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Abstract
With increasing power of today’s computers, the Java programming language is
more and more chosen by developers as the implementation language of various
types of software. The wide range of applications also include concurrent mul-
tithreaded programs. However, programming, analyzing and testing concurrent
programs is a problem of a higher order than programming and testing classic
sequential programs, even if they are implemented at a high level of abstraction
that Java provides.

The purpose of this work is to describe an approach to concurrent Java pro-
grams debugging and run-time analysis done by means of a simulator of a subset
of the JVM functionality and a converter of Java source code. The tested pro-
gram can be deterministicly traced (just one thread at once) at run-time and
the relationships of various entities can be observed and analyzed. As a conse-
quence, the programmer can find potential bugs concerning concurrency issues
in a shorter time than when using standard debugging and tracing techniques,
usually inefficient for concurrent programs.

This paper first summarizes some requirements that a tool implementing this
approach should meet, then it presents work related to concurrent programs
testing and analysis, done worldwide. Subsequently, it discusses an invented
state-space model of concurrent Java programs and a controller based on it,
executing the tested program. Finally, it shows how Java programs are trans-
formed in order to use the controller. Chapter 6 concludes the document.
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Chapter 1

Purpose of the Work

Testing is a necessary part of the life-cycle of any software product, regardless
of its size, application area, or its user. There are many techniques developed in
software engineering, dealing with the issue of testing. Usually, they have one
thing in common: they are taylored exclusively for purely sequential programs.
If a sequential program is executed twice with the same input data and the
program does not involve any randomization inside, the same output is obtained
in both runs. Therefore, if invalid or unpredicted output data is obtained, it is
very easy to reproduce the same program behavior again and it is very likely
that a bug causing the problem will be discovered, sooner or later.

However, this is not true for concurrent programs anymore. Concurrent pro-
grams contain more or less independent units of code (processes for multitasking
and threads for multithreading) executed in parallel. Usually, there is an inde-
terministic scheduler (at the level of operating system or at the language level)
which causes that the concurrency units – or rather their parts, consisting of
an arbitrary number of instructions – are always executed in a different order.
The total number of all possible schedules of the same concurrent program is
therefore almost infinite. Since the concurrency units usually share some data,
which is the reason why they are part of the same computation system, any
bug concerning the access to these shared data causes that invalid output of the
whole computation is generated or even causes the total computation process
to behave in an unpredictable way or to crash completely. Finding these bugs
and finding the reasons why a concurrent program behaves in a strange and
unintended way are not trivial tasks.

Although the Java programming language provides all necessary means for mul-
tithreading (concurrency at the level of a single process) already in the basic
package and the language was designed to support multithreading from the very
beginning, it cannot protect the programmer from all possible traps, pitfalls, and
dangerous things that multithreading threatens with.

The usual way of “debugging” used when something goes wrong in the program
is to print out comments on the standard or error output. This system can
inform the programmer what is happening inside the program, but it cannot
tell why something (e.g. a deadlock) has happened. It does not analyze all the

5



relationships between all entities of the program that may be the reason of a
wrong behavior. The aim of this work is to provide a system that does right that:
it analyzes the running program from the point of view of the programmer and
it intercepts any change of its properties (regarding the concurrency issues) so
it is later able to analyze why a certain action was applied by the Java virtual
machine or by the program itself. The analysis of relationships of program
entities – threads, locks, monitors, . . . – can substantially help the programmer
to understand why the program behaves incorrectly.

There exist theoretical methods (see chapter 2) how a concurrent system can
be analyzed. These methods work well but they require several conditions to
be fulfilled first:

• The system must be described in such a manner that the method can
work with it. This can be a problem if the tested program has already
been implemented but its model had not been created before so a kind of
reverse engineering must be employed here.

• Even if the required model exists, the actual software may not be imple-
mented exactly according to it. So the theoretical method may declare the
model as error-free while the actual software is full of bugs. Therefore, the
real software must be an exact copy of the model, at least in all aspects
concerning concurrency.

Practical methods are usually a mess of different techniques that the program-
mer is used to apply in sequential programs. This includes printouts, use of
debuggers and breakpoints, periodic checking of values of various variables or
states of threads, etc. These methods are usually not coordinated with each
other and may even influence the tested program in the sense that its behavior
is changed and the bug is not found.

This work attempts to systematically employ all possible techniques, including
static and dynamic analysis, monitoring states of various object of the program,
monitoring relationships between objects of the program, activity logging, and
checking for user conditions that must always hold during the program execu-
tion. Some demanded features are discussed in the following sections.

Also, it attempts to give the user a chance to step through a concurrent program
in such a way that he/she can observe the behavior of any single thread that is in
runnable state and its impact on the rest of the program. This “stepping through
the program” is exactly defined in section 3.3 and can be either automatic or
manual, which is described in section 4.2.

1.1 Detection of Safety Violations

Java introduces so-called synchronized blocks to protect data from being ac-
cessed or modified from different threads simultaneously. However, the pro-
grammer is not forced to use synchronization and therefore, as a result of that,
incorrect data can be easily produced. These incorrectly synchronized reads or
writes are called safety violations.
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Finding all violations against this mutual-locking discipline1 can be done at
the level of source code analysis and does not require the program to be run
(but false alerts can be reported then). There are already tools able to do this
analysis, for example Eraser [Era].

1.2 Liveness Observation

If mutual locking (or synchronization) is over-used or used in a wrong way, so-
called liveness properties of the program (or just a part of the program) can
be violated. This applies to deadlocks caused by a wrong order of locking of
multiple different locks, badly used wait()s (before notifying another thread),
badly formulated guarding conditions in monitor methods, badly formulated
notification conditions in monitors, and some other situations.

Therefore, observing the state of every thread and knowing about every state
change of a thread may help the programmer to discover bugs related to liveness.
The programmer is then able to compare the actual behavior of the program to
the intended one and find the buggy piece of code.

1.3 Observation of Relationships between a
Concurrent Program’s Entities

As described later in section 3.5, a Java concurrent program is in fact composed
of entities of various types, invisible2 to the programmer at the level of Java
source code. These entities are, for example, threads, locks used for synchro-
nization, lock wait sets, lock delayed sets, thread join sets, and some others.

Monitoring these entities (usually hidden in the JVM representation of the pro-
gram) and monitoring their relationships can considerably help the programmer
to understand the actual behavior of his/her program. If the behavior differs
from the intended one, the programmer can easily find the places in his/her
source code where these relationships were changed and he/she can conclude a
result from that.

1.4 Activity Logging

Activity logging does not only involve thread-specific issues but applies to all
programs in general. It comprises logging calls to methods, logging exception
throwing, logging creation of objects of interesting classes, logging communica-
tion with the environment (file opening and closing, reading and writing), and
some other situations that could be monitored.

1Synchronization uses locks that guarantee mutual exclusion.
2Only some of them are invisible, some of them are visible and are mapped to real Java

objects.
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1.5 Invariant Checking

An invariant is a user statement describing a certain condition about the tested
program that must hold at any time. Evaluation of this statement returns a
logical value. In the case of a correct program, evaluation of every invariant
should always return true.

An invariant could be described as a method returning a boolean value. The
method can be called at runtime and whenever an invariant is violated (the
condition is evaluated as false), the user can be informed and a particular
action can be taken.
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Chapter 2

Related Work

So far, much effort has been put to many different solutions of the problem
being solved in this work. In this chapter, some of them – the most known and
widespread – will be presented. Some of them only analyze systems described
using a formal model, some of them directly analyze an already implemented
program in its source or runnable form to get true and unbiased results. Only
some of the tools and methods presented here are specialized to Java, those that
are not would usually be usable with Java after some rework.

We will start with the most theoretical approaches that are at the highest level
of abstraction and then we will proceed with methods focused on issues of
implementation in a programming language. Finally, we will present algorithms
and tools that work directly with Java software, either in the form of source
code or in the form of byte code (compiled source code).

2.1 Petri Nets

Petri Nets is a formal and graphical appealing language which is appropriate
for modelling systems with concurrency. It was Carl Adam Petri who defined
the language. It was the first time a general theory for discrete parallel systems
was formulated. The language is a generalisation of automata theory such that
the concept of concurrently occurring events can be expressed.

A Petri net is a graphical and mathematical modeling tool. It consists of places,
transitions, and arcs that connect them. Input arcs connect places with tran-
sitions, while output arcs start at a transition and end at a place. There are
other types of arcs, e.g. inhibitor arcs. Places can contain tokens; the current
state of the modeled system (the marking) is given by the number (and type if
the tokens are distinguishable) of tokens in each place. Transitions are active
components. They model activities which can occur (the transition fires), thus
changing the state of the system (the marking of the Petri net). Transitions are
only allowed to fire if they are enabled, which means that all the preconditions
for the activity must be fulfilled (there are enough tokens available in the input
places). When the transition fires, it removes tokens from its input places and
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adds some at all of its output places. The number of tokens removed / added
depends on the cardinality of each arc. The interactive firing of transitions in
subsequent markings is called token game.

Petri nets are a promising tool for describing and studying systems that are
characterized as being concurrent, asynchronous, distributed, parallel, nonde-
terministic, and/or stochastic. Tokens are used in these nets to simulate the
dynamic and concurrent activities of systems. As a mathematical tool, it is
possible to set up state equations, algebraic equations, and other mathematical
models governing the behavior of systems.

To study performance and dependability issues of systems, it is necessary to
include a timing concept into the model. There are several possibilities to do
this for a Petri net; however, the most common way is to associate a firing
delay with each transition. This delay specifies the time that the transition
has to be enabled, before it can actually fire. If the delay is a random distri-
bution function, the resulting net class is called stochastic Petri net. Different
types of transitions can be distinguished depending on their associated delay,
for instance immediate transitions (no delay), exponential transitions (delay is
an exponential distribution), and deterministic transitions (delay is fixed).

2.1.1 Usability

Using Petri nets requires that a model of the simulated / analyzed system has
to be constructed first. This requires a detailed analysis of the source code of
the tested software if not done during the design phase. Constructing the model
is further complicated by the fact that a Java concurrent program can hardly be
considered a discrete system so a process of abstraction must be applied. Petri
nets are certainly a helpful verification mean in the design phase but almost
unusable if analysis of an already existing software is required.

2.2 LTSA – Labeled Transition System Ana-
lyzer

LTSA is a verification tool for concurrent systems developed by Jeff Magee and
Jeff Kramer. It mechanically checks that the specification of a concurrent system
satisfies the properties required of its behavior. In addition, LTSA supports
specification animation to facilitate interactive exploration of system behavior.
LTSA can be downloaded from [LTSA].

A system in LTSA is modelled as a set of interacting finite state machines. The
properties required of the system are also modelled as state machines. LTSA
performs compositional reachability analysis to exhaustively search for violations
of the desired properties. More formally, each component of a specification is
described as a Labelled Transition System (LTS), which contains all the states a
component may reach and all the transitions it may perform. However, explicit
description of an LTS in terms of its states, set of action labels and transi-
tion relation is cumbersome for other than small systems. Consequently, LTSA
supports a process algebra notation FSP (Finite State Processes) for concise
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description of component behavior. The tool allows the LTS corresponding to
a FSP specification to be viewed graphically.

LTSA considers a process as having a state modified by invisible (or atomic)
actions. Each action causes a transition from the current state to the next state.
The order in which actions are allowed to occur is determined by a transition
graph that is an abstract representation of the program. In other words, pro-
cesses can be modelled as finite state machines. Although the representation of
a process is finite, the behavior described need not be finite.

2.2.1 FSP – Finite State Processes

For larger number of states and transitions, an algebraic notation called Finite
State Processes (FSP) is used to describe process models. Every FSP description
has a corresponding state machine (LTS) description. A process is described
by its states and the actions between them. Processes are in uppercase, actions
in lowercase letters. The terminal state of a process (if the process terminates)
is called STOP. An action a transforming a process from state A to state B is
prefixed before B, together with the prefix operator ->:

A = (a -> B)

To describe repetitive behavior, recursion can be used. For example, a non-
terminating process describing a ligth switch with two states ON and OFF and
two actions on and off would look like the following:

SWITCH = OFF,
OFF = (on -> ON),
ON = (off -> OFF).

If we substitute the definition of ON in the definition of OFF, we will get the
following result:

SWITCH = OFF,
OFF = (on -> (off -> OFF)).

The definition of OFF can be further used in the definition of the initial state of
SWITCH, which will produce the following:

SWITCH = (on -> off -> SWITCH).

The three different definitions of the SWITCH process generate identical state
machine.

The sequence of actions produced by the execution of a process (or a set of
processes) is referred to as a trace. In general, processes have many possible
execution traces.

More than one transition can lead from a state to several next states. If an action
occurs, the process passes to the next state corresponding to the performed
action. The choice is expressed by the operator |.
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X = (a -> A | b -> B),
A = (x -> X),
B = (x -> X).

The choice can be even non-deterministic, i.e. the same action x can lead both
to state A and to state B:

X = (x -> A | x -> B),
A = (y -> X),
B = (y -> X).

There are many other language elements in FSP, like guarded actions (the key-
word when), indexed processes and actions, process labeling and hiding, etc.
They can be found in [Conc] and will not be discussed here for space issues.

