
University of West Bohemia
Západočeská univerzita v Plzni

Master Thesis
Diplomová práce

Large Scale Video Sequence Matching
Vyhledáváńı duplicitńıch vidéı ve velkých databáźıch

Author:

Bc. Adam Fara

Supervisor:

Ing. Pavel Campr, Ph.D.

Declaration

I confirm that I wrote this master thesis independently and have not used any sources
that are not declared in the text. This thesis was not previously published or presented
to another examination board.

In Pilsen, May 17th, 2016

Signature:

Prohlášeńı

Předkládám t́ımto k posouzeńı a obhajobě diplomovou práci zpracovanou na závěr
studia na Fakultě aplikovaných věd Západočeské univerzity v Plzni.

Prohlašuji, že jsem diplomovou práci vypracoval samostatně a výhradně s použit́ım
odborné literatury a pramen̊u, jejichž úplný seznam je jej́ı součást́ı.

V Plzni, 17. května 2016

Podpis:

Acknowledgement

I would like to thank my supervisor Ing. Pavel Campr, Ph.D. for his priceless sup-
port and useful advice on the way to finish this work.

Computational resources were provided by the CESNET LM2015042 and the CERIT Sci-
entific Cloud LM2015085, provided under the programme ”Projects of Large Research,
Development, and Innovations Infrastructures”.

Poděkováńı

Děkuji vedoućımu svoj́ı diplomové práce Ing. Pavlu Camprovi, Ph.D. za jeho pomoc
a cenné rady při tvorbě této práce.

Děkuji CESNET LM2015042 a CERIT Scientific Cloud LM2015085 za př́ıstup k výpočet-
ńımu prostřed́ı, ve kterém proběhla většina výpočt̊u. Výpočetńı prostřed́ı je poskytnuté
v rámci programu ”Projects of Large Research, Development, and Innovations Infras-
tructures”.

Zásady pro vypracovańı

1. Seznamte se s problematikou indexace a vyhledáváńı vidéı.

2. Prostudujte doporučenou literaturu.

3. Navrhněte a implementujte algoritmus, který umožńı vyhledávat duplicitńı videa
nebo jejich části ve velkých databáźıch.

4. Úspěšnost algoritmu vyhodnoťte na zvolené testovaćı sadě vidéı.

5. Př́ıslušné programové kódy vytvořte ve vhodných programovaćıch jazyćıch s využit́ım
dostupných knihoven a nástroj̊u.

Abstract

This work is focused on video copy detection in large databases. I use two different
approaches of fingerprinting media, one of them based on SURF, the other one on siamese
neural networks. Fingerprinting is a process of describing an image by n-dimensional
numerical feature vector. Simplest feature vector of an image can be for example his-
togram of brightness values. In this work I use terms fingerprint, feature vector and
descriptor as synonyms. Fingerprints are small files representing videos. They can be
searched fast and storing them takes just a fraction of computer memory compared to
storing video files.

The goal of this work is to determine the ability of proposed approaches of fingerprint-
ing media and their transformed copies. Transformed copy of any media is changed in
some way from its original source. It is also called duplicate media. It can be affected
by compression, geometric transformations, etc. Another part of this work focuses on
matching algorithm used to match fingerprints of two samples of visually similar media.

I also compare ability of both proposed descriptors to generalize feature vectors of orig-
inal and transformed media. General feature vector should be similar for original media
and its transformed copies. In other words, feature vectors retrieved from original and
transformed media should be close to each other in feature space and be separated from
feature vectors computed from another media.

Entire program created in this work consists of part computing image fingerprints and
part matching similar fingerprints. Usage of this program might be in automatic media
searching in large databases or online sources (YouTube, etc.), e.g. for finding unautho-
rized video copies. For the purpose of this work I created dataset of thousands of videos
and their transformed copies.

I managed to create a system that is quite reliably able to find duplicate video if another
copy affected with similar transformation is already in my precomputed dataset.

Keywords: video copy detection, video matching, siamese neural network for image
description

Abstrakt

Práce je zaměřena na vyhledáváńı duplicitńıch vidéı ve velkých databáźıch. V oblasti
zpracováńı obrazu jsou často zažité anglické termı́ny, které se použ́ıvaj́ı i v češtině.
Překládáńı takových termı́n̊u zp̊usobuje zmatek. Budu proto použ́ıvat zažité anglické
termı́ny. Použ́ıvám dva r̊uzné př́ıstupy k popisu (fingerprinting) médíı. Prvńı z nich
je založený na SURF deskriptoru, druhý využ́ıvá siamské neuronové śıtě. Fingerprint-
ing je proces popisu obrazu pomoćı n-dimenzionálńıho č́ıselného př́ıznakového vektoru
(feature vector). Nejjednodušš́ı feature vector obrazu může být např́ıklad histogram
jasových hodnot. Termı́ny fingerprint, feature vector a descriptor maj́ı v této práci
stejný význam. Fingerptinty jsou velikost́ı malé soubory reprezentuj́ıćı video. Mo-
hou být rychle prohledávány a jejich uchováváńı zab́ırá jenom zlomek paměti poč́ıtače
ve srovnáńı s uchováváńım p̊uvodńıch video soubor̊u.

Ćılem práce je určit schopnost představených př́ıstup̊u popsat p̊uvodńı média a jejich
upravené kopie. Upravená verze videa je nějakým zp̊usobem změněná proti originálu.
Upravenému videu se také ř́ıká duplicitńı video. Může být změněné např́ıklad kompreśı,
použit́ım geometrických transformaćı a podobně. Daľśı část práce se zaměřuje na algo-
ritmus slouž́ıćı k párováńı fingerprint̊u dvou vzork̊u vizuálně podobných vidéı.

Porovnávám také schopnost představených deskriptor̊u popsat obecně originálńı a up-
ravenou verzi vidéı. Obecný př́ıznakový vektor by měl být podobný pro originálńı a du-
plicitńı video. Jinými slovy, př́ıznakové vektory źıskané z p̊uvodńıho a transformovaného
videa by měly mı́t malou vzdálenost v prostoru př́ıznakových vektor̊u a zároveň by měly
být vzdálené od př́ıznakových vektor̊u spočtených pro jiná videa.

Celý program se skládá z části, která poč́ıtá př́ıznakové vektory vidéı, a části, která
páruje př́ıznakové vektory podobných vidéı. Použ́ıt́ı programu může být k automat-
ickému vyhledáváńı duplicitńıch vidéı v rozsáhlých databáźıch nebo online zdroj́ıch
(YouTube a podobně) např́ıklad kv̊uli ochraně autorských práv. Pro účely práce byl
vytvořen dataset č́ıtaj́ıćı tiśıce vidéı a jejich transformovaných kopíı.

Podařilo se mi vytvořit systém, který je schopný celkem spolehlivě nalézt duplicitńı
video, pokud už v databázi předpoč́ıtaných vidéı existuje podobným zp̊usobem poškozená
verze stejného videa.

