, y0) exp

(
ik

x2
0 + y2

0

2z

)
exp [−i2π(ξx0 + ηy0)] dx0 dy0,

where ξ = x/(λr′) and η = (y cos θ+z sin θ)/(λr′). Note, that the result obtained result is
respective to a plane deformed by coordinates ξ and η and it assumes that the condition
for the Fresnel approximation is valid.

2.6.3 Diffraction Condition and Diffraction Orders

A diffraction condition specifies a result of a diffraction of a plane wave on a thin cosine
grating [Goo05, Kra04]. The cosine grating is a thin cosine amplitude grating on a plane
with a amplitude transmittance function:

tA(ξ, η) = exp
[
1
2

+
m

2
cos

(
2π

ξ

Λξ

)]
rect

(
ξ

2w

)
rect

( η

2w

)
, (2.45)

where ξ and η are coordinates on a grating, 2w is the width/height of rectangular aperture,
m represents a difference between maximum and minimum of the tA, and Λξ is the grating
period.

If such grating is illuminated by unit amplitude plane wave then a diffraction occurs.
By an application of the convolution theorem to tA it is possible to obtain the Fourier
transform of tA that can be utilized to build the Fraunhofer diffraction pattern, i.e. a
diffraction pattern in the far field:

ũ(x, y) =
a

i2λz
exp

[
ikz + i

k

2z
(x2 + y2)

]
sinc

(
2wy

λz

)

×
{

sinc
(

2wx

λz

)
+

m

2
sinc

[
2w

λz

(
x +

λz

Λξ

)]
+

m

2
sinc

[
2w

λz

(
x− λz

Λξ

)]} (2.46)

The intensity of the diffraction pattern is a squared magnitude of ũ from the Equa-
tion (2.46). This means that the intensity is a sum of squared sinc functions such that in
the Figure 2.7.

Peaks in the figure are related to the term of diffraction orders and they represents
energy deflected by the aperture. The central peak is known as the zero order and repre-
sents the undiffracted, original plane waves. It also contains the greatest amount of energy
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Figure 2.7: Intensity of Fraunhofer diffraction pattern for thin amplitude cosine grat-
ing [Goo05].

of the original undiffracted plane wave. The both side peaks are known as the first orders
and represents original plane waves diffracted according to the diffraction condition, see
below.

The portion of the energy that is divided into individual diffraction orders is 1
2 +

m
2 cos(2πΛξξ) and can be found as the squared coefficient of the delta function from the
Fourier transform of the amplitude modifier ta in the Equation (2.45). Note, that while
the sinc functions in Fourier transform of the tA spreads the energy, the delta function
determine the power in each order. The zero order obtains 1/4 = 25.0% of the energy
delivered by the incident wave, the maximum portion for the first order is 1/16 = 6.25%
of the incident power; the rest is absorbed by the grating or reflected. The percentage of
the energy for the first order is known as the diffraction efficiency of the grating.

A better diffraction efficiency of up to 33.8% has the thin sinusoidal phase grating that
employs complex amplitude transmittance instead of the real one in the Equation (2.45).
This kind grating also leads to a formation of higher orders then just only the first and
the zero ones. As the approach for derivation of diffraction order energy is similar to the
amplitude grating it will not be exposed here. For more details, refer to [Goo05].

Basically, each diffraction order is the original illuminating plane wave with different
portion of energy that is propagated to a different direction. The direction of the propaga-
tion for a given grating order is determined from the optical path difference of individual
”rays”. The difference can be obtained at integer multiplies of λ because only in such case
a planar wavefront is formed. Thus, for a transmission grating, the incoming plane wave
is diffracted according to:

sin θξ2 = sin θξ1 + q
λ

Λx
, (2.47)

where θξ1 is an angle of the incident wave, θξ2 is an angle of the diffracted wave for given
order q, and Λx is the period of the grating, see Figure 2.8.

2.6.4 Propagation in Angular Spectrum

The Fresnel approximation allows to compute a propagation of a wave but it has limita-
tions on distance due to condition in the Equation (2.39). Even though this condition is
unnecessarily strict and it is possible to apply the Fresnel approximation even for shorter
distances, still it is not applicable for a region closer to a plane with known wave distri-
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Figure 2.8: Diffraction grating and diffraction condition.

bution ũ0 unless the third or higher components of the binomial expansion are taken into
account.

For shorter distances the Rayleigh-Sommerfeld diffraction integral, see the Equation (2.32),
offers a solution. Unfortunately, an application of this integral leads to a unpleasant high
computation complexity and thus renders this solution almost unusable. Yet, a slightly
different approach can be formulated if a Fourier transform of input wave distribution,
which is also known as the angular spectrum, is considered [EO06, Goo05, TB93].