2.2.2 The Technique of Analysis

After the processes are described, LTSA can perform a breadth-first search
on the LTS. If a property violation or a deadlock is found, the shortest trace
of actions that would lead to the property violation or deadlock is displayed.
Alternatively, this algorithm can be replaced by Holtzmann’s bitstate hashing
technique – Supertrace – which is not a complete search of the state space.
Supertrace is only used if the complete search is not possible due to size.

2.2.3 Usability

LTS, FSP, and the LTS Analyzer (now in version 2.2) is a set of extremely
helpful tools that can diagnose the concurrent system before it is implemented.
Therefore, the actual software has to be written according to the model. How-
ever, as in case of any other theoretical method, errors can be introduced to the
code during further development, so another tool has to be used later.

2.3 The Model Checker SPIN – Checking For-
mal Models

SPIN is a verification system for models of distributed software systems. It was
developed in Bell Laboratories and its brief description can be found in [SPIN].
It supports the design and verification of asynchronous process systems. The
verification is mainly focused on proving the correctness of process interaction,
specified either with randez-vous primitives or with asynchronous message pass-
ing through buffered channels, or access to shared variables or any combination
of these.

The verified system’s design specification is written in the verification language
Promela and the correctness claims are specified in the syntax of Linear Tem-
poral Logic (LTL). The Promela language imposes two important constraints
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on the modelled sytem: it must be bounded and it must have only countably
many distinct behaviors.

The typical usage of SPIN has the three following steps:

1. The specification of a high-level model of a concurrent system or a dis-
tributed algorithm, using SPIN’s graphical front-end XSPIN.

2. Interactive simulation, to gain basic confidence about the behavior of the
modelled system’s design.

3. Generation of an optimized on-the-fly verification program from the high-
level specification. This verifier is compiled and can be thus directly ex-
ecuted. The verifier is able to find counterexamples to correctness claims
(if there are any) that can be used again during a repeated interactive
simulation to inspect details of the cause of the correctness violations.

2.3.1 Description of a Process and the State Space of the
System

The verified concurrent system, described in Promela, consists of one or more
user-defined process templates (proctype definitions) and at least one process
instantiation. The templates define the behavior of different types of processes.
Any running process can instantiate further asynchronous processes, using the
process templates.

Each process template is translated to a finite automaton. The global behavior
of the concurrent system is obtained by computing an asynchronous interleaving
product of automata, one automaton per asynchronous process behavior. The
resulting global system behavior is itself again represented by an automaton.
This interleaving product is referred to as the state space of the system or as
the global reachability graph (because it can be represented as a graph).

2.3.2 Description of Correctness Claims

Every correctness claim is expressed as an LTL formula. An LTL formula can
contain a propositional symbol p, combined with unary or binary, boolean and/or
temporal operators, using the following grammar:

f := p | true | false | (f) | f binop f | unop f
unop := [] | <> | !
binop := U | && | || | -> | <->

The operators have these meanings: [] means always, <> means eventually, !
is logical negation, && is logical and, || is logical or, -> is implication, <-> is
equivalence and U means strong until. For example, [] (p U q) states that it
is always guarateed that p remains true at least until q becomes true.
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SPIN generates a Büchi automaton1 for each formula with several states, either
accepting or non-accepting. The algorithm is following: First, the formula is
converted to normal form. An initial state is created, marked with the formula
to be matched and an incoming edge. The remainder of the automaton is
computed recursively. At each stage, a subformula that remains to be satisfied
is taken and, according to its leading operator, the current state may be split
into two states, each of them inheriting a different part of the subformula. In
the last phase, some of the states are identified as accepting according to the
presence or absence of subformulae with until operators.

2.3.3 Finding Possible Correctness Violations

When a correctness claim is translated to a Büchi automaton, it is merged with
the automaton of the global state space – the so called synchronous product is
computed. The result is again a Büchi automaton. If the language accepted by
this automaton is empty, the original correctness claim is not satisfied. If the
language is nonempty, it contains those behaviors that satisfy the original LTL
formula.

In SPIN, the correctness claims describe errorneous system behaviors, i.e. be-
haviors that are undesirable. The reasons for this approach are stated in the
following paragraphs. So the verification process then either proves that such er-
rorneous behavior is impossible or it provides examples of behavior that match.

A proof of a positive claim requires that the language of the system is included
in the language of the claim. On contrary, a proof of a negative claim requires
that the intersection of both languages is empty. The worst-case state space size
of both the positive and negative claim proof is the size of the Cartesian product
of the system and the claim. The best-case state space size of the positive claim
proof is the size of sum of the two state spaces and the best-case state space
size of the negative claim proof is zero. This is the reason why SPIN works with
negative claims and uses language intersection.

A Büchi automaton accepts a system execution if and only if that execution
forces it to pass through one or more of its accepting states infinitely often.
(Such behaviors are called acceptance cycles.) To prove that no execution se-
quence of the system matches the negated claim, it suffice to prove the absence
of acceptance cycles which is of much less complexity than proving the former
behavior. So the computation terminates when an acceptance cycle (a coun-
terexample to the correctness claim) is found or when the complete intersection
product has been computed.

SPIN uses Tarjan’s depth-first search algorithm to find an acceptance cycle in the
global reachability graph. The algorithm constructs strongly connected compo-
nents. If at least one accepting state exists in a strongly connected component,
then there exists an acceptance cycle. If the acceptance state is reachable from
the initial system state then the acceptance cycle is also reachable, which is a
counterexample to the original correctness claim.

1A Büchi automaton is defined over infinite input sequences, rather than finite ones as in
standard finite state machine theory.
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2.3.4 Usability

Although SPIN is a mature and proven tool, it cannot be found convenient for
the purposes of this work, enumerated in chapter 1. The reasons are as follows:

1. SPIN works with formal models only, i.e. with software described in its
design phase, it does not work with real programs (either in runnable or
source form), i.e. software brought to its implementation phase.

2. SPIN is language-independent and therefore it cannot deal with all issues
specific to Java. Process interaction is limited to shared variables and
message passing, some Java language constructs (like synchronized blocks)
would be quite hardly expressed.

3. Moreover, the possibility to formulate correctness claims and check for
their validity or violations is only a part of our requirements. Also, the
way how the claims are formulated is not convenient. A Java-like style
would be necessary.

2.4 Java PathFinder 1 – Constructing Formal
Models from Java Multithreaded Programs

Since a tool for verification of concurrent systems exists (SPIN) but it is able
to work with formally defined model only, a tool creating these models from
existing source code was developed, allowing SPIN to be used for verification of
Java concurrent programs.

The tested Java program may contain assertions which are traslated to the
corresponding assertions in the Promela language. The SPIN model checker
then checks for any violation of the specified assertions, and for deadlocks, too.
The assertions can also be expresses directly in the linear temporal logic (LTL),
as in the case of SPIN. In the former case, the tester can use the Verify class
and its static method assert(). The body of the method is not translated to
Promela (only its parameter – the tested condition) but can be used during
normal testing.

The process of translation from Java source code to Promela can be found in
[PF1] and will not be presented here due to its complexity. Java PathFinder
supports just a subset of the Java language, however, this subset seems to be
a reasonable part of the whole language and the the other, unsupported, part
will unlikely be missed. The two parts are as follows:

Supported Features: Dynamic creation of objects with data and methods,
class inheritance, threads, synchronization primitives for modeling mon-
itors (the synchronized keyword and methods wait() and notify()),
exceptions, thread interrupts, assignment statements, conditional state-
ments, loops, . . .

Unsupported Features: Packages, overloading, method overriding, recur-
sion, strings, floating-point numbers, some threads operations like
suspend() and resume(), control statements like continue.
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The arrays are not modeled as Java objects, they are traslated to Promela special
arrays. Also, the predefined class library is not converted, only the user’s source
code. One assumption is made about the analyzed Java program: It must have
a finite and tracable state space.

The translator is implemented in Common Lisp. A part of the translator is a
parser of the Java language, written in MoscowML. The Promela language had
to be changed slightly in order to make the traslation easier.

2.4.1 Usability

Java PathFinder has already proved its qualities. It has been used in NASA
to test real programs in the project of development of a new operating system
for the Deep-Space 1 space craft. Several errors were found, concerning time-
dependend behavior leading to a deadlock. However, Java PathFinder is no
longer being developed in the form it was presented here. The authors decided
to avoid translation to Promela which seems to be a difficult task (and which
can probably be never 100% completed) and the new version of PathFinder
works directly with bytecode. (See section 2.7.)

2.5 The Model Checker VeriSoft – Checking
UNIX Concurrent Systems

VeriSoft is a verification tool for systematic exploration of the state space of
systems composed of several concurrent processes executing arbitrary C code.
Therefore, there is a substantial difference between the model checker SPIN
presented in 2.3 and VeriSoft: SPIN needs a formal model of the examined
system written in a special language (Promela) while VeriSoft operates with
real source code of the verified system. A brief description of the model checker
Verisoft and the algorithms it uses can be found in [VS].

Every process of the concurrent system to be analyzed is mapped to a Unix
process. The execution of the system processes is controlled by an external
process, called the scheduler. By suspending and resuming a given process,
the scheduler is able to step through the state space (see section 2.5.1) of the
examined system. When a deadlock or an assetion violation is detected, the
program is stopped and the computation history is shown to the user.

VeriSoft also checks for divergencies and livelocks. A divergence occurs when a
process does not attempt to execute any visible operation2 for more than a given
amount of time. A livelock occurs when a process has no enabled transition3

during a sequence of more than a given number of successive global states.
2See next section for explanation of this term.
3This term is also explained later.
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2.5.1 Description of a Concurrent System

The verified concurrent system is composed of a finite set P of processes and a
finite set O of communication objects. Each process P ∈ P executes a sequence
of operations – a sequential deterministic program. Processes communicate with
each other by performing operations on communication objects. A communica-
tion object O ∈ O is defined by a pair (V,OP ), wher V is the domain of the
object and OP is its set of operations.

Operations on communication objects are called visible while other operation
are by default invisible. The execution of a visible operation is blocking if it
cannot be completed. Invisible operations cannot block.

At any time, the system is said to be in a state. It is in a global state when
the next operation to be executed by every process in the system is a visible
operation. The initial state of the system is also considered to be global. A
process transition is a visible operation followed by a finite sequence of invisible
operations performed by a single process. A transition may be disabled when
the execution of its visible operation is blocking, otherwise it is enabled. By
completing a transition of a process from a global state s, the system reaches a
successor of s.

So the global state space of a concurrent system is seen by VeriSoft as a set of
global states plus a set of transitions between pairs of these global states plus
an initial global state.

2.5.2 State Space Exploration Techniques

The basic algorithm of state-space exploration is based on recursion. It starts
with the initial state and executes all enabled transitions leading from it. The
same algorithm repeats in each state found from the initial state. The algorithm
assumes that each state has a unique identifier and a unique and managable rep-
resentation that can be stored to its data structures. However, this assumption
is not valid anymore when dealing with real programs because the values of all
memory locations a process can read from or write to are different if the same
state is reached for the second time.

The basic algorithm uses the following data structures:

• A set of states whose successors are still unexplored.

• A hashtable of already visited states.

• Sets of enabled transitions, one set per state.

Because of the broken assumption stated above, so called state-less search al-
gorithm can replace the original one. The main difference is that the latter one
does not store any intermediate results to the memory. An unpleasant result
is that the algorithm may not terminate if the program contains cycles, even if
the set of global states is finite.

VeriSoft uses an enhanced version of the state-less search algorithm, employing
so called sleep sets and persistent sets. They serve the following purposes:
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Sleep Set – A sleep set is associated with every global state. It contains those
transitions that are enabled but will not be explored from a given state.
Initially, this set (the sleep set of the initial state) is empty. If a transition
is executed, it is added to the sleep set of the state from which it was
executed so that it cannot be executed anymore if the computation reaches
the same state again. The target global state of a transition t inherits the
sleep set of the last explored state4 but only those transition that are
independent5 with t are kept in the set.

Persistent Set – A persistent set is also associated with every global state. It
is such a subset T of the set of all enabled transitions in a given state s
that all transitions not in T (and enabled in s or in a state reachable from
s through transitions not in T ) are independent with all transitions in T .

The modified state-less search algorithm explores only those transitions in every
global state that are in its persistent set but not in its sleep set. Thanks to this
technique, the run-time explosion of the original state-less search is avoided and
the number of transitions that have to be explored is considerably reduced.

2.5.3 Usability

VeriSoft seems to be an efficient and powerful tool for verification of concur-
rent systems. Also, its sophisticated method of reduction of transitions to be
explored gives it additional value. Although the principles it is based on are
applicable anywhere, the tool itself is restricted to operate in Unix environment
only (it works with processes of the operating system) and therefore not usable
for purposes of Java programs analysis and debugging.

2.6 An Executable Model of Java Programs –
The ExitBlock Algorithm

ExitBlock is an algorithm for finding errors in concurrent Java programs re-
sulting from unintended timing dependencies. The algorithm was invented and
implemented at MIT and its description can be found in [ExBlk1] or, in more
detail, in [ExBlk2]. ExitBlock enumerates all possible behaviors of a Java mul-
tithreaded program for a given input. It does not need a separate model or
specification of the tested program or its source code, it does the testing dy-
namically using information gathered while running the program.