Kĺıčová slova: vyhledáváńı duplicitńıch vidéı, matchováńı vidéı, siamské neuronové
śıtě pro popis obrazu

Table of Contents

1 Summary 1

2 Introduction 2
2.1 My approach . 2

3 State of the art 3
3.1 Spatial methods . 4

3.1.1 SURF algorithm . 4
3.1.2 Yang hashing algorithm . 5

3.2 Spatio-temporal methods . 5
3.3 Neural networks . 5

3.3.1 Convolutional neural networks . 6
3.3.2 Applications of convolutional neural networks 7
3.3.3 Siamese neural networks . 8

4 My contribution 11
4.1 Hashing algorithm based on method proposed by Yang 11
4.2 Siamese NN . 16

4.2.1 Implemented models . 16
4.2.2 Model modification . 17
4.2.3 Model verification . 18
4.2.4 Training dataset . 19
4.2.5 Experimental results . 20
4.2.6 Time consumption . 24

4.3 Video matching . 25
4.3.1 Video matching algorithm . 25
4.3.2 Sequence verification . 25
4.3.3 Results for Yang algorithm . 26

4.4 Preprocessing . 28
4.5 Dataset . 28

4.5.1 Flowchart . 30

5 Conclusion 33
5.1 Summary . 33
5.2 Future work . 33

6 Appendix 35

1 Summary

In this work I introduce ways of media copy detection in large video datasets, specifi-
cally video copy detection. Large video dataset is a database of precomputed fingerprints.
Storing only fingerprints instead of their source video files brings two advantages. Files
with fingerprints are small compared to video size and this easier to store. In the case of
this work fingerprint files were about thousand times smaller than corresponding video
files. Fingerprints can be also effectively searched in relatively short time.

Media copy can be found as an entire or partial copy of original media, or along with
other copies as a subpart of newly created media. Newly created media can for example
be a movie review. It contains short parts of original media reedited and saved as new
video. In general, there are two approaches in matching videos, content based matching
and watermarking[1]. Unlike content based matching, watermarking can be only used
for those media which were marked before their original distribution. Marking video can
be done by inserting a logo or another pattern.

In this work I focus on spatial media matching that belong to content based matching.
Spatial feature vectors are extracted from each single image. They describe in some way
what is happening in the image and extraction of such feature vector has no connection
with other frames in the video. Spatial approach is only based on image similarity, and
is a basic approach that one could use for steady images matching. Video, being a pro-
cess that evolves in time, allows us to augment its description by connection between
individual frames. I compare two different ways of computing features and matching
them. First, I present simple hashing algorithm based on SURF features [2]. Second
approach is based on siamese neural networks. I assume the first approach to be robust
on identical video sequences, however, sensitive to any kind of image transformation.
Neural network should overcome this disadvantage. If the network is trained correctly
it should return more similar feature vectors for original and duplicate media.

1

2 Introduction

Video matching problem is interesting field with no clear path of correct approach.
There are different attempts [1, 3, 4, 5] of video matching, however, none of them has
been proved to be the right one. There are many companies and research teams trying
to solve this problem more or less effectively. Modern approaches of video copy detection
are content based, so they can be applied on any existing video with or without previous
marking. There are several ways of fingerprinting videos and I will introduce two of
them including video matching algorithm. Content based methods do not require any
additional information but the media itself. All information that is needed for video
matching is retrieved from the video itself.

2.1 My approach

The main goal of this work is to summarize some of existing solutions for video
matching and try and build own implementation upon them. Core structure of my
algorithm is based on brute force matching algorithm which will definitely need deep
revision in future work. As an input for the matching algorithm I introduce two ap-
proaches. First of them is based on spatial method [2] using SURF features as an image
descriptor, second one is based on siamese neural network. Siamese neural network is
non-trivial approach with many variables, therefore, I will try to find satisfactory model
for my task.

2

3 State of the art

Unauthorized video usage and sharing has become a massive problem for authors and
distributors. There is already a neologism ”freebooting” [6] associated with using others
people media. Freebooting means downloading a video and reuploading it again (in same
version or edited) to another server or channel without the creator’s permission.

Unlike images, video is much more complex media making it more difficult for video
search engines to find the copies. Video copy is not an exact duplicate of originally
distributed media. It can be edited in several ways; for instance geometric transformation
(resizing, rotating, etc.), non-geometric transformations (blur, contrast, etc.), cutting
and using short parts of original video, reversing video, changing audio track, picture-
in-picture and many others. Making a robust search system that would be capable of
covering all possible transformations and their combination is probably impossible task
at the current time. Many approaches have been introduced, each of them more or less
precise in different cases.

There are two ways of protecting video content. First and older of them is watermarking,
the other one is content based copy detection [3, 4]. Watermarking relies on inserting
a pattern into frames. Only those media whose original version was watermarked can
be found using watermark based methods. On the contrary, content based methods
are using fingerprints independent on any primary pattern or modification and do not
require any additional information but the media itself. Fingerprint means the same
as feature vector or descriptor. It is a numerical code retrieved from an image which
describes some characteristic of the image (e.g. color histogram).

Content based copy detection can be divided into two main groups; spatial and spatio-
temporal methods. Spatial methods rely on local descriptors of a video frame, while
spatio-temporal methods combine local image descriptors with temporal trails of the
partitions [1]. All mentioned methods are often being reinforced by other descriptors,
e.g. sequence of certain video can be described by combination of visual and audio
features.

3

3.1 Spatial methods

Spatial methods are using image descriptors. Each frame can be fingerprinted by one
or by combination of several descriptors. The fingerprints thus obtained should describe
a frame in a general way, however, still preserving enough information. Therefore, two
fingerprints that are close to each other (e.g. in Euclidean space) should describe two
visually similar images. Simplest copy detection method can decide on the basis of
number of visually similar frames. Spatial methods are mostly based on feature vectors
computed from basic descriptors such as SURF or local color histograms.

Algorithm implemented in this work is based on paper by Yang et al. [2]. This algorithm
uses SURF-based features. To avoid confusion of SURF algorithm and hashing algorithm
based on SURF [7], I will refer to Yang’s hashing algorithm [2] as Yang algorithm.
Proposed method is fast and reliable. Its weakness is hidden in the necessity of keeping
enormous amount of precomputed features. Matching algorithm compares query video’s
feature vector with each feature vector in the dataset. Query video can be transformed
in different ways. Feature vector of each video and for all its considered transformations
has to be stored in the dataset. Clearly, cardinality of dataset is a huge disadvantage of
this approach.

3.1.1 SURF algorithm

SURF algorithm, that is used in Yang algorithm, was first introduced for the task
of finding corresponding points between two cameras in stereo vision. Matching images
from two different sources is non-trivial task. Effective image descriptor must be robust
to changing light conditions, geometric transformations, noise, etc. Descriptor must also
ensure that corresponding points of interest will be the same in both images. In SURF
descriptor this was achieved by splitting descriptive function into two parts.

Detector part is responsible for locating distinctive locations, such as blob, T-junctions,
and corners. On the other hand, descriptor part represents neighborhood of point of
interest found by detector. Combination of mutual positions of points of interest from
both images together with their similarity computed from corresponding descriptors
gives strong performance of image matching. Term SURF descriptor is sometimes used
for entire algorithm (or returned feature vector) and does not only refer to point’s dis-
criminative part.

SURF detector is based on Fast-Hessian detector. Given a point x = (x, y) in an image
I, the Hessian matrix H(x, σ) in x at scale σ is defined as follows

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
(3.1)

where Lxx(x, σ) is the convolution of the Gaussian second order derivative ∂2

∂x2 g(σ)
with the image I in point x, and similarly for Lxy(x, σ) and Lyy(x, σ).

4

3.1.2 Yang hashing algorithm

Another term usually associated with image processing is hash code. For the purpose
of this work it will mean just the same as feature vector or fingerprint. The hash code
algorithm implementation works as follows; each frame of a video is resized to 400 by 400
pixels and subdivided into 100 by 100 pixels cells, giving 16 non-overlapping subparts in
the frame. SURF [7] descriptor is computed over each cell. Number of key points found
by SURF is used as descriptor for given cell. Neighborhood description given by SURF
is not used at all. Hash code for each frame consists of 16 integers, one for each subpart
of the frame. Hash code can be also used in a meaning of descriptor of an entire video.
Then it is simply an array of feature vectors of each frame.