If a plane wave distribution F̃ (kx, ky) of plane waves is known then it is possible to
determine a field ũ at a given point p as:

ũ(p) =
∫∫

F̃ (kx, ky) exp(−ik · p) dkx dky, (2.48)

where kz = (k2−k2
x−k2

y)
1/2. It is assumed that k2

z ≥ 0. If in any case k2
z becomes negative

then kz becomes a complex number. A wave with kz ∈ C is known as the evanescent wave
[BW05]. This wave is propagated as well but its amplitude decays exponentially with
increasing |z|, if it is propagated along the Z-axis5.

For a % : z = 0, the field is determined according to the following:

ũ0(x, y) =
∫∫

F̃ (kx, ky) exp[−i(kxx + kyy)] dkx dky. (2.49)

It can be seen in the Equation (2.49) that the plane wave distribution F̃ is proportional
to the Fourier transform of the distribution ũ0 on the plane. More precisely, that F̃ =
F {ũ0} /(2π)2.

By a knowledge of plane wave distribution it is possible to estimate a distribution
on an arbitrary distance along the Z-axis. Waves are propagated according to the Equa-
tion (2.48). If the phase shift term is expanded properly then it is possible to obtain a
form that resembles the Fourier transform as well6:

ũ(p) =
∫∫ {

F̃ (kx, ky) exp(−ikzz)
}

exp[−i(kxx + kyy)] dkx dky. (2.50)

Then, computation of a field distribution ũ on a plane that is parallel to the source plane
at the distance z along positive Z-axis can be expressed as following:

ũ = F−1 {F {ũ0} exp(−ikzz)} , (2.51)
5The exponential nature of attenuation is visible from substitution of complex-valued kz to the Equa-

tion (2.48).
6Note, that individual wavevector components contains 2π/λ as the length of the wavevector is the

wavenumber.
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Figure 2.9: Original (left) and transformed (right) distribution of plane waves obtained
by Fourier transform.

where ũ is a wave distribution on a target plane while ũ0 is wave distribution on a source
plane.

This approach can be further modified to handle spatial shifting in the XY-plane and
tilting as well. This is achieved by an application of simple geometrical operation of
rotation stored in a form of a 3× 3 matrix R and a translation in a form of a vector b:

p′ = pR + b. (2.52)

By substitution of the expression for a point p on a target plane to the Equation (2.48)
and reorganization of the result, an expression for distribution ũ on a target plane is:

ũ =
1

4π2
F−1

{
4π2F {ũ0} exp[i(kR) · b]J(kz, k

′
z)

}
, (2.53)

where k′z is a Z-axis component of the wavevector k transformed by the matrix R and
function J(kz, k

′
z) = kz/k′z is a Jacobian correction factor. The transformation of the

wavevector k by the matrix R is equal to a shifting of a portion of hemispherical surface
over the hemispherical surface because all possible wavevectors excluding wavevector for
evanescent waves forms a hemisphere of diameter equal to a wavenumber, see Figure 2.9.

The drawback of the approach is that it is sensitive to overlapping of both target and
source plane. Due to the assumption on periodic nature of functions processed by the
Fourier transform a disturbance appears if the target and source plane do not overlap
each other after an orthogonal projection along the Z-axis. Yet, this can be avoided by
combining of a proper propagation as mentioned in [TB93], so that miss in overlap does
not occur at all.

2.6.5 Propagation in Lenses

Wave that propagates through an optically dense material or a material with different
refractive index is slowed down, i.e. a wave propagating through such material is delayed.
A lens is a optically dense material of a certain geometry. For purposes of simplicity, only
a thin lens are considered. For the ray-based optics a thin lens is a lens that causes a
ray to exit the lens at a given point that is approximately the same as the point of entry.
This means that in the case of a wave the thin lens causes only a slowdown of portions of
incoming wavefronts. The slowdown is demonstrate itself as a change in phase.
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Figure 2.10: Lens and its coordinate system. Note, that the radius R2 of the right-hand
surface is negative as the ray is assumed to travel from left to right [Goo05, SJ05].

The amount of the slow down can be expressed in a form of a multiplicative phase
factor [Goo05, SJ05]:

t̃l(x, y) = exp[ikn∆(x, y)] exp{ik[∆0 −∆(x, y)]}
= exp[ik∆0] exp[ik(n− 1)∆(x, y)], (2.54)

where ∆(x, y) is a lens thickness function, ∆0 is maximum lens thickness, and n is a
refraction index of the lens. Attenuation due to reflection and loss inside the lens is
omitted. Note, that the factor causes a change in the phase that is equal to a sum of
the phase changed due to the lens itself and phase change due to travel outside the lens,
see Figure 2.10. The application of the factor on incident field ũl leads to a field ũ′l that
represents a field immediately after the lens, i.e. ũ′l(x, y) = t̃l(x, y)ũl(x, y).