ExitBlock is able to detect common timing-dependent errors, for example errors
that occur only in certain orderings of modules that are individually correctly
synchronized, or using a simple if statement instead of a while cycle to test
a condition variable. It also has an extended version that is able to detect
deadlocks in the program.

4The state from which the transition leads.
5Two transitions t1 and t2 are independent if they can neither disable nor enable each other

and when from a given global state s another global state s′ can be reached both when t1 is
executed first and then t2 or vice versa. – Enabled independent transitions are commutative.
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The implemented algorithm needs a special virtual machine in order to be exe-
cuted, conventional JVMs cannot be used. Such a JVM – the Rivet JVM – was
developed along with the tool at MIT.

2.6.1 Testing Criteria

ExitBlock requires that the tested program comply to the three following testing
criteria:

Mutual-Exclusion Locking Discipline – This discipline dictates that each
shared variable is associated with at least one mutual-exclusion lock and
that the lock(s) are always held whenever any thread accesses that vari-
able. Since ExitBlock is not able to detect violations of this discipline
itself, it uses the Eraser algorithm [Era], running in parallel, to detect
them.

Finalization – In Java, the finalize() methods can be run in any order
and at any time, depending on when the JVM schedules them to run.
The algorithm assumes that the finalizers do not influence the rest of the
program in the sense that neither assertions nor deadlocks can result from
different schedules of finalizers.

Terminating Threads – ExitBlock requires the tested program (every thread
of the program) to have a defined endpoint. ExitBlock uses the depth-first
search algorithm to enumerate all possible schedules of the program. With
a non-terminating thread, the algorithm would never reach a leaf in the
tree of possible schedules and it would not therefore inspect the rest of
schedules but would stay locked in a cycle forever.

2.6.2 The Basic Algorithm

The ExitBlock algorithm is based on the following idea: Let’s divide the program
into atomic blocks (based on synchronized blocks). Shared variable cannot be
accesses outside these atomic blocks because the locking discipline would be
violated. Shared variables modified by a thread inside of an atomic block cannot
be accessed by other threads until the original thread exits that atomic block.
This means that enumerating possible orders of atomic blocks of a program
covers all possible behaviors of the program. So the algorithm only needs to
consider schedules at the level of atomic blocks, not at the level of Java bytecode
instructions.

All possible atomic blocks cannot be enumerated statically since their number
is data-dependent. So it is necessary to run the program and enumerate all
possible schedules using the depth-first algorithm.

The algorithm first executes one complete schedule of the program. Then, it
goes back up from the end of the program to the end of the last atomic block.
Here, by choosing a different thread to run, the algorithm creates a new branch
of the schedule tree. The program is again executed until completion. This
process is systematically repeated. If there is no such thread in a certain node
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of the tree that has not run yet from here, the algorithm goes back up one
atomic block (one level in the tree) and starts to make new branches from here.
The algorithm terminates if there is no such thread in the initial state which
means that all schedules have already been inspected.

The algorithm needs to have guaranteed that it can back up the program to a
previous state (before the current branch was executed), which is done using
checkpointing, and it must also be provided with the ability of deterministic
replay to ensure the program receives the same inputs as it is re-executed. Both
the checkpointing and the deterministic replay are provided by the Rivet virtual
machine.

An atomic block ends with a lock exit or the end of a thread and it begins at
the point where the last atomic block ends or at the beginning of a thread. So
non-synchronized code is grouped together with its following synchronized code
to form one atomic block. This produces as few atomic blocks as possible and
therefore the number of possible schedules is also reduced. Nothing changes if
there are nested synchronized blocks. The borders of atomic blocks are still lock
exits and thread births and deaths, nothing more.

Every thread of the program is put in one of the three following sets:

Block Set – A thread is in a block set of a lock if it needs to acquire that lock
but the lock is held by another thread.

Delayed Thread Set – A set of threads not allowed to execute at a check-
point in order for ExitBlock to schedule another thread. This set contains
threads already executed from that checkpoint. They are all re-enabled
(removed from this set) after the first atomic block of the branch.

Enabled Set – All other threads are put in the enabled set.

These sets are attributed to every checkpoint in the program. When the ex-
ecution returns to a checkpoint, these sets must be restored. This avoids the
situation when a thread created after a checkpoint would be scheduled when
the execution gets back to that checkpoint, i.e. it would be scheduled at a place
and “time” where it “does not exist yet”.

If the currently running thread cannot obtain a lock, a new lock must be sched-
uled instead. Since threads can switch on atomic block boundaries only, the
running thread and the current branch of the tree must be aborted, the pro-
gram must undo back to the end of the previous atomic block and another
thread must be scheduled instead. The original thread is placed in the block
set of the lock.

Call to the wait() method of a lock are handled in the way that other locks
exits are – an atomic block is terminated. The thread calling wait() is also
removed from the set of enabled threads. On contrary, all threads notified with
a call to notifyAll() are put to the block set of the respective lock because
all notified threads must first obtain the lock in order to get schedulable. With
notify(), the algorithm is the same but just one thread can be woken up.
Since it is a nondeterministic behavior, a new branch must be created for every
potentionally woken-up thread. Because a different thread must be notified in
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every branch, another thread set exists: the No Notify Set. It contains threads
already notified in a branch that cannot be notified again.

In this basic version of the algorithm, the number of schedules that must be
explored grows exponentially in both the number of threads and the number of
locks used by each thread.

2.6.3 ExitBlock-RW

The ExitBlock-RW algorithm is a modification of the basic ExitBlock algorithm
enabling some schedules to be omitted during the program verification. If two
atomic blocks have no data dependencies between them, then the order of their
execution with respect to each other has no effect on whether an assertion is
violated or not. The ExitBlock-RW uses data-dependency analysis to prune the
tree of explored schedules.

While executing an atomic block, all reads and writes are recorded. Instead of
delaying the current thread, a set of delayed threads is kept along with the reads
and writes that were executed in the atomic block. Only those threads from the
delayed set are re-enabled after the next atomic block, whose reads and writes
intersect with the currently running thread’s reads and writes.

Two sets of reads and writes (r1, w1) and (r2, w2) interact if and only if (w1 ∩
w2 6= ∅) ∨ (r1 ∩ w2 6= ∅) ∨ (w1 ∩ r2 6= ∅).
The number of schedules that must be explored in this version of ExitBlock is
polynomial in the number of locks and still exponential in the number of threads.

2.6.4 ExitBlock-DD

In general, two kinds of deadlock can be distinguished in concurrent Java pro-
grams according to the authors of ExitBlock:

Lock-Cycle Deadlocks involve two or more threads blocked only on locks,
i.e. blocked when they attempt to enter a synchronized block.

Condition Deadlocks involve two or more threads that are blocked inside a
synchronized block on wait(), i.e. after they have found that a guarding
condition does not hold.

As for the former kind of deadlock, the algorithm must keep track of thread-lock
cycles since at least two locks and two threads must be involved in a deadlock.
If a lock cannot be acquired by a thread, the algorithm uses so-called reverse
lock chain analysis. If the current thread cannot obtain a lock and it is possible
to follow a cycle of owner and lock relationships back to the current thread,
then a lock-cycle deadlock is detected.

To detect the latter kind of deadlock is much easier and straitforward. A condi-
tion deadlock occures when the algorithm runs out of enabled threads, i.e. the
Enabled Set is empty at a certain checkpoint. A deadlock cannot be reported if
there are delayed threads that cannot be scheduled due to the used algorithm
but would be runnable in reality.
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2.6.5 Usability

The ExitBlock algorithm and its implementation is targeted directly to the Java
platform. It is able to detect timing dependencies errors and deadlocks. More-
over, it uses Eraser to detect race conditions resulting from improper (unused)
synchronization. The main advantage of ExitBlock usage is its ability to test all
possible schedules for given input data in one run and the fact that it needs no
formal model but uses a real program compiled to Java bytecode. On the other
hand, a special virtual machine must be used.

2.7 Java PathFinder 2 – Executable Models of
the Java Virtual Machine

Java PathFinder 2 is an explicit-state model checker for programs written in
Java. It is itself written in Java and contains a special-purpose Java virtual
machine MC-JVM. It brief description can be found in [PF2]. Java PathFinder
2 works directly with Java bytecode, not with source code, as its predecessor.

Currently, it can only check deadlocks and invariants. An invariant is specified
as a Java method that returns a boolean value. Both the invariant and the
program to be checked are converted into bytecode and given as input to the
model checker. The checker consists of two parts: the MC-JVM that executes
the bytecode and the depth-first search algorithm that does the traversal of the
state-space graph of the program. The algorithm can tell the MC-JVM to:

• move forward one step,

• move backward one step,

• evaluate the current invariant.

The MC-JVM keeps track of visited states, also the current path of states is
stored on the stack which allows easy backtracking. The output of the model
checker is whether or not the invariant holds or the program is deadlock-free.
If a deadlock is found, a counterexample is provided which can be fed back to
the MC-JVM in a simulation mode in order to recreate the error.

The most important features of Java PathFinder 2 are as follows:

Canonical Heap Representation – Regardless of the order of instructions,
dynamic and static memory is always allocated in the same memory lo-
cations as they were allocated in a previous run. This reduces the size of
the state space.

Garbage Collection – The MC-JVM has its own garbage collection scheme
to prevent the state space from growing indefinitely.

Nondeterminism – The MC-JVM supports nondeterminism by trapping calls
to Verify.Random(int) and Verify.RandomBool().
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Atomicity – The level of atomicity can be set to one bytecode instruction,
to one Java instruction, to one line of Java code, or to independent Java
blocks6.

Structured State – Each state of the program can be highly structured, since
it consists of a number of different Java objects.

2.7.1 Abstraction

A so-called abstraction is provided by PathFinder which converts a Java pro-
gram to an abstract program with respect to user-specified abstraction criteria.
The user can specify abstractions by removing variables or adding new variables
to the abstract program. The new variables typically depend on the already ex-
isting variables that can (but need not) be removed. The inter-class abstraction
is also possible. In such case, a new abstract variable depends on “old” variables
from several classes.

Abstraction can be applied to components of the whole program only, if it is
too complicated to apply abstraction globally.

2.7.2 Static Analysis

Java PathFinder uses static analysis to compute information to perform partial
order reduction during model checking. The static analyzer uses program de-
pendencies to identify safe program blocks. A safe block is a block of consecutive
Java statements that can be executed by the virtual machine without worrying
about interleaving, e.g. a sequence of statements using only local variables.

Java PathFinder uses static analysis to alleviate the state explosion problem
during model checking.

2.7.3 Runtime Analysis

Runtime analysis is based on the idea of executing the program just once to
extract various kinds of information. This information can be used to predict
whether other different execution traces may violate some properties of our
interest. The algorithm is able to detect even those violations that did not
happen during the one run of the program but would potentially happen in
another run with different schedule. However, it is not guaranteed that all
violations are found and it is not guaranteed that all found violations are not
false.

An example of runtime analysis is the data race detection algorithm Eraser,
implemented in PathFinder. Or the locking order analysis, looking for potential
deadlocks.

Runtime analysis can be used in two modes. First, it can be used stand-alone
in simulation mode. Second, runtime analysis can be used to guide the model
checker. PathFinder can generate a so-called race window consisting of the

6Two blocks of code are independent if they can be executed concurrently.
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threads involved in a race condition. The model checker is then launched, fo-
cusing only on the race window by forcing the scheduler always to pick threads
in the window before other threads. In addition, the window can be extended
with threads that write to objects read by the threads in the original window.

2.7.4 Usability

Java PathFinder 2 is intensively used in NASA. It is an efficient tool for finding
deadlocks and race conditions. Its plus is that it works directly with Java
bytecode. Its qualities can be proved by the fact that it was used to detect a
deadlock in software called the Remote Agent in 1999, when in deadlocked in
space in the middle of operation.
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Chapter 3

State-Space Model of
Concurrent Java Programs

The Java language supports multithreading from its nature, therefore all Java
programs use the same language elements and patterns. There are no additional
libraries, no API functions of an operating system, just an exactly defined set
of keywords, standard classes and their methods.

This allows us to define a model of concurrent Java programs, analyze source
code of any program and observe how the program behaves when mapped to
the model. The model itself and its practical usage for purposes of program
debugging and run-time analysis are descibed in the following sections.

3.1 Basic Entities of a Concurrent Java Pro-
gram

If a typical Java concurrent program is analyzed, the following basic types of
entities can be found:

Threads – A dynamic set of runnable objects. Every thread has its own local
data set, e.g. thread attributes, thread methods’ local variables, own
stack, etc.

Monitors – A dynamic set of objects holding global data that threads use
for mutual communication. Methods manipulating with a monitor’s data
must necessarily be synchronized. Threads keep references to monitors
whose data have to be shared among them.