3.2 Spatio-temporal methods

Changick and Bhaskaran introduced innovative approach [1] of video sequence match-
ing which adds ”action” information to the descriptors. They claim that traditional
content based approach using only spatial information about image often returns false
matches or fails at matching duplicate media. Their algorithm computes temporal fin-
gerprint of media. Basic idea lies in dividing each frame into four non-overlapping parts
and computing pixel intensity histogram over each part. Splitting image into four parts
gives an algorithm robustness against changing aspect ratio from 4:3 to 16:9 and vice
versa, and similar transformations (e.g. letterbox). Beside that they compute difference
between adjacent frames which is used as feature vector instead of fingerprinting each
single frame.

This idea is similar to differential Freeman chain code as it also makes the hash code
invariant to initial conditions. For example media affected by brightness adjustment
should have almost the same hash code as its original source. Hash code based on
brightness histogram is also insensitive to many transformations I had to deal with, see
chapter 4.1.

3.3 Neural networks

Neural networks have become widely used tool in many applications of machine
learning and data mining. Origin of first artificial neural networks dates back to 1943
when model of McCulloch-Pitts (MCP) neuron was introduced. Artificial neurons were
initially designed to mimic function of neurons in human brain. Single neuron can only
be used for simplest classification task. Connecting neurons into multilayer nets gives
them power of high dimensional non-linear classifiers.

In process of learning, network adapts weights connecting individual neurons to give
the best possible response for given input, for instance to simply classify positive and

5

negative numbers into two classes. Process of updating weights based on classification
error is called backpropagation [8].

3.3.1 Convolutional neural networks

Convolutional neural networks [9] have been successfully applied to many tasks. Dif-
ference between convolutional neural networks and fully connected neural networks is in
the way each layer processes data. While fully connected layers receives and processes
data as an one dimensional array, convolutional layer deals with two dimensional struc-
ture. Image data can be also represented as an one dimensional structure, however, it
is much more convenient to keep them in their natural two dimensional structure. An-
other advantage of convolutional layers is that they are usually much smaller than fully
connected layers. Size of each layer is affects training time of the network and using
convolutional layers makes training much faster and less memory consuming.

Convolutional neural networks typically use layers that work as local filters; edge de-
tectors, blurring mask, line detector, etc. Single convolutional layer usually consists of
multiple convolutional kernels, each of them can be trained to work as different type of
detector. Resulting effect is that entire neural network can gain more significant infor-
mation from input data than one would ever be able to suggest and compute by classical
engineering approaches. Process of abstraction high-level features using multi-layer neu-
ral network is also called deep learning [10].

Main advantage of using convolutional neural network is that it is not clear what kind
of preprocessing would be most convenient for given data and doing such a thing would
be guessing. Process of backpropagation used while training neural network naturally
forces the layers to form convolutional kernels into most effective image filters and detec-
tors. Figure 3.1 shows typical structure of convolutional neural network. Convolutional
layers are usually followed by pooling layers (sub-sampling layer) which reduces output
dimension of previous layer. Pooling layer is traditionally a non-overlapping averaging
or max value filter.

After several pairs of convolutional and pooling layers it is common to use some kind of
non-linear layer or normalization layer. Popular non-linear layer used in convolutional
neural networks is rectified linear units (ReLU) layer. Using ReLU allows faster training
[11] compared to standard activation function 3.2 or 3.3. Particular structure always
differs for individual application.

f(x) = tanh(x) (3.2)

f(x) = (1 + e−x)−1 (3.3)

6

Figure 3.1: A typical structure of convolutional neural network [12].

3.3.2 Applications of convolutional neural networks

Face recognition

Convolutional neural networks have been successfully used for both face detection
and recognition. Face detection is simply a task of deciding whether there is face in an
image and locating face. Task of face recognition on the other hand is to match face
template with face stored in the database. There are basically two usages of neural net-
works for face recognition depending on the application of the face recognition system
[13].

First of them is finding face in large databases. Often there are only few images of
each person in the database. This application usually returns list of possible candidates.
Searching in this case does not need to run in real time and does not have huge require-
ments on speed performance. Typical situation is finding a person in police database.

Second typical application is real time face recognition. Such an application is usually
used for security reasons, for instance verifying identity of person trying to access se-
cured system. Typical usage can be computer login verification. In this case there is
quite limited database of possible candidates and there are also several images of each
person in the database. These systems require high reliability in face detection. Another
important requirement is time consumption for real time usage.

Image classification

Another interesting field of using convolutional neural networks is image classifica-
tion. With growing usage of computer vision there is also growing need of having reliable
system capable of object recognition. Training such a network requires enormous number
of annotated training images. There are already several databases that can be accessed.
From interesting datasets I can mention ImageNet [14] which consists of roughly 15 mil-
lion high-resolution images in over 22 000 categories, or LabelMe [15] database which
consists of thousands fully segmented images and is still growing.

Image classification problem is similar to the application introduced in this work. Image

7

classification tries to train a network capable of deciding whether several images belong
to the same class, in other words to decide if they are in some way similar enough and
differ from other visually less similar images. In my case I do not have thousands of
classes that I need to classify images into. Task of my network is only to decide if two
images are visually similar or not. For this reason, similar structures of neural networks
that are usually used for image classification can be used.

3.3.3 Siamese neural networks

Siamese neural networks were first introduced by Bromley et al. [16] in 1993 as
a tool of verifying hand-written signatures. Learning similarity metric with siamese
neural networks is done by presenting pairs of similar and non-similar images to the
network. Main idea lies in ability of network to find a subspace in feature vectors that
describes similar inputs with low distance and non-similar inputs with high distance.

Siamese network has two branches; each branch is one neural network. In my case
these networks are forward convolutional networks. Both networks share their weights.
Networks are fed at the same time by two images which can be either similar or not.
Similarity of images is given by labeled dataset. Purpose [16] of shared weight is to find
subspace in feature space that will lead to similar (ideally same) outputs (feature vectors)
on both branches for similar images and different outputs for non-similar images. Loss
function on the top of siamese network is used while training the network. It computes
similarity of both outputs from their distance in feature space. Loss function is designed
to map outputs of neural network (n-dimensional feature vectors) closed to each other
for similar inputs (images) and distant for non similar images. Similarity of images is
defined by training dataset. Similar pairs of images are transformed in one way and
labeled with 1, non similar pairs of images are transformed in another way (or derived
from different images) and labeled with 0. By defining transformations used in training
dataset is also defined metric which neural network is forced to learn. Distance of non
similar images is given by parameter margin in 3.4.

Siamese neural networks are ideal for the task of two images comparison. Figure 3.2
shows general structure of siamese neural network. Whole structure consists of two
identical neural networks sharing all weights. Neural network is trained by sending
pairs of images simultaneously to both inputs. Pairs are binary labeled; 1 for similar
images and 0 for non-similar images. Composition of neural network can contain different
layers. Usually there are several convolutional, pooling, and non-linear layers. Last layer
is usually fully connected.

On the top of the layers is placed loss function layer. It compares output from both fully
connected layers and its output is used for backpropagation.

There are several commonly used loss functions comparing outputs from both networks.
In my case I used contrastive loss [17] function 3.4. Along with other loss functions,

8

contrastive loss function is used in the case when two inputs are fed into the network
and can compute their distances.