The most important component of the Equation (2.54) is the thickness function ∆(x, y).
This function is a sum of thicknesses ∆1, ∆2 of both curved parts and thickness ∆3 of the
lens middle part:

∆(x, y) = ∆1(x, y) + ∆2(x, y) + ∆3

= (∆01 − ζ1) + (∆02 − ζ2) + ∆3. (2.55)

As it is shown in the Figure 2.10, the thickness modification for the left-hand side of
the lens is ζ1 = R1 − (R2

1 − r2)1/2; the right-hand side is similar. Thus, according to the
Equation (2.55) the thickness function is:

∆(x, y) = ∆0 −R1

[
1−

(
1− x2 + y2

R2
1

)1/2
]

+ R2

[
1−

(
1− x2 + y2

R2
2

)1/2
]

, (2.56)

where ∆0 = ∆01 + ∆02 + ∆3. The thickness function can be substituted to the Equa-
tion (2.54) in order to form an expression for a phase delay.
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Yet, the equation for the thickness is still complicated for practical use. Nevertheless,
if the extent in both X- and Y-axis is sufficiently small then it is possible to consider only
paraxial rays and apply an approximation similar to the Fresnel one:

(
1− x2 + y2

R2
1

) 1
2

≈ 1− x2 + y2

2R2
1

.

This approximation leads to a significant simplification of the Equation (2.56) to a
form that is substituted to multiplicative phase factor t̃l defined in the Equation (2.54)
and gives:

t̃l(x, y) = exp(ikn∆0) exp
[
−ik(n− 1)

x2 + y2

2

(
1

R1
− 1

R2

)]
. (2.57)

In a praxis the first component exp(ikn∆0) is omitted as it is constant for the whole lens
and thus it is equivalent to a constant phase shift. The second component can be further
simplified by the Lens maker equation:

1
f
≡ (n− 1)

(
1

R1
− 1

R2

)
, (2.58)

where f is the focal length. Focal length is a point where all parallel rays intersects after
passing a the lens. Analogically, in wave optics it is a place where incoming wavefront
that were modified by the lens become a infinitely small point. This is obvious from
the Equation (2.59) when applied to a normally incident unit-amplitude plane wave. The
resulting expression is a form similar to the quadratic approximation of the spherical wave.
The application of the Lens maker equation leads to a widely used expression for the phase
transformation of the lens:

t̃l(ξ, η) = exp
(
−ik

ξ2 + η2

2f

)
. (2.59)

The lens described by the Equation (2.59) exhibits a certain aberration in a phase.
This aberration case be neglected if the intensity is the desired output. Otherwise, a
correction has to be applied. This phase correction can be determined from application of
the Fresnel approximation and the Equation (2.59) to a field ũ(ξ, η) at position z = 2f in
front of the lens. The field ũv(x, y) at z = 2f behind the lens has to be the original field
with inverted coordinates [Wei], i.e. x = −ξ and y = −η. A difference between fields ũ
and ũv is eliminated by a correction factor [SJ05]:

p̃(x, y) = exp
(
−ik

x2 + y2

2f

)
. (2.60)

The overall equation for a setup with a source plane ã(ξ, η) placed behind the thin lens
of focal length f and propagated by use of a propagation kernel k̃(ξ, η;x, y) is:

ũ(x, y) =
∫∫

ã(ξ, η)l̃(ξ, η)k̃(ξ, η; x, y) dξ dη.

The side effect of the thin lens is its capability perform a Fourier transform in its back
focal plane. Focal plane is a plane parallel to the lens at focal distance. The configuration
that is capable of the Fourier transformation is depicted in the Figure 2.11.
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Figure 2.11: Geometry configuration for the Fourier transform of the input with positive
lens.

As described by the Equation (2.50) a source angular spectrum is related to the target
spectrum by a following phase factor:

H̃(fX , fY ) = exp
{

i2π
z

λ

[
1− (λfX)2 − (λfY )2

]1/2
}

,
(
f2

X + f2
Y

)1/2
< 1/λ.