Note that we completely exclude from our model those variables that are shared
but access to them (both reading and writing) is not synchronized at all or only
partially (at some places), e.g. writing is synchronized while reading is not.
According to the Java virtual machine specification [JVMS], the Java platform
is not obliged to update the master copy in the main memory of those variables
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whose writing is not synchronized and it is not obliged to fetch the current value
from the main memory of those variables whose reading is not synchronized.
Therefore, in our further reasoning, we will assume that all accesses to shared
variables obey the proper mutual-exclusion locking discipline.

Two types of operations can be distinguished in a thread’s code:

Local Computing – Sequence of operations not manipulating with global
data, only with the thread’s local data.

A Call to a Monitor Method – Sequence of operations manipulating both
with a monitor’s (i.e. global) data and the thread’s local data. However,
the modifiation of the calling thread’s local data has no effect on our
model. A possible result returned from the method can be stored to a
local variable.

This category also includes synchronized blocks that are part of an unsyn-
chronized method or even a synchronized block inside another synchro-
nized block.

A thread’s code can be thought of as a sequence of “local computing” blocks
(there is no interaction with the thread’s surrounding environment), delimited
by calls to monitor methods (an interaction with the thread’s environment).
Monitor method calls are possibly blocking, i.e. threads may get suspended
inside a monitor method (and woken up later) or while entering a synchronized
block if its lock cannot be acquired at the moment. They can also return a value
that can be stored into a local variable. A thread’s life is thus as follows:

Thread born
Local computing
A call to a monitor method
Local computing
A call to a monitor method

. . .
Thread dead

To explain the state-space model used as a conceptual framework for the pre-
sented method of Java program serialization, we will use the following set of
assumptions:

• The set of monitors used for computation is static, the cardinality of the
set is m, no monitor service uses another monitor services (a monitor
cannot reference another monitor).

• The set of threads used for computation is static as well, the dimension
of the set is n.

• Monitors are “passive”, i.e. they are not implemented using “internal”
threads.

• All monitor methods are synchronized.
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In fact, these assumptions are not substantial for the presented method imple-
mentation, they only simplify the state-space model explanation and must be
ignored later when real concurrent programs are debugged and analyzed. Now
we are ready to introduce the model description.

3.2 The State Space

A monitor is in consistent state when no thread is currently executing its code,
that is:

• when no thread is currently running inside its method, and/or

• when one or more threads are passivated inside one of its methods, using
wait().

Every consistent state of any monitor can be described as follows:

monitor id = {monitor class name,monitor instance num}
monitor state attr = set of monitor data values

monitor entry = {monitor id,method name}
monitor state = {monitor id,monitor state attr}

monitor state id : monitor state→ integer

Here we assume that every monitor has its own integer number
(monitor instance num) that is unique within its class, so a monitor identi-
fication is done by a number instead of (or moreover to) its program name
(which can be different in different threads). Alternatively, the id could be
replaced with a reference to the monitor itself, which is also unique.

We define that a thread is in consistent state when:

• it has been born, but its start() method has not been invoked yet, or

• its control flow reaches a point when it calls a monitor method, or

• it has died already but its data are still valid.

As for the second case, two possibilities can occur:

• the state is “tangible”, i.e. the thread “blocks” in the monitor (Java thread
passive state), or

• the state is “volatile”, i.e. thread continues its execution without blocking
(i.e. the thread keeps itself in Java runnable state).
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Every consistent state of a Java thread can be then described as follows:

thread id = {thread class name, thread instance num}
thread state id = born | monitor entry | dead

thread state attr = set of thread local data values

thread state = {thread id, thread state id, thread state attr}

A transition between thread consistent states can be described as a tuple of
transformations:

next state id : thread state→ string

next state attr : thread state→ attr type

It is necessary to explain that the abstract functions next state id and
next state attr work with the set of a thread’s local data and with the set
of a monitor’s data (the reference to a monitor is a part of thread state). A
body of this abstract function consists of the body of the monitor method and
from the thread code part following the monitor method call.

Now we can proceed to a description of a discrete state space of a concurrent
Java program computation, also called the global state space:

• Every thread has its own coordinate axis within the space, so the state-
space dimension equals to n.

• Every (discrete) state-space coordinate axis has a limited mumber
of points (nodes), that correspond to the thread state identifiers
(thread state id).

• State-space then can be viewed as a bounded regular grid of nodes within
an n-dimensional space.

• State of the computation can be defined as a point (node) within the grid,
i.e. as the set of single threads state identifiers.

• Control-flow of the computation can be modeled as an oriented graph
whose nodes are all the points of the lattice. From every node at most

n
∑

i=1

PTi,thread state(i)

transitions can lead to other nodes. Here n is the total nuber of threads
(and therefore the dimension of the state space and the number of axis
of the grid) and PTi,thread state(i) is a set of possible transitions of a
given thread from its current state to its neighbouring states – see section
3.3.1. This set usually contains more than one transition due to program
branches, cycles, etc. This will be discussed in more detail in section 3.3.
Every transition means a finished thread local activity, i.e. a point when
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the thread reaches a (new) consistent state. Due to the fact, that a transi-
tion means a single thread activity, only one state-space coordinate value
changes with this transition.

• Path of computation is a sequence of transitions that an instance of com-
putation passes through the control-flow graph of computation.

For a concurrent Java program executed by the JVM, the following behavior of
computation can be observed:

• State of computation that is modelled by means of a state-space node
is not consistent in the sense, that its parts (coordinates values) do not
represent neither threads’ nor monitors’ consistent states. A value say
s1 at t1 axis means, that thread t1 either resides in its consistent state
identified as s1 or passed the state and has not reached a next consistent
state yet.

• So in every state of concurrent computation several transitions “have fired”
(runnable threads computation) and it is generally impossible (due to the
data dependency and due to an unpredictable speed of a thread computa-
tion caused by the nondeterministic JVM scheduler and the environment
outside the JVM) to forecast which thread will be “the winner of the
race”, i.e. which state of computation will follow. Moreover it gives no
great sense to stop the computation in a state that is not consistent.

• As a (known) consequence follows that the path of computation is quite
nondeterministic. It causes majority of known troubles with concurrent
programs testing and debugging.

The main idea of a concurrent Java program serialization is to choose determinis-
tically for every node of the above defined state-space of concurrent computation
only one thread (from the set of runable threads) to perform its transition.

The resulting path of computation will be one of possible computation paths,
therefore it will reflect a possible real execution of the program. The basic idea
of the proof is stated in [ExBlk1] and is as follows: Shared variables cannot
be accessed outside of synchronized blocks (if the program follows the locking
discipline, as stated in 3.1) and therefore a thread cannot influence another
thread’s behavior during its local computing block, only inside a monitor method.
Therefore, enumerating all possible orders of all monitor procedures results in
enumerating all possible behaviors of the program. It is not then necessary to
order the local computing blocks, because:

1. A local computing block of a thread has no influence on another thread’s
behavior, and

2. The order of local computing blocks (i.e. the order of transitions in the
state-space graph) is fully determined by the order of monitor procedures
(i.e. the order of global consistent states in the state-space graph) that
they lead to.
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An implementation of the idea should bring the following important conse-
quences:

• The computation can be stopped in every node of its state-space (and the
transition to be performed can be chosen).

• When the computation has stopped in a node, the corresponding state of
computation is consistent, i.e. all monitors and all threads reside within
their consistent states (which means that these states can be observed
and/or analyzed).

• The path of computation can be made deterministic, i.e. every possible
path through the control-flow graph of computation can be chosen either
automatically (i.e. according a rule) or manually during a “manual” de-
bugging of the program. This is of great importance in a process of Java
concurrent program debugging.

3.3 Walking through the State Space

In this section, we will show why a global consistent state does not have just n1

neighbouring states, as one would think. Actually, if we omit the final consistent
states symbolising that a thread is dead, the number of neigbouring states can
vary from n in the simplest case to

n
∑

i=1

(CSi − 1)

in the most complicated case. CSi denotes the number of all consistent states
of the ith thread. This number is decremented by one because no thread can
return to its initial state which corresponds to the thread’s creation. Therefore,
we can state that the following expression

n ≤
n
∑

i=1

PTi,thread state(i) ≤
n
∑

i=1

(CSi − 1)

holds in any of the global consistent states except for all global states composed
from at least one final state (when at least one thread is dead already).

3.3.1 The Relation of Neighbourhood

It can be found from the above statement that the definition of the term “neigh-
bour” is not a trivial task. We will define it as follows: Let t be a thread in a
consistent state s. A constistent state si of the same thread t is a neighbour
of the consistent state s if such an execution of the thread t’s code exists which
leads from s to si and this execution does not contain any t’s consistent state
sj, sj 6= si.

It can be easily seen that this relation of neighbourhood:
1n is the number of threads in the program, see 3.2.
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• is not reflexive, because a consistent state need not necessarily be reachable
from itself,

• is not symmetric, because the fact that a consistent state B is reachable
from a consistent state A does not imply A to be reachable from B,

• is not antisymmetric since B can be a neighbour of A and A can be
a neighbour of B and the two consistent states A and B need not be
identical,

• is not transitive since the definition disallows it from the very beginning.

As for the global consistent states, the definition of the neighbourhood relation
may look like this: Let S be a global consistent state. Then Si is a neighbour
of S if there exists a thread t such that the sub-state of Si with regard to t is a
neighbour of the sub-state of S with regard to t in t’s code.

In the following paragraphs, a few examples of the neigbourhood relation to-
gether with examples of the corresponding Java source code will be given in
order to illustrate some possibilities how the computation path can be con-
structed. This list is not complete, any other possible configuration can exist.
Moreover, these possibilities can be combined, i.e. a diagram from the following
sections can be put at an arbitrary place (between two consequent nodes) of
another diagram and the result will be a valid state-space model diagram of a
part of code.

3.3.2 Simple Linear Neighbourhood

This is the simplest case of consistent states neighbourhood. A consistent state
just follows another one in the oriented graph, as shown in figure 3.1.

Figure 3.1: Simple Linear Neighbourhood of Thread Consistent States

The corresponding Java source code would look like this:

Local computation
A call to a monitor method
Local computation
A call to a monitor method
Local computation

3.3.3 Conditional Neighbourhood

Since the computation path of (almost) every program is data-dependent, a
consistent state can be entered when a condition holds and avoided otherwise.
This is shown in figure 3.2.
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Figure 3.2: Conditional Neighbourhood of Thread Consistent States

An example of Java source code:

Local computation
if (condition statement) {

Local computation
A call to a monitor method
Local computation }

Local computation
A call to a monitor method

3.3.4 One-of-N Choice Neighbourhood

A more general case of the previous one is when one (or none) of N consistent
states can be chosen to be entered. This can be accomplished by a switch
statement with different consistent states in some branches.

Figure 3.3: One-of-N Choice Neighbourhood of Thread Consistent States

An example of Java source code:

Local computation
switch (expression) {

case C1: Lcl cmp; A call to a mon method; Lcl cmp; break;
case C2: Lcl cmp; A call to a mon method; Lcl cmp; break;
case C3: Lcl cmp; break; }

Local computation
A call to a monitor method
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3.3.5 Cyclic Neighbourhood

If several consistent states are placed inside a cycle, they can be repeatedly
entered in the same order. This is show in figure 3.4.

Figure 3.4: Cyclic Neighbourhood of Thread Consistent States

In Java, it would be expressed like this:

Local computation
while (condition) {

Lcl cmp; A call to a mon method;
Lcl cmp; A call to a mon method;
Lcl cmp; A call to a mon method; Lcl cmp; }

Local computation
A call to a monitor method

3.3.6 Special 1-State Cyclic Neighbourhood

A consistent state can also be neighbour of itself, if it is placed inside a cycle.
This is a special case of the previous one, when just one consistent state can be
reached inside the cycle.

Figure 3.5: Special 1-State Cyclic Neighbourhood of Thread Consistent States

Local computation
while (condition) {

Lcl cmp; A call to a mon method; Lcl cmp; }
Local computation
A call to a monitor method
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3.3.7 One-of-N Choice Cyclic Neighbourhood

If 3.3.4 and 3.3.5 are merged together, i.e. a switch statement is placed inside
a cycle, we get the situation depicted in figure 3.6.

Figure 3.6: One-of-N Choice Cyclic Neighbourhood of Thread Consistent States

It is obvious how the corresponding Java source code will look like – inside a
cycle there will be a switch statement with consistent states in some branches
and some other consistent states will be placed outside the switch block but
inside the cycle.

3.3.8 All-to-All Neighbourhood

If we keep all the consistent states located in branches of the switch block but
remove the consistent states outside of it (and inside the cycle), we get the
situation from figure 3.7.

Figure 3.7: All-to-All Neighbourhood of Thread Consistent States

Because the cycle can be repeated at least twice, any of the states in question can
follow after any other, the selection of transition depends only on the expression
used it the header of switch and on the condition in the cycle’s header.
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3.4 An Example: The Producer-Consumer
Problem

Let’s take a real example of a concurrent program now and show how its state-
space model, created according to the previous section, will look like. The
example is a classic producer-consumer problem, realized in Java. Two threads
(one producer and one consumer) share one monitor which has a limited amount
of memory (let’s say an array of integers of length N) for storing data exchanged
between the producer and the consumer. The threads do not access this memory
directly but use synchronized methods of the monitor.