E =
1

2N

N∑
n=1

(y)d2 + (1− y)max(margin− d, 0)2 (3.4)

where:
d = ‖an − bn‖2 is distance if two feature vectors y is label of training pair; 0 for
non similar and 1 for similar images
margin is desired distance between two not similar images
N is number of input pairs in one training iteration
d is distance between current pair of feature vectors fed into the network

Figure 3.2: General structure of siamese neural network

Implementing neural networks in source code of a program is not a hard task. But
training large networks is enormously time consuming and very slow. Luckily, there are

9

several open source deep learning frameworks available and optimized for fast computing.
Noteworthy frameworks are Caffe [18], Cuda-convnet [19], DeCAF [20], TensorFlow [21]
or Theano [22]. Some of them can compute on both CPU and GPU. In chapter 4.2.6
time requirements for CPU and GPU are consulted. In this work I used Caffe framework
with CUDA acceleration.

10

4 My contribution

The aim of this work was to create matching system that would be able to find
duplicate video (if it exists) in video database. To achieve the goal I split the task into
four smaller independent parts.

• Dataset creation 4.5

• Video descriptor based on Yang algorithm 4.1

• Video descriptor based on Siamese neural networks 4.2

• Video matching algorithm 4.3

Structure of created source code allows one to use each part separately or exchange
one part by another implementation. Matching algorithm can use hash codes retrieved
from any other descriptor; another video descriptors can be computed from the dataset.
Complete system can be used for finding duplicate videos in large databases. Importance
of such system is explained in section 3. Idea behind both implemented video descriptors
is that feature vector computed from original and transformed media should be the same
(or very similar) for both of them. Video matching algorithm searches for duplicate
media by finding feature vectors with small distance in feature space. Small distance in
feature space means that feature vectors are similar.

4.1 Hashing algorithm based on method proposed by Yang

Following chapter summarizes implementation of Yang algorithm [2] introduced in
section 3.1.1. Yang algorithm returns SURF-based features. I refer to this algorithm
as Yang algorithm or simply Yang. Image 4.1 shows six different transformations and
original frame. Tested transformations are Gaussian blur, overlapping borders, bright-
ness adjustment, gamma correction, rotation and scale. Each frame is divided into 16
non-overlapping cells (blue lines) and SURF-based features (red circles) are computed
over each cell. Hash coded retrieved by Yang is 16 dimensional vector consisting of
number of Yang features found in each cell. Number of red circles in corresponding cells
should ideally be the same for each transformation and original image. In other words,
we would like to get same hash codes for all (a) - (g) images in figure 4.1.

11

Every transformation has impact on resulting feature vector. Applying transformation
on a video moves pixels in frames or changes their values. Yang features retrieved from
transformed image will be different from features retrieved from original video. To make
the matching system robust, dataset must contain descriptors of several variations of
each transformation and their combinations. Robustness of video matching system re-
lies on its ability to find duplicate video in existing dataset (if duplicate video exists).
Robust system should not return too many false matches. False match occurs when the
system indicates a video as duplicate, although the corresponding video in database is
different. Matches indicated by system are usually checked by a person and the purpose
of video matching system is to report as few false matches as possible.

In my dataset I generated several variations of each used transformation. For exam-
ple Gaussian blur transformation was computed with kernel sizes 3, 5, 7, 9, 13, and
17. Complete list of used transformations and their results for Yang algorithm are in
section 6. Tables 6.1 - 6.6 document sensitivity of Yang features to all used transforma-
tions. Representative range of parameters for each transformation was chosen to show
response of algorithm to increasing damage made to original video. These are the main
results Yang implementation. Results show ability of Yang features to retain similarity
of original and transformed media. Meaning of results is to show how many videos were
correctly matched if they were affected by used transformations. Ideal result would be
values close to 1 on main diagonal and values close to 0 on antidiagonal. The farther
these values are from desired values the less is matching system capable of matching
original video with transformed video.

Table 4.1 shows results for selected parameters of each implemented transformation.
Table contains accuracy, F1 score and normalized confusion matrix.

Idea behind creating wide range of transformation for each video assumes that media
that has to be matched will be affected in similar way to one or few modifications stored
in prepared dataset. Matching algorithm can decide based on video with highest re-
sponse.

Interesting data to watch in confusion matrix are in the first row. First element is true
positive value, second element is false negative value. True positive says how many of
frames classified as similar were actually similar. False negative number says how many
of frames classified as non-similar should have been classified as similar. Changes be-
tween these two values are dependent on transformation performed on video. For each
type of transformation it was measured how much the media can be transformed in order
to still be correctly matched.

Second row of confusion matrix contains false positive and true negative values. False
positive number says how many of non-similar frames were classified as similar. True
negative says how many of non-similar frames were classified as actually non-similar.

12

Introducing false matches after transforming video is just a coincidence and therefore
this value keeps very low. Most of false matches are later filtered by matching algorithm
explained in section 4.3.2.

(a) blur (b) border (c) brightness

(d) gamma (e) rotation (f) scale

(g) original

Figure 4.1: Transformations performed on videos stored in the dataset; (a) Gaussian
blur, (b) overlapping black border, (c) brightness adjustment, (d) gamma correction, (e)
rotation, (f) scale, (g) original image. Displayed image is result of Yang algorithm.

13

Transformation Accuracy F1 score Confusion matrix

No transformation (identical files) 0.996 0.441

Blur, kernel size 3 px 0.994 0.228

Overlapping border, 2 percent 0.994 0.257

Brightness + 30 0.995 0.331

Gamma correction 1.1 0.997 0.357

Rotation 3◦ 0.996 0.044

Scale 1.05 0.996 0.074

Table 4.1: Sensitivity of Yang algorithm to selected transformation. Complete results of
YANG algorithm are in appendix 6.

14

Accuracy

Accuracy 4.1 is statistical measure giving information about closeness of measured
values to real values. In this case accuracy does not really have distinctive meaning.
When comparing two videos, great number of non-similar frames is retrieved. These
frames appear in true negative value. Since the number of true negative is usually about
thousand times greater and other responses, accuracy is always pushed close to one. For
this reason, it is important to watch other measurements as well.

accuracy =
tp+ tn

tp+ tn+ fp+ fn
(4.1)

Precision, recall

Precision , also known as positive predictive value, and recall 4.3, also known as
sensitivity, gives better picture about classification. Precision is a measure of result
relevancy, while recall is a measure of how many truly relevant results are returned [23].
In other words, precision gives probability that predicted class will be correct and recall
gives probability that correct class will be chosen by the classifier. Values of precision
and recall should be similar. With better classification both values should grow.

precision =
tp

tp+ fp
(4.2)

recall =
tp

tp+ fn
(4.3)

F1 score

F1 4.4 is computed from precision and recall and therefore is more descriptive than
accuracy. F1 is good measurement to use for comparing two different classifiers on the
same data.

F1 =
precision · recall
precision+ recall

(4.4)

15

4.2 Siamese NN

4.2.1 Implemented models

My goal with neural networks was to train a net that would be able to distinguish
similar and non-similar images. Similarity of two videos is decided based on the similarity
threshold which is later described in section 4.2.4. Two images are similar when they
both are derived from the same image and they both are transformed (each of them
in different way) within bounds set for similar images. If the transformation is within
bounds for non-similar images or if the images are derived from two different images,
they are considered non similar.

After learning this metric, neural network can be used to compute feature vector of
an image or sequence of frames in video. Such feature vectors can be used for video
matching.