If Fresnel or paraxial approximation is valid then above mentioned function can be sim-
plified in similar manner as well7. The relation between angular spectrum of source
F̃i = F {ũi} and the angular spectrum of field in front of the lens F̃l = F {ũl}, i.e.
source propagated to the lens, is following:

F̃l(fX , fY ) = F̃i(fX , fY ) exp
[−iπλd(f2

X + f2
Y )

]
. (2.61)

The relation can be substituted to a Fresnel approximation applied to a propagation of
the field ũf (u, v) in the front focal plane to the lens, i.e. a propagation for a distance z = f
from the lens. Omitting the constant phase factor exp(ikz) from the Equation (2.42) a
following form is obtained:

ũf (u, v) =
1

iλf
exp

(
ik

u2 + v2

2f

)
F̃l

(
u

λf
,

v

λf

)
. (2.62)

Further substitution of the Equation (2.61) to the Equation (2.62) with fX = u/(λf)
and fY = v/(λf) leads to:

ũf (u, v) =
1

iλf
exp

[
ik

(
1− d

f

)
u2 + v2

2f

]
F̃i

(
u

λf
,

v

λf

)
. (2.63)

It is clearly visible from the Equation (2.63) that the complex value of the field ũf

at coordinates (u, v) is related to a component at frequency (u/λf, v/λf) of the input
field angular spectrum. The Fourier transformation is disturbed by quadratic factor but
this factor disappears if d = f . Note, that above mentioned equation is valid for the lens
aperture with finite extent. For an aperture with limited extent, refer to [Goo05].

7The exp(ikz) component of the Fresnel diffraction impulse response is omitted as it is constant for all
plane waves.



Chapter 3

Optical Holography

Optical holography stands on the physical phenomenon of diffraction described in the
section 2.5. The optical holography has one big advantage with respect to the digital
holography which is that the diffraction is performed literally with the speed of light. It
is so much not true for the numerical simulation of this phenomenon.

In this section, the principle of the optical holography is described. There are many
ways of acquiring holograms so some most usual are presented. The mathematical principle
of the reconstruction is provided.

3.1 Holography principle

Holography is about capturing and reproducing light filed. The light field is at each
point determined by an amplitude and phase. In a case of classical photography the light
field is integrated over some time and the adequate optical intensity is captured on a
photographic material. When photograph is illuminated by a light source, the captured
intensity is replayed into all directions. That is the reason, why reproduced image looks
flat, without depth.

Holography, on the contrary, is a technique which records the phase and amplitude
of the light field. When a hologram is illuminated by a proper light source, the exact
amplitude and phase is reconstructed and the original light field recreated. Since the
observer has the whole light field available, the genuine three dimensional sensation is
achieved.

Holography uses almost the same materials for capturing as the photography and
therefore the phase and amplitude cannot be recorded directly but rather in an encoded
form, i.e. in a form of diffraction grating. The diffraction grating is formed by the fringes
produced from interference of the reference beam and the scattered beam reflected from a
captured scene. The interference fringes inflicts variation of intensity across the capturing
medium. This variation results in variation of transparency which effectively forms the
wanted diffraction grating. Diffraction gratings diffracts or in other words bends light and
most fortunately, or rather because of the physics of diffraction, one component of the
diffracted light field matches the initially captured one.

It is important to emphasise the fact that the reconstructed light field is part of some
more complex light field. Finding ways of separating the wanted part of diffracted light

24
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b)

c)

Hologram Fotography

a)

d)

Figure 3.1: [v0.9]Difference between hologram and a common photo for a scene (a): a
difference between incoming intensity from various direction for a given sample (b) and an
outgoing intensity (c) for the same sample leads to a different resulting image for a tilted
viewing screen (d).

a)

b) c)

Figure 3.2: [v0.9]The most basic principle of optical recording (b) and reconstructing (c).
Note, that the reconstruction (c) generates same impression as in the case of the original
scene (a).
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Figure 3.3: [v0.9]This is simplified depiction of capturing and reconstructing inline holo-
gram. Adopted from [Har96].

field from the unwanted is one of the research branch on its own in holography. One of the
most common solution is capturing hologram using the off-axis configuration, see Section
3.3 for more details.

The following material contains description of different hologram capturing principles.
Advantages and disadvantages of each of them are discussed.

3.2 Inline hologram

The first hologram capturing was done using the setup depicted in the Figure 3.2. Because
the light source, captured object and the hologram plate are aligned in one line this setup
is called inline hologram. It is the simplest but also the least performing setup. It is
because of the restriction placed on scene characteristics and the low quality of image
reproduced from the inline hologram.

The most restricting constraint it that the captured scene has to be spatially sparse.
It is because the majority of the incoming light has to get through so it can act as the
reference beam. The minor part of the light is scattered on the obstacles formed by the
components of the captured scene and this scattered light then acts as the scene beam.
Because of this restriction the inline configuration is used usually for capturing scenes
like aerosol, small particles floating in water, etc. Scenes with the opposite characteristic,
i.e. small holes in some opaque screen, are not suitable for this method and cannot be
captured properly.

The following text is adopted form [Har96]. The reference beam is collimated and
therefore the complex amplitude does not vary across the hologram plane. It is written as
a real constant r. The complex amplitude of the scattered wave varies across the hologram
and is therefore written as o (x, y), where |o (x, y)| ¿ r. Note that the coordinate system
is set in a such way that X axis corresponds to the horizontal direction of the hologram
frame, Y axis corresponds to the vertical direction of the hologram frame and Z axis points
from the scene to the hologram.