The producer repeatedly invokes the monitor’s write() method which inserts
an integer to the shared array. However, if the whole capacity of the array
is already used, the producer must passivate itself inside the write() method
using wait() until the consumer frees at least one slot of the array. On the
other hand, the producer must assume that the consumer is also potentionally
passivated (if the array is empty) and, therefore, it must activate the consumer
in the case when the number of occupied slots of the array changes from 0 to
1. Since there is always just one waiting thread in this case, the producer calls
the notify() method of the monitor. So the producer’s program may look like
this:

public void run() {
do {

monitor.write((int) (Math.round(Math.random() * 100.0)));
} while (Math.random() != 0.0); }

Normally, the producer-consumer algorithm is an infinite one. To demonstrate
the usage of the model, we turn the algorithm to finite by allowing both the
producer and the consumer to finish after at least one number is written/read
to/from the shared array. We will use random numbers to accomplish that.

The consumer repeatedly invokes the monitor’s read() method which takes out
an integer from the shared array and returns it to the consumer. Again, the
consumer can passivate itself if it cannot read from the shared memory, i.e.
when all the slots of the array are free. The consumer stays passivated until
the producer writes at least one integer into the array. The consumer must
also assume that the producer may have been passivated and it must try to
reactivate the producer using notify() when the number of occupied slots goes
from N to N − 1. The consumer’s code is as follows:

public void run() {
int x;
do {

x = monitor.read();
} while (Math.random() != 0.0); }

The state spaces of both threads are almost identical. They have five consistent
states each: one initial state, one terminal state, one state for entering the
monitor, one state for leaving the monitor and one state for passivation inside
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the monitor methods by wait(). The two state spaces are depicted in figures
3.8 and 3.9.

Figure 3.8: State-Space Model of the Producer

We also assume that the activation signals are sent only when it is necessary,
therefore the threads will not enter the state “Queue empty” or “Queue full” as
soon as they leave it. (That would be because every guarding condition should
be evaluated in a while cycle, not just in an if statement.)

We should also show how the monitor methods will be implemented:

public void synchronized write(int i) {
while (occupied >= N) wait();
// Writing down i to the array
occupied++;
if (occupied == 1) notify(); }

public int synchronized read() {
int temp;
while (occupied <= 0) wait();
// Reading temp from the array
occupied--;
if (occupied == N-1) notify();
return temp; }

Now we can finaly proceed with construction of the global state-space model
of the whole program. It can be constructed by using superposition of the two
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Figure 3.9: State-Space Model of the Consumer

independent models, i.e. every consistent state of the producer is paired with
every consistent state of the consumer which results in a 2-dimensional grid of
global consistent states of the whole program shown in figure 3.10. Actually, the
grid should be 3-dimensional but we ignore the main thread that just creates and
starts the producer and consumer threads and dies afterwards. The real model
would not have 25 but 50 states, which could be imagined as two grids from
image 3.10 put one above the other, whose corresponding nodes are connected
with an arrow (a transition between consistent states).

The model has 25 (5 × 5) consistent states, some of which are not reachable.
The x-axis belongs to the producer thread, the y-axis to the consumer thread.
An unreachable state or an unrealizable transition is red-crossed. Note that it
would be extremely hard or even impossible to detect unreachable states and
unrealizable transitions. In this case, they are marked thanks to the fact that
we exactly know the threads’ behaviors and their relationship from the code
shown above and from the informal description of the algorithm.

The serialized producer-consumer program starts computation in the upper left
consistent state with meaning “no thread has run yet”. Any of the two threads
can be then chosen to run, therefore two other states are possibly following
the first one. In a different consistent state, more than two other states can be
reached, which reflects data dependencies in the program (random numbers and
the state of the shared array).

A state is unreachable if there exists no realizable transition leading to it. For ex-
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Figure 3.10: State-Space Model of the Producer-Consumer Program

ample, the third from top and first from left state is not reachable because both
transitions leading to it are unrealizable. The first one would correspond to the
situation when the consumer successfully completes reading but the producer
has not run yet, therefore the shared array must be empty. That is an obvious
nonsense. The second transition would correspond to the situation when the
blocked consumer is reactivated and successfully completes reading from the
empty array. This is also nonsence, because it would have to be reactivated by
the producer which has not run yet.

If a consistent state is unreachable, all transitions leading from it are unrealiz-
able.

Just note that deadlock can happen in the program. This is due to the possibility
of both threads to finish after writing/reading at least one number, introduced
artificially to reach the threads’ final states. If the producer decides to finish in
the moment when the consumer has just read the last available integer number
from the array and attempted to read again, the consumer will stay blocked
forever. Conversely, if the consumer decides to finish in the moment when the
producer has just written an integer to the last available slot and attempts to
write again, the producer will stay blocked in the monitor’s write() method
forever. The possible deadlock is expressed by the two unrealizable transitions
on the right and at the bottom of the graph.

The last unrealizable transition corresponds to the situation where the producer
first passivates itself because of the full array, then is reactivated and completes
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writing, without waiting for the consumer to free at least one flot in the array.
Again, this is an impossible behavior.

3.5 JVM-like Entities and Their Relationships

When looking at a Java multithreaded program from a point of view that is
closer rather to the level of the Java virtual machine than to the high-abstraction
level of Java source code, it can be found that we must take into account entities
that are not used or mentioned in the source code at all. These entities are as
follows:

Threads – Here, the word “thread” has its proper meaning known from the
upper level, i.e. a thread is an instance of the class Thread (or its subclass).
A thread has a state which is one of the following: new, runnable, not
runnable, dead. A thread can be associated with one or more locks that
it is currently holding.

Locks – Any object (instance of any class, this excludes primitive types) that is
used for synchronization in the source code. Actual Java objects are used
here, not just the invisible and inaccessible 1-bit value hidden inside every
object that is actually used for synchronization. At most one thread can
acquire one lock at a given time, but it can do it recursively. Two opera-
tions are provided by locks that threads can use: lock() and unlock().
The lock() operation assigns the lock to the calling thread if the lock
is not currently acquired by another thread, otherwise the calling thread
is blocked and put into the lock’s delayed set of threads. The unlock()
operation marks the lock free for use by other threads if the delayed set is
empty or (if it is not) takes an arbitrary thread from that set and assigns
the lock to it. Every lock should also provide a method replacing the
behavior of original Java methods wait(), notify(), and notifyAll().

Wait Set – A set of threads associated with every lock. It stores threads that
have invoked the wait() method of the lock (every invocation of wait()
has its lock object, even if it not explicitely stated in the source code)
and can be potentially resumed later when the notify() or notifyAll()
method of the same lock is called.

Delayed Set – A set of threads associated with every lock. It stores threads
that have tried to enter a region of code synchronized with its respective
lock. This set is managed by the lock() and unlock() operations.

Join Set – A set of threads associated with every thread. Threads in the set
are temporarily suspended, until the owner of the given join set (a thread)
dies. Then, all threads from this set are resumed and excluded from the
set.

The locks are key elements in a Java concurrent program, since everything
(thread switching, suspension, reactivation, . . . ) depends on their state. Let’s
discuss the behavior of locks in more detail now. Every method in the following
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list manipulates with the calling thread’s state and the lock’s wait set and
delayed set:

• lock() first tests if the owner of the lock is null. If it is, the lock is marked
as “acquired” and the calling thread can enter the protected region of code
that follows. The owner must also be stored. If the owner is not null,
the calling thread is inserted to the delayed set and suspended. It can be
later reactivated by the unlock() function. The wait set is not touched
at all in the lock() function.

If lock() is invoked recursively (i.e. one thread invokes the lock()
method of the same lock after invoking the same lock’s lock() method
without invoking unlock() in between them), the thread “may pass”
which means that it is neither suspended nor inserted to the delayed set,
although the lock owner is not null. A counter associated with every lock
must therefore exist, keeping information about the current lock owner’s
recursion level.

• unlock() relinquishes the lock and enables thus other threads to succeed
during a call to lock(). The owner is set to null first. Then, if the delayed
set is not empty, an arbitrary thread is taken from there and assigned to
the lock as if it won the competition during the lock acquisition. Others
are left untouched. Different strategies of the “winner” selection can be
applied here, as mentioned in section 4.2. If the delayed set is empty,
nothing happens, the lock is ready to be assigned to any other thread.

All this is performed only if the recursion-level counter reaches zero. Oth-
erwise, the counter is decremented and the thread keeps the ownership of
the lock.

• wait() is the lower-layer counterpart to the classic wait() method used
in Java source code. First, it calls unlock() in order for the calling thread
to relinquish the lock. Then, it suspends the calling thread and inserts
it to the wait set of the lock. The delayed set is not touched at all.
The thread remains suspended until the lock’s notify() or notifyAll()
method is called, or the thread’s interrupt() method. When one of
these possibilities happens, the thread is taken out of the wait set and
the lock() function must be called. That’s because of the fact that the
thread must compete with other threads in the usual way the get the lock
upon exit from the wait() method. If it is not successful, it stays blocked
in unlock(), being inserted in the delayed set. wait() changes the calling
thread’s state to not runnable.

• notify() selects an arbitrary thread from the wait set and reactivates it.
The thread then removes itself from the wait set and continues running
inside wait() where it got suspended before. As stated above, it can get
blocked again inside lock() whose invocation is mandatory. The delayed
set is kept unchanged. If the wait set is empty, nothing happens. notify()
changes the calling thread’s state to runnable.

• notifyAll() is identical with notify() except for one difference: All
threads from the wait set are reactivated, not just one. This means that
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all of them immediately start competing for the lock but at most one of
them can get it (or none if it is currently held by another thread) so most
or all of them are going to get blocked again in lock(). However, they
are going to be inserted to a different set: to the delayed set instead of
the wait set. notifyAll() changes the calling thread’s state to runnable.

3.6 Interesting Entry Points to the JVM

Now when we have a brief understanding of what the model of a concurrent Java
program should deal with, we should enumerate the points of Java source code
where the program interacts with the JVM scheduling mechanism. In order to
replace this mechanism with our own, we must:

1. Properly detect all such places in the program’s source code;

2. Replace all found pieces of source code with code interacting with our
model;

3. Re-implement all functionality of the original JVM scheduler to allow us
to monitor and controll the program’s behavior, but without negatively
affecting the program with inappropriate changes of behavior that are not
normally possible.

The interesting places in source code are discussed in the following sections.

3.6.1 Beginnings of Synchronized Blocks

The beginning of a synchronized block must be replaced with a call to the
lock() method of the lock used in the program. The lock can be either ex-
plicitely denoted by the programmer (if it is a synchronized block inside a
method) or it the object whose synchronized method is called. In the latter
case, the synchronized keyword is a part of the method’s header. In the case
of a static method, the lock of the class must be used.

If synchronized blocks are nested, lock() must be called for every block and
the lock object must be evaluated independently for every call.

3.6.2 Ends of Synchronized Blocks

The end of a synchronized block must be replaced with a call to unlock() of
its respective block. The rules for finding the lock are the same as in the case of
synchronized blocks beginnings. It should be mentioned here that in the case
of synchronized methods, the opening and closing braces are used both as the
method’s delimiters and as the synchronized block’s delimiters.

If synchronized blocks are nested, unlock() must also be called for every
block, with its corresponding lock object.
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3.6.3 Calls to wait()

Any wait() invocation must be replaced with a call to the respective lock’s
wait() method, described in section 3.5. Again, it is necessary to find the right
lock object. It can be explicitely stated in the code (aLock.wait()) or the rules
mentioned above must be used.

3.6.4 Calls to notify() and notifyAll()

The notify() and notifyAll() methods must be mapped to the methods
notify() and notifyAll() of their respective lock, in the same manner like in
the case of wait(). Again, two possibilities exist: either it can be explicitely
stated in the source code or it must be found.

3.6.5 Calls to destroy()

There are two possibilities how this method could be reimplemented in the
model of the program:

1. The thread could be marked as “non-existing” and excluded from further
scheduling. All the locks that it has currently acquired must remain ac-
quired, which will very likely produce a deadlock in the modelled program
(not in the modeling system). This scenario corresponds to the ideal sit-
uation in which the destroy() method would be implemented according
to its specification.

2. According to the Java API documentation, this method is not imple-
mented and an exception is thrown out when this method is invoked.
Therefore, the program could cut off the running thread (not the thread
whose method is called), warn the user, free all resources held by the call-
ing thread and continue with scheduling the rest of threads. This scenario
corresponds to the actual current behavior of the Java virtual machine.

3.6.6 Priority Changes

As it is in the case of a real JVM, every thread must be assigned an integer
number that corresponds to its priority. The scheduling mechanism must take
into account these priorities. If there are more runnable threads at the moment,
the chosen thread will be that with higher priority, if the priorities are not equal.
If they are equal, other conditions (mainly conditions of the scheduler itself, see
section 4.2) will influence the choice.

setPriority() should be replaced with a function changing the calling thread’s
priority inside the controller, getPriority() with a function returning it.