Creating new structure of neural network for image matching is tricky task, since there
are too many parameters that can be modified. One can use different types of layers,
sizes of kernels, change the order of layers and so on. In a way, huge neural networks
are kind of a black box. For instance, evolution of convolutional layers’ kernels can be
observed, however, it is not really clear what would be desired state of convolutional
kernels. Some networks are for example trained to find hand-written digits. In this case
one can expect to see some kind of edge detectors. On the other hand, siamese network
trained to compare similarity of two input images does not necessarily have to detect
edges. In fact, I observed that kernels of trained network still look rather noisy.

I implemented three different network structures from previous research. Implemented
structures were previously for similar tasks of image classification and therefore I consider
them being suitable for solving my task. Out of these, two networks were implemented
including their pretrained weights. These neural networks consist of several convolutional
layers which are usually followed by pooling layers and non-linear (ReLU) layers. Last
two layers are fully connected; output from the very last layer can be stored as a feature
vector for an image.

I implemented these models using neural network surgery. Such a process comprises
part of original network including pretrained weights and new layers, usually initiated
with random weights. Idea of this method is that pretrained part of the network helps
to better and faster train the network, while newly added part with randomly initiated
weights allows the network to adapt to new type of input images than the original neural
network was trained for.

In my case I kept all layers but the very last fully connected one. I tried initializing
last fully connected layer with different number of neurons to measure impact of size of
feature network on training. Experimental results, however, did not show big difference.

16

Overall accuracy of network was not satisfactory.

4.2.2 Model modification

Coming with brand new structure of neural network without deep previous research
is not a good way of finding successful network model. Therefore, I came with network
structures derived from models introduced in related work. Table 4.3 shows different
modifications of networks which I tried to train. Structure of neural network is based
on model introduced in Caffe example [24]. Table 4.2 shows structure of neural network
including parameter settings for network modification ID 1. ID 1 refers to models in 4.3.
All other networks in table 4.3 have the same structure as network ID 1, but different
parameters. Interesting thing about this structure are three fully connected layers which
are gradually lowering dimension of feature vector describing the image. Experiments
showed that increasing of dimension of feature output feature vector can slightly improve
network performance.

Implemented Caffe framework allows to switch between several predefined solvers. One
of the parameters that can be changed is learning rate policy which controls adjustment
of learning rate during training the network. Original learning policy used in this model
was ”inv” 4.5 which controls learning rate as a function

lr = base lr · (1 + gamma · iter)−power (4.5)

where:
base lr is initial learning rate
gamma and power are parameters controlling speed of decrease of the function
iter is training iteration

Second used learning policy was ”multistep” 4.6 defined as

lr = base lr · gamma(floor(iter/step)) (4.6)

where:
base lr is initial learning rate
gamma and power are parameters controlling speed of decrease of the function
iter is training iteration

Using ”multistep” policy gives one full control over when and how the learning rate
is changed.

More networks were trained based on models from [9] and [25]. Those networks were
not successful for my task and are not included in the table.

17

layer number layer type kernel size number of outputs stride

1 convolutional 3 20 1
2 pooling 2 2
3 convolutional 3 50 1
4 pooling 2 2
5 inner product 500
6 ReLU
7 inner product 10
8 inner product 2

Table 4.2: Structure of most successful neural network.

Id Parent
Ker 1
size

Ker 1
output

dim

Ker 2
size

Ker 2
output

dim

Input
image
size

Fully
con.
layer
size

Acc.
Other

changes

1 - 3 20 3 50 20x20 2 0.85
2 - 5 20 5 50 40x40 2 0.8
3 - 5 20 5 50 64x64 2 0.7
4 - 5 20 5 50 96x96 2 0.75
5 4 - - - - - - 0.7 multistep 1

6 5 - - - - - 32 0.8
15 6 - - - - - 64 0.75 LR 2

16 7 - - - - - 128 0.8 LR
17 8 - - - - - - 0.9 LR
18 4 - - - - - 32 0.9

Table 4.3: Overview of some modifications of trained network. Table is structured as
derivation tree with parents and children. If a cell is dashed no change was done in that
parameter. Many networks were not successfully trained, those are excluded from the
table.

4.2.3 Model verification

Implemented neural network model was verified on Mnist dataset [26] . It has been
shown before that neural networks can be successfully trained on this dataset. It is
reasonable to verify my model on Mnist dataset before trying other inputs.

1multistep = Learning rate policy changed from ”inv” to ”multistep” with gamma = 0.5 and step
changes in iterations 1000 and 1500.

2LR = Initial learning rate decreased from 0.01 to 0.001.

18

Figure 4.2: Training of model verification network. Red line shows test loss, blue line
shows train loss, green line shows train accuracy. X axis represents training iterations.
Y axis is in logarithmic scale for loss values and linear scale for accuracy.

4.2.4 Training dataset

Training of neural network requires enormous number of training images to prevent
overfitting and to make the network robust for unknown inputs. Since training of the
network needs tens of thousands of training cycles, and labeling such an amount of
unique was far beyond my capacity, I decided to generate training images automatically.
Table 4.4 shows limits used for generating random data for training and testing.

transformation type T1 - soft transformation T2 - hard transformation

rotation ± 0 - 10◦ ± 10◦- 170◦

borders 0 - 10% 0 - 10%
blur 0 or 3 0 or 3
brightness ± 0 - 50 ± 50 - 100
crop 0 - 20% 0 - 20%

Table 4.4: Transformation limits used for generating samples. Values of transformation
were randomly chosen within T1 and T2 limits of each image when generating test data.
Rotation transformation rotates image in either direction. Borders adds overlapping
border over image, width of the border is given in percentage of width (height) of the
image. Blur is Gaussian blur with kernel size 0 or 3. Brightness adds brightness value
to each pixel. Crop cuts out sides of an image; as a result transformed image will be
scaled.

Figure 4.3 shows random samples of similar and non-similar pairs of images generated
for training. Similar images are generated from same image using transformation T1.
Non-similar images are generated from same or different images using transformation
T2. This approach was used to set a metric which implemented network should learn.

19

Similar images Non-similar images

Figure 4.3: Examples of automatically generated similar and non-similar images.

4.2.5 Experimental results

Following chapter summarize results of the best found model of neural network.
Structure of network is described in table 4.5. The training of network started with
learning rate 0.1. Learning rate was decreased by multiple of gamma = 0.5 in iterations

20

3000, 4000, and 4500. This method of controlled learning rate decrease is called ”multi-
step” learning rate.

For experimental purposes transformations applied to training dataset was also changed
so that similar and non-similar transformations are more distant. Only rotation was ad-
justed in this case; similar images were rotated in range from 0 to 10 degrees, non-similar
images were rotated in range from 40 to 80 degrees. Other transformations were not
used. Main difference from previously defined transformations is that 30 degrees gap of
uncertainty was allowed where the network is not forced to make strict decision about
image similarity.

Figures 4.4 and 4.5 show train and test loss. In test loss one can see small drop of values
in iterations where learning rate changes.

Figure 4.6 shows test accuracy for margin = 1. Acc0 represents similar images; they
are derived from the same source image and transformed with transformation T1. For
better idea of the network capabilities non-similar images were divided into two classes.
Accuracies acc1 and acc2 both represent non-similar images. Class acc1 is derived from
same images transformed with transformation T2, class acc2 contains pair of different
images. Acc is mean accuracy.

Network learns itself in only few hundreds iterations to correctly distinguish similar im-
ages. Biggest issue has the network with recognizing non-similar images derived from
same images.

Figure 4.7 shows test accuracy of trained network for different values of margin. Mar-
gin represents interesting factor here. Margin is desired distance between non similar
images used while computing contrastive loss function 3.4. Although the network was
trained to make distance between non-similar images equal to one, highest accuracy can
be achieved with margin close to 0.4. With this knowledge one can get even better
performance from the network.