The complex amplitude at any point of the hologram frame is obtained as a sum of
the reference and object beam complex amplitudes at that point. The resultant optical
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intensity is then obtained using Equation Equation (2.14) as

I (x, y) = |r + o (x, y)|2 ,

= r2 + |o (x, y)|2 + ro (x, y) + ro∗ (x, y) ,
(3.1)

where o∗ (x, y) is the complex conjugate of o∗ (x, y).

The optical intensity is recorded on a transparency. If it is assumed that amplitude
transmittance is a linear function of the intensity then it can be written as

t = t0 + βTI, (3.2)

where t0 is a constant background transmittance, T is the exposure time, and β is a
parameter determined by the photographic material. When Equation (3.1) is substituted
into Equation (3.2) the amplitude of this transparency is

t (x, y) = t0 + βT
[
r2 + |o (x, y)|2 + ro (x, y) + ro∗ (x, y)

]
. (3.3)

To reconstruct the captured scene, the hologram is placed on the same position as
during capturing and illuminated by the very same reference beam and the transmitted
complex amplitude by the hologram can be then written as

u (x, y) = rt

= r
(
t0 + βTr2

)
+ βTr |o (x, y)|2

+ βTr2o (x, y) + βTr2o∗ (x, y)

(3.4)

The expression Equation (3.4) consists of four terms. The frist of the terms r
(
t0 + βTr2

)

constitutes the directly transmitted beam. The second term βTr |o (x, y)|2 is extremely
small in comparison with the others since it has been assumed initially that |o (x, y)| ¿ r
and can be therefore neglected. The third term βTr2o (x, y) is, except for a constant
factor, identical with the object beam. This light field constitutes the reconstructed im-
age. Since this image is located behind the transparency and the reconstructed light field
appears to diverge from it, it is called the virtual image . The fourth term also represents
the originally captured light field except it is complex conjugate of the field. This field
converges to form the so called real image, which is inverted by the Z axis.

The low quality of images reproduced from inline holograms is caused by the fact
that the reconstructed virtual image fully overlaps with the directly transmitted reference
beam and with the blurred real image. This fact was the reason for low interest about
holography at the beginning. The efficient way of separating the virtual image from its
real counterpart and from the zero order beam was developed by Leith and Upatnieks in
60’ and it is introduced in the following section.

3.3 Off-axis hologram

The problem of overlapping virtual image with the real image and transmitted beam was
solved by creating more complicated setup. The source beam was divided and while one
beam was used to illuminate the captured scene which scattered it onto the hologram plane
as a scene beam the second one was directed onto the hologram without modification
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Figure 3.4: [v0.1]This is simplified depiction of capturing (left) and reconstructing (right)
offaxis hologram. Adopted from [Har96].

and serves as the reference beam. This more complex configuration is depicted in the
Figure 3.3.

The offaxis capturing principle can be described by the same formalism used in the
previous section, text is adopted form [Har96]. The complex amplitude due to the object
beam at any point on the hologram frame can be written as

o (x, y) = |o (x, y)| exp [−iφ (x, y)] , (3.5)

while that due to the reference beam is

r (x, y) = r exp (i2πξrx) , (3.6)

where ξr = sin θ/λ. The resultant intensity at the hologram plane is

I (x, y) = |r (x, y) + o (x, y)|2

= |r (x, y)|2 + |o (x, y)|2
+ r |o (x, y)| exp [−iφ (x, y)] exp (−i2πξrx)
+ r |o (x, y)| exp [iφ (x, y)] exp (i2πξrx)

= r2 + |o (x, y)|2 + 2r |o (x, y)| cos [2πξrx + φ (x, y)].

(3.7)

The amplitude transmittance of the hologram can be written as

t (x, y) = t0 + βT{|o (x, y)|2
+ r |o (x, y)| exp [−iφ (x, y)] exp (−i2πξrx)
+ r |o (x, y)| exp [iφ (x, y)] exp (i2πξrx)}.

(3.8)

To reconstruct the image, the hologram is illuminated by the same reference beam used
for capturing. The complex amplitude u (x, y) of the transmitted wave can be written as:

u (x, y) = r (x, y) t (x, y) ,

= u1 (x, y) + u2 (x, y) + u3 (x, y) + u4 (x, y) ,
(3.9)
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where

ũ1 (x, y) = t0 exp (i2πξrx) , (3.10)

ũ2 (x, y) = βTr |o (x, y)|2 exp (i2πξrx) , (3.11)

ũ3 (x, y) = βTr2o (x, y) , (3.12)

ũ4 (x, y) = βTr2o∗ (x, y) exp (i4πξrx) . (3.13)

The first term ũ1 (x, y) constitutes the directly transmitted reference beam attenuated
by the constant factor. The second term ũ2 (x, y) is responsible for some sort of halo
surrounding the reference beam. The angular spread of the halo depends on the extend of
the object. The third term ũ3 (x, y) is identical with the original object wave so it is the
virtual image. And finally the fourth term ũ4 (x, y) is the conjugate of the original object
wave so it is the real image. However, in a case of the off axis hologram, there is additional
term exp (i4πξrx) which indicates that the conjugate wave is deflected from the Z axis at
an angle approximately twice that which the reference wave makes with it.