42



3.6.7 Calls to interrupt()

A flag must exist for every thread, saying whether the thread has been inter-
rupted or not. In a normal case, the replacement of the interrupt() call only
sets this flag to true. However, if the thread in question is in a wait set of a
lock, it must be resumed (as if the notify() function of its current lock were
invoked) and a new instance of InterruptedException must be thrown out
from the lock’s wait() method.

3.6.8 Calls to interrupted() and isInterrupted()

The replacements of both functions only return the flag of interruption for a
given thread. The only difference is that isInterrupted() must reset this flag
back to false while interrupted() must keep this value unchanged.

3.6.9 Calls to join()

In Java, a thread may temporarily suspend itself until another specified thread
dies (reaches the end of its run() method and changes its state to dead). All such
threads are stored in the join set (see 3.5) of the given thread and are blocked.
When the given thread dies, all the threads from its join set are resumed (their
state is changed back to runnable) and are ready to be scheduled from now on.

The replacement of join() should suspend the calling thread (if the other
thread has not died alredy) and put it to the join set. The suspended thread
should be resumed by the operation that executes at the end of every thread’s
life – see section 3.6.15.

3.6.10 Thread Suspensions and Resumes

Although these methods have been deprecated for several years, it is still possible
that they will be used, therefore, the controller of the model should be able to
handle them.

It would be quite a hard task to model the behavior of the real suspend()
method since the target thread can be suspended at any point of its code.
Fornunately, we can profit from the principles introduced in sections 3.2 and 3.3.
When this method (or rather its replacement action of the controller) is called,
the target thread is always blocked by the controller inside another replaced
entry point. Therefore, it is enough to set the suspension flag to true and
the thread will be excluded from scheduling from now on until the replacement
function of resume() is called, that changes this flag back to false. During
suspend(), the ownership of locks must remain.

3.6.11 Calls to stop()

This method is also marked as deprecated, although it can be used without
problems. Again, the target thread can be stopped at any point of its code
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which would normally cause hard problems if needed to be properly modeled.
We can use the same trick as in the case of the suspend() replacement, but
the flag must not be set to true since even a stopped thread can execute.
The ownership of all locks must be cancelled. In addition, a new ThreadDeath
exception must be thrown out to truly simulate the original behavior.

3.6.12 Calls to setDaemon()

Every thread must have a flag saying whether the thread is a daemon or not.
There are no differences when scheduling daemons, except for the situation when
there are no threads but daemons to be scheduled. In such a case, the controller
should terminate all threads and finish.

The replacement of setDaemon() should simply set the flag to true or false.

3.6.13 Sleeps

Since it is impossible to guarantee that a thread using the sleep() method will
be suspended and woken up later after exactly the specified amount of time
elapses, two possible approaches how to model sleep() seem to be reasonable:

1. Calls to sleep() will not be replaced at all. The calling thread will really
sleep for the specified amount of time. This approach does not truly
correspond to reality since other threads are not allowed to run during
the waiting.

2. The calling thread is temporarily suspended (its activity flag is set to
false) and in every global state of the system (see 3.2), the controller
checks whether the specified amount of time has elapsed. If it has, the
activity flag of the thread is restored. This approach does not correspond
to reality in the sense that the calling thread will very likely sleep longer
than it wanted.

3.6.14 Calls to yield()

Since it is not exactly specified how the yield() method should work, several
different approaches are again possible:

1. The calling thread can be suspended (using the activity flag) for the next
step, i.e. until the system gets to the next global state.

2. The calling thread can be suspended until all other runnable threads get
a chance to run. This may be very unrealistic since there can be a small
set of threads that will not run for a long time.

3. The calling thread can be suspended until all runnable threads with prior-
ity higher than or equal to the priority of the calling thread get a chance
to run. Again, this approach is not much realistic.
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4. yield() could be modeled as sleep() with a reasonable value of the
argument. The problem is to find the reasonable value.

5. yield() could be ignored completely.

3.6.15 Thread Creations, Startups and Deaths

The controller must be aware of any thread present in the modelled system. It
is therefore crucial for it to get information about every thread creation, startup
and death. It is not enough to monitor just the startups and deaths, since some
methods of a thread can be invoked even before it is started, for example the
join(), stop(), suspend(), and interrupt() methods.

The act of a thread creation can be noticed inside its constructor. It would
also be possible to check for the new operator, however, there are many more
occurencies of new in the source code than occurencies of a thread constructors
(just one per a thread class, or more if the constructor is overloaded).

When a thread is started, its run() method begins to be executed. So it is quite
sufficient to focus on the beginning of the run() method, calls to the start()
method can stay untouched. At the beginning of run(), the controller must get
informed that a new thread has just been started and must include it to the set
of runnable threads ready for scheduling.

At the end of run(), just before the thread dies, it must “log-out” itself from
the system and tell thus the controller not to schedule it anymore. Also, all
threads from the dying thread’s join set must be resumed.

Since the main() function of the program is functionally equal to the run()
method of a thread, the same principles should be applied to its beginning and
end.
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Chapter 4

The Controller

In the previous chapter, a formal model of a serialized Java program was defined.
However, the specified behavior, corresponding to the model, must be imposed
to the program somehow. The existence of the model itself does not guarantee
anything since its rules defined in 3.2 are not followed by a concurrent program
running on top of a classic JVM.

The correct (defined) behavior could be achieved by means of a special Java
virtual machine, used instead of the classic one. The virtual machine would
then take care about all problematic places mentioned in 3.6 and hadle them
appropriately. This special JVM would be used only for testing purposes and
it would be replaced later when the tested program is trusted to be free of
errors. This approach is used in [ExBlk1] where the Rivet JVM is used and in
[PF2] where MC-JVM is used. Other JVM exist, e.g. the Java-in-Java Virtual
Machine, written itself in Java.

A different approach is used in this work. A classic “commercial” JVM is used,
but a layer in a form of several Java classes is inserted between the running
program and the JVM. This layer controls the execution of every single thread
in the program (as described in section 4.1) and therefore is called the controller.
It is just here where all nesessary scheduling-related algorithms conforming to
the defined model’s behavior are implemented. The structure of a serialized
program is shown in figure 4.1.

As it can be understood from the picture, the controller does not intercept new
thread creations and startups. But it must intercept all other calls to the JVM
already enumerated in section 3.6. This does not involve only calls to methods
but also normally “invisible” calls to the JVM, such as entering a synchronized
block. For deterministic thread switching, the controller internally uses services
of the JVM that the serialized program is not allowed and capable to use.

The controller exposes some methods for “public use” – it is so called inter-
face of the controller, available for the serialized program. All the scheduling
and thread-switching algorithms are hidden inside, inaccessible. The controller
classes are grouped in a package to allow easy import.

Of course, the existence of the controller does not force the program to use its
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Figure 4.1: The Controller – A New Layer Inserted between the Program and
the Java Virtual Machine

services and to abandon the standard ones. Therefore, the program must be
converted from its original form to a form aware of the controller and free of
any forbidden JVM calls. Chapter 5 discusses the conversion process.

4.1 Forcing the Execution Order

Since the model presented in chapter 3 requires that exactly one transition –
a transition of any enabled thread – is allowed to be executed from the global
consistent state that the system currently resides in, it must be assured by the
controller that exactly one thread of all possibly executing threads is running
at any time. Moreover, it must be assured that the controller (or rather the
scheduler) is able to deterministicly select the next thread to run and that this
thread will be allowed to run only to the next global consistent state. Whenever
a consistent state is reached, the currently running thread must suspend itself
and allow the scheduler to select a different thread according to its preferences.

After having been started using its start() method, every thread runs com-
pletely independently from the others as well as from the thread that created
and started it. According to the number of real processors, either one or more
threads can run at a given time. If there are more threads than processors, the
classic JVM switches them in a unpredictable way. In order to switch them
deterministicly and replace thus the JVM’s natural behavior, the controller’s
internal methods of synchronization must be used.

The Thread class provides three methods allowing to manipulate with a thread’s
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execution state: suspend(), resume(), and stop(). The suspend() method
temporarily suspends execution of a thread until resume() is invoked on the
same thread. The last method interrupts execution of a thread and causes it to
exit its run() method. However, all of them have been marked as deprecated
since JDK 1.2. There were very serious reasons to do so, mainly concerning
security. The reasons can be found in [Lea]. So the controller does not use these
methods at all.

Instead, the controller uses synchronization, wait()s and notification, classic
means for implementation of monitors and guarded actions. Every thread that
reaches a consistent state and calls a public method of the controller first modi-
fies some properties of the entities of the model (such as wait sets, delayed sets,
join sets, a thread’s state, . . . ) and then enters a synchronized block (or rather
a synchronized method) where all the thread switching takes place.

The deterministic switching is then possible thanks to the following factors:

• A common lock, available to all threads, exists. It is the lock that the
global switching method is synchronized with.

• Every thread in the system has a unique ID number. The controller
keeps information about the currently running thread in variable called
runningThread. This variable is updated whenever the scheduler selects
a new thread to un. If no thread is running, the constant NO THREAD is
set.

Let’s have a look now at how the switching process is implemented in Java. A
piece of code of the global switching method is shown here.

First of all, the ID number of the currently running thread is stored to the
variable myThread. It is important to save this value before it changes inside
the method as it will be needed later when a signal is received from another
thread that wants to activate a passive thread. Only the controller keeps this
information, not the threads themselves. Since the switching can take place
in any object (including all non-threads), the threads would have to pass this
information as parameters to every method of a non-thread which would be
inefficient and hard to add to the source code during the conversion process.

myThread = getRunningThread();

Right after that, the scheduler is informed that the thread is getting suspended.

setRunningThread(NO_THREAD);

Then, it is necessary to select the next thread to run, respecting the criteria
of the scheduler. The ID number of the selected thread is stored into variable
runningThread. It is purely a matter of the scheduler (which in turn is a
subpart of the controller, not visible from outside) to select the next thread
to execute. The controller has already been informed that a consistent state
had been reached (and which consistent state it was, too) and all necessary
information that the selection of the next thread depends on has been updated.
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setRunningThread(scheduler.getNextThreadToRun());

Then, all threads present in the system, suspended with the same lock, are
woken up by a signal sent by notifyAll(). The calling thread is not affected
in any way and continues normally. It is necessary that notifyAll() be placed
before the thread suspends itself. Otherwise, the waking-up signal would never
be sent and all threads would remain passive forever.

notifyAll();

Finally, the thread can passivate itself using wait(). When it is later woken
up by a signal sent by notifyAll() from another thread, it compares its num-
ber, saved at the very beginning, with the number set by the scheduler. If the
numbers are identical, it leaves the while cycle and returns from the switching
method and then immediately from the controller’s method representing a cer-
tain type of consistent state1. Otherwise, the thread passivates itself again and
waits for another signal sent during next switching when the selected thread
reaches a next consistent state.

while (getRunningThread() != myThread)
{
try { wait(); }
catch (InterruptedException e)
{ System.err.println("Error in controller!"); }

} // while

4.1.1 Possible Optimization

The switching mechanism presented above is not ideal in the sense that during
thread switching, all threads are woken up and suspended right after, not only
the selected thread. This mechanism puts additional load on the simulator of
the program and uses processor time inefficiently. However, it can be improved
in such a way that only one thread will wake up.

The basic idea is as follows: Every thread has its own lock. When a thread
suspends itself inside the switching method of the controller, it uses that lock.
When another thread comes to the switching method and has to wake up the
first thread, it first gets the ID of the selected thread (as before) but also gets
its lock. Then, the running thread enters a block synchronized with this lock
and invokes notify(). This wakes up just one thread – the selected thread.
The thread woken up then exits the synchronized block, exits the switching
method, exits the method representing a global state and proceeds as the only
running thread in the system. The originally running thread exits the block
synchronized with the other thread’s lock and enters another synchronized

block, now synchronized with its own lock. Then, it suspends itself using wait()
until it selected by the scheduler and woken up by another thread.

1An entry to a monitor method, a passivation inside a monitor, . . .
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4.2 The Need for Various Types of Scheduling

Even if all principles of Java thread scheduling (priorities, thread states, . . . )
are respected, there is usually a number of runnable threads with the same
chance that can run from a given global consistent state. However, only one
of them can be selected by the scheduler to pass through its next transition.
Therefore, the scheduler must have an algorithm to decide which thread will be
given priority.

Since the behavior of a standard JVM is not defined anywhere (at least not in
[JVMS]), the scheduler can implement several different algorithms that can all
be used during testing. The different algorithms can be, for example:

Random Switching – The next running thread is selected randomly from
the set of all runnable threads. This is probably the most similar to the
implementation of scheduling algorithms in real JVMs. (But it cannot be
said for sure.)

The Last Recently Run Thread Algorithm – The next running thread is
such a thread from the set of all runnable threads that ran the longest
time before the moment when the new scheduling decision takes place.
Therefore, the threads are scheduled with a certain period, which is equal
to the number of threads, if all threads are in runnable state.

Round Robin Algorithm – All threads are ordered in a list. The scheduler
jumps from a thread to its successor. If it reaches the end of the list, it
jumps to the beginning. All not-runnable threads are ignored when their
turn comes. The main difference between this algorithm and the last one
is that a thread that has been suspended for a very long time and resumed
recently will have a very big chance to run in the last case but its chance
to be scheduled, using the round robin algorithm, depends on the current
pointer to the list of threads and therefore is equal to the chances of all
other threads.