21

layer number layer type kernel size number of outputs stride

1 convolutional 3 16 1
2 ReLU
3 pooling 3 2
4 convolutional 3 16 2
5 pooling 3 2
6 LRN 3

7 inner product 128
8 inner product 32

Table 4.5: Structure of most successful neural network.

Figure 4.4: Train loss dependent on training iterations.

Figure 4.5: Test loss dependent on training iterations.

3LRN = Local Response Normalization

22

Figure 4.6: Test accuracy per class dependent on training iterations.

Figure 4.7: Accuracy dependent on margin. Meaning of margin was previously explained
in 3.4.

23

4.2.6 Time consumption

Time consumption is crucial parameter while training large neural networks. It
can easily take up to several days or weeks to train one network on CPU and by using
optimized frameworks this time can be reduced to the range of minutes. Following tables
show time consumption of training neural network with 10 000 iterations and technical
specifications of used clusters. Caffe can use cuDNN [27] library high-performance GPU
acceleration. GPU with CUDA in table 4.6 was measured with using cuDNN library.

Cluster CPU GPU GPU with CUDA

doom 25 min 56 sec 16 min 54 sec 8 min 50 sec

zubat 31 min 18 sec 16 min 5 sec 8 min 5 sec

Table 4.6: Time consumption of training neural network with 10 000 iterations.

cluster doom

CPU 2x 8-core Intel Xeon E5-2650v2 2.60GHz
GPU 2x nVidia Tesla K20 5GB
RAM 64 GB
disk 2x 1TB 10k SATA III, 2x480GB SSD

cluster zubat

CPU 2x 8-core Intel Xeon E5-2630v3 2.40GHz
GPU 2x nVidia Tesla K20Xm 6GB
RAM 128 GB
disk 2x 1TB 10k SATA III, 2x 480GB SSD

Table 4.7: Technical specification of clusters used for training neural networks.

24

4.3 Video matching

4.3.1 Video matching algorithm

Video matching algorithm is based on distance between two images. Distance of
two images is computed from their feature vectors as an Euclidean distance in feature
space. Similarity and non-similarity of two frames can be decided by thresholding their
distance.

Matching algorithm returns cost matrix for two videos (in their hash codes). Cost matrix
contains distance in feature space for each two frames in compared videos. Figure 4.9
shows cost matrices after thresholding.

4.3.2 Sequence verification

Video matching algorithm takes feature vectors computer either by Yang 4.1 or neural
network 4.2. Feature vectors precomputed from videos in dataset are called reference.
When new query video comes and has to be matched with a reference video, its hash
code is computed in the same way and compared with each reference feature vector.
Matching algorithm is based on euclidean distance between hash codes representing two
frames. Two frames are considered the same if their Euclidean distance does not exceed
certain threshold. Furthermore, to eliminate false matches, bigger number of adjacent
frame matches is required to affirm a sequence match. Result of this process is similarity
score of query video with each one reference video.

Image 4.8 shows result of matching algorithm applied on two identical videos. Values
on axis represent frame number. Matched frames should ideally only be located on
diagonal, however, there are some other false matches farther from diagonal and some
false matches adjacent to diagonal. Distant matches are caused by stand-alone frames
with same hash code. Matches close to diagonal are caused by small changes in video
during short time where following frames are almost identical.

Figure 4.8: False matches pruning can be done by requiring minimal number of adjacent
matches.

25

4.3.3 Results for Yang algorithm

Figure 4.9 shows detailed results of matching algorithm for different values of thresh-
olding distance ε and required length of adjacent similar frames. These results are sample
results computed from only one pair of videos. However, very similar results were get
from other videos too. ε is distance between two frames in feature space; higher value
of ε will accept more false matches as similar frames. False matches can be filtered
by required minimal length of adjacent similar frames. It can seem that setting large
requirement on number of adjacent frames would solve the problem. But it is also im-
portant to consider that not always there will be this long video sequences in real life
application.

Blue dots represent similar frames. Compared videos are original video and video with
adjusted brightness. Videos have the same length. Ideally, blue dots should only be
located on diagonal. Rows a - e vary thresholding distance ε = {12, 20, 30, 50, 70}.
These values define how close must features in feature space be to be considered similar.
Columns I - IV vary minimal number of adjacent frames {3, 7, 20, 40} which must be
similar in order to verify similarity. Value under each image is matching accuracy.

26

I II III IV

a

0.999 0.998 0.997 0.997

b

0.994 1.0 0.999 0.999

c

0.975 0.988 1.0 1.0

d

0.875 0.939 0.99 1.0

e

0.532 0.661 0.95 1.0

Figure 4.9: Results of video matching algorithm for SURF features.

27

4.4 Preprocessing

Video copy detection is computationally and timewise highly demanding process.
Video sequence detection requires computing descriptors on user side and storing fea-
ture images on server side. It is assumed that each video sequence contains redundant
information and can be compressed without any significant impact on matching result.
Firstly, bitrate of each video in the dataset is limited to 800 kbps. Secondary, frame rate
is reduced to 4 fps. Finally, while computing features, each frame is resized to 400 by
400 pixels.

Also it has to considered that two copies of the same video sequence can differ in such
things as frame resolution, frame rate, bitrate etc.; therefore, preprocessing is absolutely
essential for such as algorithm to reduce video file size and unify videos from different
sources.

Another reason for media preprocessing is real life application of the system. I assume
that preprocessing can often be done locally on the side where data is stored. This gives
a possibility of having separated server which only receives reduced amount of data and
performs media matching. Delivering data in full resolution to the matching machine is
not necessary.

4.5 Dataset

Commonly used databases for image processing such as Mnist [26], ImageNet [14] or
Cifar10 [28] are not suitable for my task, however, they can be used for testing purposes
and model verification.

Video sequence matching requires robustness against video transformation such as scale,
mirroring, contrast and brightness adjustment, rotation, adding borders etc. Since I did
not find suitable dataset, one had to be made. As an input videos for the dataset I used
912 unique videos from four different playlists downloaded from YouTube. Each video
was compressed to 800 mbps, split into 30 seconds long parts and frame rate was reduced
to 4 frames per second. This returned 5006 short unique videos in total.

Each short video was kept in its original version and also was adjusted with several
transformations. Figure 4.10 shows transformations used in prepared dataset. Name
of adjusted video fully describes its original source and all the transformations used to
create the final video. Therefore, based only on names, one would be able to recreate
the dataset. Complete dataset consists of 160 039 short videos.

For testing purposes I also created unique videos and long videos. Unique videos
are only used once in entire dataset and do not have any kind of transformation. Long
video is made as a combination of one unique video followed by four randomly chosen
reference videos.

28

a b

c d

e f

g

Figure 4.10: Transformations performed on videos stored in the dataset; (a) Gaussian
blur, (b) overlapping black border, (c) brightness adjustment, (d) gamma correction, (e)
rotation, (f) scale, (g) original image

Image 4.11 shows the process of creating reference and query videos of the dataset.
Input and output files are shown in blue boxes. While developing the algorithm I had
to store both videos and hash files. Storing of all the video files is highly memory
consuming. Once the algorithm is complete, only the hash files can be kept and large

29

video files can be deleted.

4.5.1 Flowchart

Entire process of video matching can be divided into three steps. First step is cre-
ating short videos and computing their hash files. Dataset contains several transformed
versions of each video (reference videos) and videos which are only used once (unique
videos) while creating long videos. Unique videos were created from movies and no
transformation was used while creating them.