For this reason, the real and virtual image are reconstructed at different angles from
the directly transmitted beam and from each other. If the offset angle θ is large enough the
three will not overlap. This method therefore eliminates all the drawbacks of the Gabor’s
inline hologram.

The minimum value of the offset angle θ required to ensure that each of the images
can be observed without any interference from its twin image, as well as from the directly
transmitted beam and the halo of scattered light surrounding it, is determined by the
minimum spatial carrier frequency ξr for which there is no overlap between the angular
spectra of the third and fourth terms, and those of the first and second terms. According
to the [Har96] they will not overlap if the offset angle θ is chosen so that the spatial carrier
frequency ξr satisfies the condition

ξr ≥ 3ξmax, (3.14)

where ξmax is the highest frequency in the spatial frequency spectrum of the object beam.

The restriction on scene characteristic found in the inline hologram does not apply in
a case of the off-axis hologram. More complex and interesting scenes can be captured and
consequently reconstructed. However, the off-axis configuration is more sensitive to the
coherence length of the light source. The difference of path lengths of the reference and
the scene beam must not exceed the coherence length of the light source used. Although
the scene can be more or less arbitrary, the problem of laser speckle still persists.

3.4 Additional hologram types

Apart from the configurations described in the Sections 3.2 and 3.3, there are several other
hologram capturing configurations. In this section these configurations are described:

• Fourier hologram

• Image hologram

• Fraunhofer hologram
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3.4.1 Fourier hologram

Fourier hologram is the one in which the complex amplitudes of the waves that interfere at
the hologram are the Fourier transforms of the complex amplitudes to the original object
and reference waves. This implies an object that lies in a single plane or is of limited
thickness.

Using the same formalism used in the cases of the inline and the off-axis holograms, the
light field’s complex amplitude leaving the object plane is õ (x, y), its complex amplitude
at the hologram plate located in the back focal plane of the lens and it is

Õ(ξ, η) = F {õ(x, y)} . (3.15)

The reference beam is derived from the point source also located in the front focal
plane of the lens. If δ̃(x + b, y) is the complex amplitude of the light field leaving this
point source, the complex amplitude of the reference light field at the hologram plane can
be written as

R̃ (ξ, η) = exp(−i2πξb). (3.16)

The intensity in the interference pattern produced by these two waves is, therefore,

I (ξ, η) =1 +
∣∣∣Õ (ξ, η)

∣∣∣
2
+ Õ (ξ, η) exp (i2πξb)+

Õ∗ (ξ, η) exp (−i2πξb) .
(3.17)

To reconstruct the image, the processed hologram is placed in the front focal plane of
the lens and illuminated with a collimated beam of monochromatic light. If it is assumed
that this wave has unit amplitude and that the amplitude transmittance of the processed
hologram is a linear function of I (ξ, η), the intensity is the interference pattern, the
complex amplitude of the wave transmitted by the hologram is

Ũ (ξ, η) = t0 + βTI (ξ, η) . (3.18)

The complex amplitude in the back focal plane of the lens is then the Fourier transform
of Ũ (ξ, η),

ũ (x, y) = F
{

Ũ (ξ, η)
}

,

= (t0 + βT ) δ̃ (x, y) + βT õ (x, y) ? õ (x, y) ,

+ βT õ (x− b, y) + βT õ∗ (−x + b,−y) .

(3.19)

The wave corresponding to the first term on the right-hand side of equation comes to a
focus on the axis, while the other that corresponds to a second term forms a halo around it.
The third term produces an image of the original object, shifted downwards by a distance
b, while the fourth term gives rise to a conjugate image, inverted and shifted upwards by
the same distance b. Both images are real and can be recorded on a photographic film
placed in the back focal plane of the lens. Since the film records the intensity distribution
in the image, the conjugate image can identified only by the fact that it is inverted. More
details can be found in [Har96].
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3.4.2 Image holograms

Image holograms are special in the way they record the images and can be considered as a
second step in creating a hologram. Instead of direct recording of the object, a previously
hologram is used. The real image produced by that hologram is recorded through lens.
The hologram plate then can be positioned in such manner that the image of the object
straddles the plate. In such case the reconstructed image is formed in the same position
with respect to the hologram, so a part of the image appears to be in front of the hologram
and the remainder is behind it.