Time Measurement Algorithm – The real time spent by every thread in
the system is measured and the thread with the least time of all is se-
lected. This approach seems to be problematic and not very usable in
some cases since the time measurement function currentTimeMillis()
does not return the real time with the precision of one millisecond but
is hardware-dependent. So short sequences of code are reported to be
executed in zero time, which is a problem.

Modified Time Measurement Algorithm – The last strategy can be com-
bined with the random switching strategy. As a result, the algorithm
would compute a random number, using the measured real time as a pa-
rameter, for example random numbers with exponential distribution could
be generated, where the real time would be equal to 1/λ. λ is a parameter
of the generator.

User-Driven Selection – Sometimes, the user is suspicious about a piece of
code that seems to be problematic and is very likely the source of program
errors, such as deadlocks. This strategy allows the user to schedule threads
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manually so the problematic places in the program can be reached in a
much shorter time than using a different strategy. The controller must
then read user input in every global consistent state, e.g. using an AWT
window.

Defined Path Algorithm – Sometimes, it is necessary to perform thread
switching in an exactly defined order. For example, if a deadlock is found
and the computation path is stored somewhere, the user might want to re-
produce the deadlock and therefore wants to perform an exactly the same
order of switchings as in the last program run. The result will be identical
if the same data are given to the program, including random numbers gen-
erated during the program’s run. Otherwise, a different transition of the
same thread can be executed from a given state. It is the thread’s deci-
sion which of them will be actually executed, not the scheduler’s decision.
Actually, the scheduler just selects a thread and the selected thread can
still influence the computation path if more than one transition can lead
from its local consistent state. The system can therefore get to several
global consistent states even if the same thread is selected.

It would also be convenient to explore all possible schedules of the program at
once, as ExitBlock does it. However, this task seems to be a very difficult one
because of the following reasons:

1. ExitBlock assumes that all threads are terminative so the depth-first
search algorithm can be used. We do not have this assumption.

2. Every computation path of the program has a different length and different
sets of threads can be enabled in the states of different computation paths.
Even sometimes, the computation path may be infinitely long. It would
be then very difficult to describe such paths that the controller would have
to use. On the other hand, the program would be run N times in “normal
mode” so all computation paths would be explored in iteration, not during
one run.

3. If the last issue – the description of computation path – has to be over-
come and the program has to execute all different schedules at once, it is
necessary to have means to back up the current state and to return later
to this state as ExitBlock does it, using the Rivet virtual machine. All
this seems to be impossible without the necessary support from the JVM,
unless the controller itself is able to clone the states of the program and
to roll back to a backuped state.

4.3 Replacing the Entry Points’ Behavior

The desired behavior of replacement routines has alredy been described in sec-
tion 3.6, it is not therefore repeated here. But several things must be said in
order to clearly define the controller’s functionality:
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1. All the replacement routines are methods of the Controller class and
must have the public access right in order for the program to be able to
call them.

2. All of them influence somehow the relationships of the modeling entities
(that correspond to real Java objects, e.g. locks, threads, thread sets,
. . . ) inside the controller but only some of them cause the controller to
perform thread switching. For example, the replacement of wait() causes
the controller to switch while the replacement of notify() does not.

3. The replacement of some functions, e.g. join(), cause the controller to
switch even if the points where the original functions are called were not
defined as consistent states of a thread in section 3.2. In the case of
join(), the switching will take place only sometimes, if the called thread
has not finished yet. It must be therefore seen as a conditional consistent
state. See section 3.3.3 – Conditional Neighbourhood.

4.4 The Singleton Design Pattern

As a consequence of the section 4.1, it must always be guaranteed that all
threads present in the program use services of the same controller. Otherwise,
the thread switching would not work as intended because they would be switched
in several different switchers so very likely more than one thread thread would
run at a single point of time, which is of course inacceptable.

Therefore, it must be assured that the class from the controller package provid-
ing the interface to the serialized program has always just one instance. There
exists a design pattern, called Singleton, invented right for this purpose.

The class that needs the property of a unique instance (let it be the class
Controller in this case) has no public constructor which does not allow other
class to create an instance of the class. A public method – getInstance(), for
example – returns a static reference to an object typed to Controller. The
instance is created either in the static initialization block of the class or in the
getInstance() method, when it is called for the first time. In the latter case,
the code of the method might look like the following:

public static synchronized Controller getInstance() {
if (instance == null)

instance = new Controller();
return instance;

}

In the former case, the method always returns instance, which is created when
the Controller class is loaded to memory by the class loader.
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Chapter 5

The Converter

As described in chapter 4, the analyzed program uses services of a layer inserted
between the program and the JVM – the controller. However, the insertion of
the controller is not done automatically. The way how it is inserted between
the two original layers is the subject of this chapter.

The approach presented here is based on the following assumptions:

• The source code of the tested program is available and it has been already
successfully compiled.

• All additional libraries the program uses are also available in the form of
source code. If they are not, the program cannot be properly analyzed
if these libraries use thread-specific commands, such as synchronization,
guarded actions, new thread creation, etc.

Normally, the tested program uses only services of the JVM, defined in standard
libraries, such as the package java.lang. The redirection of the thread-specific
commands must therefore be used in order for the tested program to use the
controller instead of the JVM. This is not done at run-time but already before
the tested program is compiled – the basic idea is based on modification of source
code of the tested program. The modification is also called the conversion and
the tool modifying the source code is therefore called the converter.

5.1 The Conversion Process

When the converter is started, it first tries to determine what are the input
and output directories. The input directory contains the original program, the
output directory will contain the converted program, ready to be tested with
the controller package. If these parameters are not supplied by the user, implicit
values are used. After that, the real conversion process can start.

Since it would be quite complicated to analyze Java source texts, the converter
uses another approach. Instead of using .java files only, it uses their compiled
equivalents – .class files – to gather all necessary information about the tested
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program. A class must be compiled and its bytecode must be put to the input
directory together with its source file in order for a class to be properly con-
verted. If its bytecode is not present in the input directory, the source file itself
is not touched by the converter and the class is not converted.

During the conversion process, the mechanism called reflection plays an impor-
tant role. It is an ability of a Java program to get information about itself
and its parts (classes, their fields, methods, constructors, objects, return types,
parameters of methods, etc.) at run-time. Tools being part of the reflection sub-
system are located in the java.lang.reflect package. The binary image of a
class is loaded into memory and converted to an instance of the Class class1.
This conversion is done by a class loader – an instance of the FileClassLoader
class. It is necessary to use this non-standard class loader, subclassed from
the ClassLoader class, since the standard one, present implicitly in every Java
program, has certain limitations:

• It does not load classes that are not in the current directory or in the
directory pointed to by the CLASSPATH environment variable.

• If a class belongs to a package, the standard class loader loads it only if its
bytecode is stored in a file located in a subdirectory of the current directory
or the CLASSPATH directory and the subdirectory’s name corresponds to
the name of the package.

After all classes are successfully loaded from the input directory, they are sorted
into several categories. As described in chapters 5.3, 5.4, 5.5, and 5.6, there are
different rules how to handle the conversion of a thread, of a “standard” class,
etc. The categories are as follows:

Public Threads – Classes derived (directly or indirectly) from the Thread
class. The class is public, i.e. it has the public modifier in its declaration
and it is stored in a source file having the name of the class (+ .java).

Non-public Threads – Classes derived (directly or indirectly) from the
Thread class. The class is not public, i.e. it has no access modifier in
its declaration and it is stored in a source file together with another pub-
lic class (either a thread class or a non-thread class).

Nested Threads – Classes derived (directly or indirectly) from the Thread
class. The class is not public, i.e. it has no access modifier in its declaration
and it is stored inside another class declaration.

Public Non-threads – “Standard”, not runnable, classes derived (directly or
indirectly) from Object, but not derived from Thread. The class is public,
i.e. it has the public modifier in its declaration and it is stored in a source
file having the name of the class (+ .java).

Non-public Non-threads – “Standard”, not runnable, classes derived (di-
rectly or indirectly) from Object, but not derived from Thread. The class
is not public, i.e. it has no access modifier in its declaration and it is
stored in a source file together with another public class.

1A class whose name is Class.
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Nested Non-threads – “Standard”, not runnable, classes derived (directly or
indirectly) from Object, but not derived from Thread. The class is not
public, i.e. it has no access modifier in its declaration and it is stored
inside another class declaration.

Main Class – A public class having a public static method called main with
an argument of type array of Strings. There can be more such classes in
the converted program. This category overlaps with other categories, for
example a public thread class can also contain the main() method.

Note: In the rest of the chapter, non-threads are often referred to as “normal
classes” or just “classes” while threads and their subclasses are reffered to as
“threads”.

Interfaces are completely excluded from conversion since they have no real code
and thus it is not necessary to convert them. Abstract classes are not excluded
because they can contain non-abstract methods that are not overwritten in their
subclasses.

After having sorted all loaded classes, the converter takes one after another
from each category and converts them according to the algorithm specific to
the category. The conversion process stops either if all classes are successully
converted or if an error is encoutered during a class conversion.

5.1.1 Conversion of a Single Class

As described in section 5.1, the conversion of a single Java class is one of many
steps performed during the whole conversion process. After all classes are sorted
into categories, they are taken one by one and converted separately. The con-
version of one class is what this section puts focus on.

The mechanism used for conversion of a class is depicted in figure 5.1. Data in-
puts, outputs, and tools used are represented by rectangles, actions by bubbles.

First of all, a .class file is taken from the input directory and loaded into mem-
ory. At this moment, the source file (.java) is not touched at all. Loading the
.class file first assures that only classes being properly written and compiled
without problems will be converted. When binary data are loaded from the file,
the class loader (instance of FileClassLoader) converts them to an instance of
Class. The Class class is a part of the Java reflection package, as mentioned
on page 53. Using various methods of the Class class, the following information
is retrieved:

• Information about class modifiers. This includes access modifiers, but also
the abstract and interface modifiers. The method getModifiers() is
used for this purpose.

• The name of the class’ source file. Since there is not a method to return
the source file’s name, the following approach is used: If the class has the
public modifier, its source file’s name is identical to the class’ name, plus
‘.java’. If the public modifier is not set, javap2 is executed as a separate

2Java decompiler, distributed as a standard part of the JDK.
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Figure 5.1: Conversion of a Single Java Class

process and its output is redirected to an InputStreamReader. The first
line of javap’s output contains the name of the source file.

• Information about all class’ constructors and methods. Two arrays
(one array of type Constructor and one array of type Method) are re-
turned. getDeclaredMethods() is used to get the array of methods and
getDeclaredConstructors() is used to get the array of constructors.

When all necessary information is available, the real conversion process can
start. From the input directory, the class’ source file is taken, modified in several
steps and written to the output directory. When the output file is written, the
class is supposed to be properly converted and the converter can pick up another
class for conversion.

Several stages can be distinguished during the conversion of a source file. They
are as follows:

1. Comments are removed from the source file. This allows the converter to
work more quickly and precisely.

2. Braces (characters ‘{’ and ‘}’), which denote beginning and end of blocks
of code in Java programs, are put on separate lines. At most one brace
is placed on a line and nothing than the brace itself. This is due to the
source code parser which must be able to find beginnings and ends of
blocks easily.

3. Spaces are inserted between consequent tokens of the code. Spaces are
inserted between any two consequent identifiers, operators or separators,
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only square brackets ‘[’ and ‘]’ are left stuck together. Again, this is due
to the source code parser which must be able to find sequences of strings
in the source code.

4. Some important keywords3, such as wait, notify, notifyAll,
synchronized, join, . . . 4 are replaced with their converter-specific iden-
tifier if they are not inside double quotes. This is due to the converter
which tries to replace these keywords with a piece of code linking the pro-
gram to the controller – an .insert file (see section 5.2). However, these
words may be put in a string (inside double quotes) which means that
they must not be replaced.

5. Either a method or a constructor is patched, i.e. its beginning if found, the
method’s or constructor’s body is parsed and some important changes are
made – a keyword is replaced, a piece of code is added from an .insert file
etc. This point repeats as needed, i.e. until all methods and constructors
of the class are patched. Sometimes, some other changes are made, e.g.
an .insert file is inserted at the beginning of the file or at the beginning
of the class’ declaration. The way how the converter behaves at this point
is the principal difference between the converter of normal classes and
the converter of threads. This point will be described in more detail in
subsequent sections.

5.2 Parametrization of the Conversion

The source code that is inserted to the original program’s source code resides
in several files with common suffix .insert. They must must be located in the
insert directory of the directory from which the converter is run. A separate
file exists for each entry point type (see section 3.6) to be replaced, for each
category of classes and for each type of scheduler. The type of scheduler is only
distinguished in .insert files patching the main() method because the type is
specified only once to the controller, when it initializes the scheduler.

This concept brings several advantages when compared to the case when patch-
ing information is stored directly in the source code of the converter:

• The patching information for a specific purpose is located at one place only.
Therefore, if there is a need to modify it, it is possible to do it without
affecting the converter’s source code where the same piece of inserted code
might be located more than once.