• Video database - Database of media that will be included in final dataset and
will be prepared for video matching. I used about 1 000 videos downloaded from
YouTube. Downloaded videos are movie reviews and music videos.

• Video compression - Process of reducing video size by compressing bit-rate to 800
kbps.

• Video time change - Cutting videos into 30 seconds long parts and changing frame
rate to 4 fps.

• Video transformation - Applying transformations described in sections 4.1 and 6.

• Reference videos - Output videos that are temporarily stored until hash codes are
computed. Reference videos are large files. They can be deleted after all hash files
are computed.

• Reference hash files - Hash codes computed either by Yang 4.1 or neural network
4.2. Hash codes are saved in small text files (or .h5py structure). Files with hash
codes complete the dataset.

Second step is merging short videos into longer sequences and computing their hash
files.

• Reference videos - Video files taken from previous step.

• Unique videos - Video files taken from previous step.

• Merge video - Combining one unique video and four randomly chosen reference
video. Each unique video is only used once. in entire dataset.

• Query videos - Combined video files used for testing purposes.

• Query hash files - Hash codes computed either by Yang 4.1 or neural network 4.2.

Third step is actual matching of videos.

• Query hash files - Hash codes from previous step.

• Reference hash files - Hash codes from previous step.

30

• Cost matrix - Applying matching algorithm described in section 4.3.2.

In real life application query video would be the one that needs to be checked for matches
against precomputed dataset. Its hash code would be directly computed and checked
against database as described in step three.

Figure 4.11: Creating short reference videos from input video database and short unique
videos from movies. For reference videos hash files were computed and stored.
Blue boxes represent data, white boxes represent processes.

Figure 4.12: Combining reference and unique videos. Merged videos are stored as query
videos and hash files are computed for them too.
Blue boxes represent data, white boxes represent processes.

Figure 4.13: Finding matches between hash files. In this step no video files are needed,
all data can be precomputed and saved as hash files.

Results of matching algorithm are summarized in 4.3.3 and 6. Thanks to pruning,
matching algorithm does not return false matches. In section 6 this can be seen in

31

every confusion matrix on second row. False matches would appear as false positive
values. Sensitivity of matching algorithm can be controlled by thresholding distance
ε and minimal number of adjacent similar frames. These values are explained in 4.3.3.

32

5 Conclusion

5.1 Summary

Performed experiments show that proposed algorithms are fully functional and capa-
ble of matching duplicate videos. As expected, Yang algorithm was capable of matching
media that were not strongly damaged. I have also found that some kinds of trans-
formations (brightness adjustment, soft blurriness) are easier to be covered by hashing
and make system quite reliable, while others (rotation, contrast adjustment) make it
impossible for the system to match similar media. Only way to bypass this nature of
Yang based matching is storing enormous amount of possible transformations for each
media.

Using siamese neural networks brought greater ability of generalizing fingerprints of
transformed media. Although I did not perform test on as many transformations as
with SURF algorithm from the final network, interim results gained for less accurate
networks proved that siamese neural networks can be trained to retrieve similar finger-
prints from transformed media.

5.2 Future work

For the future work there is a potential of further development in all parts of proposed
algorithm. Common possible improvement for both proposed hashing algorithms can be
done by upgrading them to spatio-temporal method. Idea of using fingerprints including
evolution of media in time is briefly described in chapter 3.2. Beside this method, there
are other possible ways of including time evolution that could be used.

Yang algorithm

Yang based descriptors seem not to be generalizing enough. For this approach it is
crucial to have rich scale of precomputed transformations stored in dataset. Collected
results show that duplicate video can be successfully found if transformations made on it
are very close to those precomputed and stored in the dataset. For creating really reliable
dataset one would need to store much more possible transformations of each media

33

that has to be to matched. This is very inconvenient for time and data consumption
requirements.

Siamese neural networks

Neural networks seem to be promising solution for computing media fingerprints.
Although, in feature work it would be necessary to train neural network on much bigger
dataset and make sure that feature vector provided by neural network is general for
frequent media transformations. In this work I did not have chance to connect neural
network with proposed matching algorithm leaving it open for next experiments.

Matching algorithm

Great deal of possible improvement lies in matching algorithm. The one proposed in
this work is purely brute force algorithm. It gives some freedom of accepting more or less
similar feature vectors and filtering matches by the length of found sequence, but the
core of the algorithm still relies on comparing each single frame with each frame stored
in the database. There are two main improvements that need to be done. First of them
is clustering stored feature vectors in some way. For instance, by using spatio-temporal
features one would be able to group short parts of videos that have similar changes in
time. Once the clusters are separated, matching of newly coming media would only be
performed against small part of entire dataset.

Second important part of improving matching algorithm is adding dynamic time warping.
Current algorithm needs input media that have exactly the same frame rate. But due
to existence of different video codecs it is very common that one video saved in different
file formats can differ in length. These difference cannot be distinguished by a person
while watching the video, however, for matching algorithm comparing frames one by one
it makes a big problem which leads in not finding actual matches.

Matching algorithm was only tested with Yang based features. Siamese neural network
based features have the same structure as Yang based features and easily be implemented
into matching algorithm in future work.

34

6 Appendix

Following figures show detailed results of implemented YANG algorithm. Each table
contains several parameters for every implemented transformation. These results are the
main conclusion of YANG algorithm.

Transformation Accuracy F1 score Confusion matrix

Rotation 3◦ 0.996 0.044

Rotation 5◦ 0.998 0.051

Rotation 7◦ 0.998 0.043

Rotation 9◦ 0.998 0.002

Table 6.1: Sensitivity for rotation.

35

Transformation Accuracy F1 score Confusion matrix

Blur, kernel size 3 px 0.994 0.228

Blur, kernel size 5 px 0.994 0.148

Blur, kernel size 7 px 0.995 0.111

Blur, kernel size 9 px 0.996 0.105

Blur, kernel size 13 px 0.998 0.032

Blur, kernel size 17 px 0.999 0.003

Table 6.2: Sensitivity for Gaussian blur.

36

Transformation Accuracy F1 score Confusion matrix

Overlapping border, 1 percent 0.994 0.289

Overlapping border, 2 percent 0.994 0.257

Overlapping border, 5 percent 0.994 0.055

Overlapping border, 10 percent 0.999 0.022

Overlapping border, 15 percent 0.999 0.003

Table 6.3: Sensitivity for border.

37

Transformation Accuracy F1 score Confusion matrix

Brightness - 30 0.999 0.071

Brightness - 20 0.997 0.112

Brightness - 10 0.995 0.246

Brightness + 10 0.994 0.324

Brightness + 10 0.994 0.309

Brightness + 30 0.995 0.331

Table 6.4: Sensitivity for brightness.

38

Transformation Accuracy F1 score Confusion matrix

Gamma correction 0.7 0.999 0.003

Gamma correction 0.8 0.998 0.124

Gamma correction 0.9 0.995 0.177

Gamma correction 1.1 0.997 0.357

Gamma correction 1.2 0.999 0.116

Gamma correction 1.3 0.999 0.033

Table 6.5: Sensitivity for gamma correction.

39

Transformation Accuracy F1 score Confusion matrix

Scale 0.8 0.999 0.003

Scale 0.9 0.998 0.041

Scale 0.95 0.995 0.061

Scale 1.05 0.996 0.074

Scale 1.1 0.998 0.098

Scale 1.2 0.999 0.003

Table 6.6: Sensitivity for scale.

40

Bibliography

[1] Changick Kim Changick Kim and Bhaskaran Vasudev. Spatiotemporal se-
quence matching for efficient video copy detection. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 15(1):127–132, 2005. URL: http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1377368, doi:

10.1109/TCSVT.2004.836751.