Image holograms are reconstructible by use of a source of appreciable size and spectral
bandwidth and will still produce an acceptably sharp image. They have also increased
luminosity. However, the viewing angles are limited by the aperture of the imaging lens.
More details about image holograms can be found in [Har96].

3.4.3 Fraunhofer hologram

Fraunhofer holograms are special case of the inline holograms. This class of holograms
impose further constraint onto the scene configuration. In this case, the captured scene has
to be small enough for its Fraunhofer diffraction pattern to be formed on the photographic
plate. The object is small enough if its distance z0 and lateral dimensions x0 and y0 satisfies
the far-field condition:

z0 À
(
x2

0 + y2
0

)
/λ. (3.20)

When such Fraunhofer hologram is illuminated the light contributing to the conjugate
image is spread over a large area in the plane of the primary image. This causes a conjugate
image to form only weak uniform background instead of disturbing noise. As a result, the
primary image can be viewed without significant interference from its conjugate. More
details can be found in [Har96].

3.5 Final notes

The optical holography is widely used in many areas. In the context of this work, the
most interesting is object capturing and reconstructing for display purposes. In this area,
optical holography has many advantages and also many limitations. Among the advantages
belongs the speed and accuracy of capturing. Among disadvantages belongs unnatural
illumination produced by the coherent monochromatic light produced by lasers.

For practical display purpose, the digital medium is more suitable. It has again many
advantages and many disadvantages. Among the advantages belongs the universality of
the digital medium. Also the synthesis process can neglect some restriction imposed on the
captured scene by the physical matter of the problem. The disadvantages are immaturity
of the hardware and high computation demands of the synthesis process. This work
address the former disadvantage.
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Digital Holography

Holography is widely used in many areas for various purposes. It is not surprising that
their digitalised variation appeared quite early. The digitalisation brought the possibility
of computer processing but also brought the sampling based nuisances like aliasing. There
can be identified three major areas of holography that are usually addressed in a context
of digital holography. They are the capturing, the reproduction and hologram fringes
synthesis. Furthermore, digital holography introduces one specific issue, that don’t have
parallel in optical holography. The area is numerical reconstruction.

4.1 Digital capturing

Electronic devices for capturing light intensity are known for some time. The advent of
digital cameras that begun in 90’ helped to evolve this area into cutting edge technology.
The sensor arrays have as much as tens millions of sensor elements. However, the resolution
is fine but the density more important for holography. The pitch between two sensors
directly influences the frequencies that can be captured and large frequencies captured
means better hologram.

4.2 Digital reproduction

The reproduction is more interesting but less completed area. The wavefront of the inci-
dent reference beam has to be modulated according to the hologram recording. This is
done by the spatial light modulator or SLM. Such devices are capable of change phase
of the light wavefront. If hologram is used as the input for SLM, the recorded scene
is reconstructed. There are numerous technologies that are used to make SLM’s work.
The most important property of each SLM is again spatial density of the individual ele-
ments. For holography purposes the appropriate size of such element is measured in ones
of micrometres 10−6m which is quite technological challenge.

32
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4.3 Hologram Synthesis

The synthesis of a hologram by a computer is vital for holographic display technology.
It is also clear that such synthesis should be performed in a real time so that interactive
work would be possible. Waiting even for several seconds for cursor position update is
unbearable. This requirement is in contradiction with the computational requirements
of the diffraction phenomenon simulation. This contradiction can be resolved either by
employing massive computational power which is perfectly reasonable as proved by the
contemporary GPU’s, or by reducing the complexity significantly which is a preferred way
in computer science.

The complexity of the synthesis could be illustrated by the following example. Let the
target holographic display is a planar display similar to the 17” LCD. Usual resolution of
17” LCD is 1280×1024 so the pitch between pixels is 0.25 mm. A computer has to compute
1.3× 106 samples if whole image is refreshed. The holographic display with 1.0 µm pitch
between elements has resolution 320000×256000 so a computer has to compute 8.2×1010

samples if whole image is refreshed. That is 62500 times more samples in comparison to
the LCD. It should be also noted that the minimal frame rate for interactive work is 15
fps so the hologram has to be computed under 60 ms and finally, the data stream for such
frame rate is 1.2 TB per second.

The specifications in the previous paragraph are, of course, the final goal specifications.
For the practical experiments more coarse parameters suffice. Moreover, there is no such
holographic device in the world, that has such parameters. The holograms computed for
this work have sizes measured in centimetres and usual pitch between samples is 10 µm.