• If a part of the controller package changes, the changes have usually no
influence on the converter itself, only on the .insert files.

The type of the required scheduler is given as an argument to the converter, the
rest of information necessary for selecting the right .insert file is determined
from the type of the currently converted class and from the currently patched
method or from the keyword or method call being replaced.

3They are not real keywords of the Java language, they are only called so in this text.
4See section 3.6 for complete listing.
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Not all types of .insert files are available for all class categories. For example,
it makes no great sense to provide an .insert file to patch the beginnings and
ends of the run() method of non-thread classes.

An example of the .insert file to be inserted to the beginning of the run()
method of a thread:

Controller.getInstance().registerNewThread(this);

Sometimes, it is necessary to substitute a part of an .insert file with a value
computed or otherwise found during the conversion. For example, the replace-
ment of the wait() method needs to know what lock is used for this operation.
The lock can be either directly denoted in the source code (myLock.wait()) or
it has to be found by the converter. So, an .insert file can be parametrized
with a certain parameter. The parameter must be clearly distinguishable from
the rest of the .insert file and a routine of the converter must exist to expand
it to a sequence of Java code.

An example of the .insert file to replace any call to the notifyAll() method:

Controller.getInstance().callNotifyAll($GET_LOCK$);

The $GET LOCK$ formal parameter must be expanded by the converter to return
a reference to the actually used lock, i.e. this or any other explicit lock.

5.3 Conversion of Threads

There are many places in a thread’s source code where important changes are
made. At the very beginning of the source file, all classes from the controller
package are imported – the file all import.insert is inserted.

The constructor is patched in a special way, differently from methods. A code
registering the thread’s creation is added to the end of the constructor – file
Thread constructor end.insert. If there are more than one versions of con-
structor (it is overloaded), all of them must patched. But the controller must
be aware of the situation when a constructor calls another version of the con-
structor or it calls the constructor of its superclass.

Also the run() method is patched in a special way because this method is
called automatically by the JVM when a thread is started. At the beginning,
the patched version contains code performing registration and synchronization
of all started threads which is inserted from Thread run beginning.insert.
At the end, a deregistration routine is inserted from Thread run end.insert.
The rest of the method is patched in exactly the same way that other methods
are.

All other code, including the code inside run(), is patched according to section
5.1.1. All important calls to the JVM functions are replaced by the content of
an .insert file.
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At the beginning and at the end of every method, a file is inserted whose code
informs the controller that a method has just been invoked or that a thread is
about to leave a method. This can be extremely useful when logging is required.

5.4 Conversion of Normal Classes

In short, conversion of normal classes does not differ much from conversion
of threads. It can be seen as a generalization of thread conversion. It is not
necessary to patch the constructor and the run() method. If such method
exists, it has nothing to do with Thread.run() and can be treated as any other
method.

5.5 Conversion of the Main Class

Any class with the method public static void main(String[] args) can
be started by the JVM when the program is launched. Therefore, the converter
must apply similar actions in the main() method as it applies in the run()
method of a thread class. The implicit thread must also be registered at the
beginning and deregistered at the end.

Patching the constructor (if it exists) has no effect here since the main() method
is static so no constructor is actually called. The controller does not need to
know about the thread before it is started because no controller exists at that
time.

The controller must properly detect the situation when main() is called from
within an already running program, i.e. it is not the first method run in the
program. In such case, the current thread must not be registered again.

5.6 Conversion of Private and Nested Classes

The same principles are used for non-public and nested classes as for “normal”
public classes. However, there are some technical obstacles that could prevent
the converter from functioning properly. Therefore, the source code of a non-
public or nested class is always copied to an independent temporary file, kept
apart of the original source file and copied back after conversion.

The converter must be aware of non-public and nested classes when converting
a public class, too. The corresponding code must be skipped. Or, better,
all classes (including public classes) should be copied to an independent file,
converted independently, and all composed together (in a convenient order)
afterwards.

5.7 Using Java Source Code Parsers

The presented method of conversion has several weak points:
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• It needs the bytecode. This is not a big problem since it can be generated
at any time using javac.

• It is prone to errors. Ususally, there are more ways how a certain language
element can be written and the converter must be able to deal with all
possibilities. A typical example is the order of keywords in a method
header.

• It is possible that it does not cover the whole Java language. Some lan-
guage elements may not be understood or may be ignored.

• The Java language may change in future in such a way that the converter
will not cover all language elements (some elements will be added) or it
will fail during the converion process (some elements will be removed or
their syntax will be changed).

It would therefore be convenient to replace the above conversion with a more
sophisticated algorithm, based exclusively on a parser of the Java language.
Such algorithm would correctly go through the whole source file and detect all
important points where an appropriate action would be taken. The bytecode
could be still used, but only as a guarantee that the source code is well writ-
ten. Moreover, one pass through the .java file would be sufficient to convert
the class, it would not be necessary to repeat the search for every method or
constructor.

There exist parser generators like JavaCC (Java Compiler Compiler) that take
a grammar description as input and generate the source code of a program
able to parse input formatted according to the specified grammar. If the whole
grammar of Java, available at [JLS], would be given to JavaCC, the generated
program would parse Java source files correctly.

A parser of the Java language has also been written already. It is available
at [Parser]. It is not perfect in the sense that it covers just Java 1, so, for
example, inner classes are not supported. The ANTLR parser generator (part
of PCCTS, the Purdue Compiler-Construction Tool Set) was used to generate
this parser. A little inconvenience is that the parser is generated in C++, not
in Java, so it must be executed via Runtime.exec() and it must be compiled
for any platform it is intended to be used on. Version 2.0 of ANTLR should be
able to generate parsers in Java which would make things much easier. In order
to support Java 2, the file java.g (the Java grammar read by ANTLR) would
have to be extended.

Using a parser is certainly a promising method of Java source code conversion.
It will be seriously considered during further work to replace the currently used
method.
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Chapter 6

Conclusion

This chapter summarizes the current state of work that has lead to this paper,
enumerates possible usage of the tool built up upon the presented principles,
and finally states the goals of further work that should end up with a Ph.D.
thesis.

6.1 Current State of Work

So far, initial versions of the controller and the converter have been developed.
They are both parts of a tool called J-Serializer.

The controller is not able yet to handle all consistent states or other entries to
the JVM, only beginnings and ends of synchronized blocks and thread creation,
startup and death. The rest is still to be implemented. Also, the controller
supports just one scheduling strategy – the time measurement strategy – that
suffers from imperfect implementation of time measurement in Java or on certain
hardware platforms in general. Not all entities have been incorporated to the
controller yet, the controller just handles threads. The support for locks, wait
sets, etc. is a subject of further work. However, it has been proved that the
principles of deterministic thread switching are realizable and that this method
can be a benefit in the area of concurrent Java programs tracing and debugging.

The converter works on principles described in section 5.1.1, which is not a
guarantee of successful conversion in all cases. Therefore, the use of a Java
language parser is seriously considered and its incorporation to J-Serializer or
modification will also be a subject of future work.

6.1.1 Related Publications

Just after the first version of J-Serializer was made, it was described in a tech-
nical report [J-Ser]. A short overview can be found in [Ser], a more detailed
overview with an explanation of the state-space model can be found in [JCPD].
The work summarized to overhead projector slides can be found at [DSS].
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The system of deterministic Java thread switching was first introduced in J-Sim,
a Java library for discrete-time simulation. The switching system is described in
[J-Sim1], the usage of J-Sim can be found in [J-Sim2] or in its documentation.

6.2 Application Area

The purpose of this work is not to invent an already invented algorithm or
to duplicate work that has already been done by others, as stated in chapter
2. In fact, just two tools from that chapter target the area of Java concur-
rent programs: the implementation of the ExitBlock algorithm and the Java
PathFinder 2 tool. They both require a special Java virtual machine and work
directly with bytecode. This ensures that the program is tested in its native,
unmodified form. However, the feedback to the user is whether the program is
correct or not and the schedule leading to a potentional deadlock. Also, there
are some assumptions about the tested program.

The main advantage of J-Serializer (when fully implemented) is the feedback to
the user. He/she should know what happens at the level of his/her Java source
code, not at the level of Java bytecode instructions. Only then the reasons
of malfunction can be easily understood and corrected. Also, there are no
assumptions about the finitness of threads of the program. J-Serializer is able
to execute the program in a neverending loop, if the user wishes to do so. One of
the execution modes – the user-driven one – should allow him/her to concentrate
on suspicious or problematic parts of the code, without the need of executing
the rest of the program, if it is possible. In general, it could be said that J-
Serializer is more “user-friendly” than the other tools are and it has a broader
area of application due to nonexisting assumptions about the tested program.
An example of application is testing so-called reactive systems – sets of objects
that respond to incoming messages and change their state accordingly – where
the communication between the user and the program plays an important role.
On the other hand, Java concurrent programs are very rarely used for massive
mathematical computation. For such type of tasks, better tools written in
languages offering higher performance already exist (e.g. PVM, MPI), allowing
the task to be distributed on a network.

6.3 Goals of the Ph.D. Thesis

When taking into account the most probable application area (see the last sec-
tion), the future work should focus mainly on the following subjects:

• There should be an ability of the tester to influnce the tested system (in
its positive meaning) and observe the reaction. For example, pre-defined
messages to the objects of the system could be sent in a defined order and
at defined time or during defined transitions.

• For the purpose of testing reactive systems, a kind of model time1 would
1As it can be found in J-Sim, for example.
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be useful. This time could be implemented as a simple counter or the real
time or any combination of those.

• The behavior of the tested program could be tested in terms of the reac-
tion time, e.g. the real time or model time or the number of consequent
consistent states could be measured until the analyzed part of software
“responds” to the message. The term “response” means achieving a de-
fined state, fulfilling a pre-defined condition, sending other messages back
to the original sender or to any other objects, etc.

Concerning the technical part of the work, i.e. the implementation of the pre-
sented principles to the Java programming language, the tool has to be consid-
erable improved. In future, most effort should be put mainly into the following
tasks:

• The converter should be rewritten to use a reliable and up-to-date parser of
the Java language that would assure nonproblematic conversion of source
texts.

• The controller should be fully implemented to support existing operation
on threads.

• If there exists an exact and stricly defined specification of Java thread
scheduler, it should also be incorporated to the controller as one of its
scheduling strategies.

• There should be a way how to describe a complete execution path (for
terminating programs only) and how to impose the controller to follow that
path. Moreover, there should be a way to enumerate all possible execution
paths and to “replay” them. The program would be then executed N
times, each time from the beginning to the end. It is very likely that the
set of all possible schedules will have to be created step-by-step, during
paths executed so far. However, even this method will not probably be
able to handle dependencies on random numbers and real time.

After successfully finishing all above tasks, J-Serializer should be able detect all
problems during all possible schedules of the program (as ExitBlock does it),
while keeping the principles it is based on, mainly the friendly and intuitive
feedback on the source-code level. Moreover, it should be superior in some
specific application areas, like the above stated reactive systems.

63



Bibliography

[JLS] James Gosling, Bill Joy, Guy Steele, Gilad Bracha: The Java
Language Specification, Second Edition. Sun Microsystems, 2002.
http://java.sun.com/docs/books/jls/second edition/html/-
j.title.doc.html

[JVMS] Tim Lindholm, Frank Yellin: The Java Virtual Machine Specifi-
cation, Second Edition. Sun Microsystems, 1999.
http://java.sun.com/docs/books/vmspec/2nd-edition/html/-
VMSpecTOC.doc.html

[ExBlk1] Derek Bruening, John Chapin: Systematic Testing of Multi-
threaded Programs. MIT/LCS Technical Memo, LCS-TM-607,
Massachusettes Institute of Technology, Cambridge, Massachusettes,
USA, 2000.
http://web.mit.edu/iye/www/docs/tester-TM607.ps.gz

[ExBlk2] Derek Bruening: Systematic Testing of Multithreaded Java
Programs. Master’s Thesis, Massachusettes Institute of Technology,
Cambridge, Massachusettes, USA, 1999.
http://web.mit.edu/iye/www/docs/thesis.ps.gz

[PF1] Klaus Havelund, Thomas Pressburger: Model Checking Java
Programs Using Java PathFinder. International Journal on
Software Tools for Technology Transfer, Vol. 2, No. 4, 2000.
http://ase.arc.nasa.gov/people/havelund/Publications/-
jpf-sttt.ps

[PF2] Guillaume Brat, Klaus Havelund, SeungJoon Park, Willem Visser:
Java PathFinder – Second Generation of a Java Model
Checker. Proceedings of the Workshop on Advances in Verification,
Chicago, Illinois, USA, 2000.
http://ase.arc.nasa.gov/visser/wave00.ps.gz

[Sem] Abhik Roychoudhury, Tulika Mitra: Specifying Multithreaded
Java Semantics for Program Verification. Proceedings of the
24th International Conference on Software Engineering, Orlando,
Florida, USA, 2002.
http://portal.acm.org

[ACL2] J Strother Moore, Robert Krug, Hanbing Liu, Gerge Porter: Formal
Models of Java at the JVM Level – A Survey from the ACL2

64



Perspective. Presented at the Workshop on Formal Techniques for
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