The most straightforward method of the hologram synthesis is to compute light field
due to the intended scene content and then the hologram is computed by adding the ref-
erence beam. The light field could be computed by numerical simulation of the diffraction
phenomenon according to one of the diffraction models introduced in the section 2.5. It is
fairly easy to do if the scene consists of planar object parallel to the hologram plane. The
light field due to this object is computed using the Fourier transform. The complications
arise if scene contains three dimensional object.

The simplest hologram is a hologram of a single point source of uniform spherical
waves. Spherical waves are governed by the equation Equation (2.25). For each point at
the hologram, distance r to the point source is computed and the equation Equation (2.25)
is evaluated. If scene contains more points, then the complex amplitude obtained from
the equation Equation (2.25) for each point is accumulated and the final value constitutes
the final complex amplitude. This point source based hologram computation gave a birth
to the raytracing methods.

The basis of the raytracing method is to cast rays from each sample point on a hologram
frame in a uniform way into the scene. Rays that intersects the objects of a scene are
evaluated as a contribution from a point source and the result is accumulated so after
evaluating all rays, the final value is obtained. This is sort of reversal of the method
described in the previous paragraph.

The next possible solution is to decompose the scene contents onto simple primitives.
The diffraction pattern of the primitives can be computed analytically and the final light
field is obtained by accumulating the contributions from all primitives. This method has
several unsolved problems. They are surface intensity variation and occlusion.
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The last known approach to the hologram synthesis is frequency based. Under some
convenient conditions, the light field can be obtained from Fourier transform. These
methods are fastest but they suffer from similar drawbacks as the pattern based methods.
The most significant problem is occlusion.

4.4 Hologram Reconstruction

The hologram reconstruction is a process that leads to computation of wave distribution
over an arbitrary surface according to a given diffraction pattern. The diffraction pattern
is a result of an interaction between the reconstruction wave and a hologram, where the
hologram modulates the reconstruction wave, see Section 3.

4.4.1 Diffraction pattern reconstruction

If both source and target surface are parallel or tilted planes then the wave propagation is
a direct application of relations described in the Section 2.6. If an approach that is based
on angular spectrum propagation is applied a loss of information occurs for tiled planes.
The loss is caused by the transformation of the spectrum according to the transformation
matrix so that the target frequency is falls outside the range of the target spectrum and
thus it is clipped.

The occurrence of the loss depends on both angle of rotation and sampling step. For
a discrete diffraction patterns with sampling step greater than λ/2 is the probability
higher [TB93]. In such case a shifting of a central frequency is assumed solution. For
example, if the transformation is a plain rotation around the X-axis then the center (0, 0)
of the source plane is actually mapped to a frequency (β/λ, 0), where β is related to a
cosine of the rotation angle.

In order to avoid the loss due to clip of frequencies a center is shifted to (β/λ, 0) on the
target plane. As all operations of propagation takes place in angular spectrum, the shifting
of the center can be applied many times without a degradation cause by the clipping. On
the other hand a degradation may occur as the target–source frequency back-mapping
requires a sample that is positioned between two known samples and thus it has to be
estimated. Even a bilinear interpolation can be utilized with reasonable results [TB93].

An arbitrary target or source geometry is an arbitrary surface described by a function
then relations are complication introducing non-linearities as the source/target coordinates
are expressed as functions [Ros99]. Such non-linearities causes inability to apply Fourier
transform for improving of the computational complexity and thus a full approximation
of the integral by the summation is required. If a given direction retains a linear nature
then the Fourier transform may be utilized in its 1D form.

4.4.2 Retrieval of Phase and/or Amplitude

Hologram is an encoded form of wave distribution on a given surface such as the plane. If
a diffraction pattern propagation is applied to the hologram after the reference wave then
the wave proportional to the original scene wave is recreated. Besides that, also other
components are recreated as well. Yet, in some cases only the original scene wave is the
desirable result and such result can be extracted from the hologram numerically.
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From the computational point of view, the information about the original scene en-
coded inside the intensity of the hologram can be extracted by two major approaches: one
based on a phase-shift and second base on a solution of equation set for a small neighbor-
hood. The phase-shift approach utilizes a set holograms of the same scene with a phase
shifted by a fraction of the wavelength [YZ97]. It can be shown that if phase shifts are
selected properly an accurate estimation of ũ, i.e. phase and amplitude, of the scene is
equivalent to equation set solution.

Phase-shift methods offers a reasonable accuracy but requires a set of holograms to
be created. The slightly different approach that is still capable to reasonable result has
no such requirement but it assumes a certain conditions [LBU04]. It assumes an off-axis
hologram and that in a small, approximately 3× 3 neighborhood, there is no variation of
phase and amplitude in the scene wave distribution at the hologram. By the knowledge
of the recording wave it is able to express intensities at members of the neighborhood as
a non-linear set of equations. Such set can be transformed to a set of linear equations by
application of weights based on B-spline.
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