[2] Gaobo Yang, Ning Chen, and Qin Jiang. A robust hashing algorithm based on SURF
for video copy detection. Computers and Security, 31(1):33–39, 2012. URL: http://
dx.doi.org/10.1016/j.cose.2011.11.004, doi:10.1016/j.cose.2011.11.004.

[3] Alexis Joly, C Frélicot, and Olivier Buisson. Content-based video copy detection in
large databases: A local fingerprints statistical similarity search approach. Image
Processing, 2005. ICIP . . . , (2):8–11, 2005. URL: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=1529798, doi:10.1109/ICIP.2005.1529798.

[4] Arun Hampapur and Ki-ho Hyun. Comparison of Sequence Matching Techniques
for Video Copy Detection.

[5] Mei-chen (University of California) Yeh and Kwang-Ting (University of California)
Cheng. Video copy detection by fast sequence matching. Proceeding of the ACM
International Conference on Image and Video Retrieval - CIVR ’09, page 1, 2009.
URL: http://portal.acm.org/citation.cfm?doid=1646396.1646449, doi:10.

1145/1646396.1646449.

[6] L. Scott Harrell. What is Video Freebooting and Can It Be Prevented? URL:
http://vtrep.com/what-is-video-freebooting-can-i-prevent-it/.

[7] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF : Speeded Up Robust
Features.

[8] Andrew Ng. Coursera - Machine Learning Course. URL: https://www.coursera.
org/learn/machine-learning.

[9] Edgar Simo-serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua, and
Francesc Moreno-noguer. Discriminative Learning of Deep Convolutional Feature
Point Descriptors. 2014.

41

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1377368
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1377368
http://dx.doi.org/10.1109/TCSVT.2004.836751
http://dx.doi.org/10.1109/TCSVT.2004.836751
http://dx.doi.org/10.1016/j.cose.2011.11.004
http://dx.doi.org/10.1016/j.cose.2011.11.004
http://dx.doi.org/10.1016/j.cose.2011.11.004
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1529798
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1529798
http://dx.doi.org/10.1109/ICIP.2005.1529798
http://portal.acm.org/citation.cfm?doid=1646396.1646449
http://dx.doi.org/10.1145/1646396.1646449
http://dx.doi.org/10.1145/1646396.1646449
http://vtrep.com/what-is-video-freebooting-can-i-prevent-it/
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning

[10] Ian Bengio, Goodfellow Yoshua, and Aaron Courville. Deep Learning. 2016. URL:
http://www.deeplearningbook.org.

[11] Alex Krizhevsky and Geoffrey E Hinton. 4824-Imagenet-Classification-With-Deep-
Convolutional-Neural-Networks. pages 1–9. doi:http://dx.doi.org/10.1016/j.
protcy.2014.09.007.

[12] Deeplearning.net. URL: http://deeplearning.net/.

[13] S Lawrence, C.L. Giles, Ah Chung Tsoi, and A.D. Back. Face recognition: a convolu-
tional neural-network approach. IEEE Transactions on Neural Networks, 8(1):98–
113, 1997. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=554195, doi:10.1109/72.554195.

[14] Prof. Li Fei-Fei, Prof. Kai Li, Olga Russakovsky, Jonathan Krause, Prof. Jia Deng,
and Prof. Alex Berg. ImageNet. URL: http://image-net.org/index.

[15] Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, and William T. Freeman.
LabelMe: a database and web-based tool for image annotation. International Jour-
nal of Computer Vision, 77(1-3):157–173, 2008. URL: http://people.csail.mit.
edu/brussell/research/AIM-2005-025-new.pdf.

[16] Jane Bromley, James W. Bentz, Léon Bottou, Isabelle Guyon, Yann Lecun,
Cliff Moore, Eduard Säckinger, and Roopak Shah. Signature Verification Us-
ing a “Siamese” Time Delay Neural Network. International Journal of Pat-
tern Recognition and Artificial Intelligence, 07(04):669–688, 1993. doi:10.1142/

S0218001493000339.

[17] Caffe Contrastive Loss Layer. URL: http://caffe.berkeleyvision.org/

doxygen/classcaffe_1_1ContrastiveLossLayer.html.

[18] Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv preprint
arXiv:1408.5093, 2014. URL: http://caffe.berkeleyvision.org/.

[19] Cuda-convnet. URL: https://code.google.com/p/cuda-convnet/.

[20] Jeff Donahue, Yangqing Jia, Eric Tzeng, Trevor Darrell, Oriol Vinyals, Judy Hoff-
man, and Ning Zhang. DeCAF: A Deep Convolutional Activation Feature for
Generic Visual Recognition. URL: http://arxiv.org/pdf/1310.1531.pdf.

[21] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal L. Jozefowicz, and Xiaoqiang Zheng. TensorFlow. URL: http://download.
tensorflow.org/paper/whitepaper2015.pdfhttps://www.tensorflow.org/.

42

http://www.deeplearningbook.org
http://dx.doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007
http://deeplearning.net/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=554195
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=554195
http://dx.doi.org/10.1109/72.554195
http://image-net.org/index
http://people.csail.mit.edu/brussell/research/AIM-2005-025-new.pdf
http://people.csail.mit.edu/brussell/research/AIM-2005-025-new.pdf
http://dx.doi.org/10.1142/S0218001493000339
http://dx.doi.org/10.1142/S0218001493000339
http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ContrastiveLossLayer.html
http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ContrastiveLossLayer.html
http://caffe.berkeleyvision.org/
https://code.google.com/p/cuda-convnet/
http://arxiv.org/pdf/1310.1531.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf https://www.tensorflow.org/
http://download.tensorflow.org/paper/whitepaper2015.pdf https://www.tensorflow.org/

[22] Yoshua Bastien Frederic and Lamblin, Pascal and Pascanu, Razvan and Bergstra,
James and Goodfellow, Ian J. and Bergeron, Arnaud and Bouchard, Nicolas and
Bengio. Theano: new features and speed improvements, 2012. URL: http://

arxiv.org/pdf/1211.5590.pdf.

[23] Fabian Pedregosa, Olivier Grisel, Ron Weiss, Alexandre Passos, and
Matthieu Brucher. Scikit-learn : Machine Learning in Python. 12:2825–
2830, 2011. URL: http://scikit-learn.org/stable/auto_examples/model_

selection/plot_precision_recall.html, arXiv:arXiv:1201.0490v2.

[24] Caffe Siamese Network. URL: http://caffe.berkeleyvision.org/gathered/

examples/siamese.html.

[25] Caffe ImageNet. URL: http://caffe.berkeleyvision.org/gathered/examples/
imagenet.html.

[26] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. THE MNIST
DATABASE.

[27] NVIDIA CUDA. URL: https://developer.nvidia.com/cudnn.

[28] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images, 2009.
URL: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

43

http://arxiv.org/pdf/1211.5590.pdf
http://arxiv.org/pdf/1211.5590.pdf
http://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
http://arxiv.org/abs/arXiv:1201.0490v2
http://caffe.berkeleyvision.org/gathered/examples/siamese.html
http://caffe.berkeleyvision.org/gathered/examples/siamese.html
http://caffe.berkeleyvision.org/gathered/examples/imagenet.html
http://caffe.berkeleyvision.org/gathered/examples/imagenet.html
https://developer.nvidia.com/cudnn
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

	Summary
	Introduction
	My approach

	State of the art
	Spatial methods
	SURF algorithm
	Yang hashing algorithm

	Spatio-temporal methods
	Neural networks
	Convolutional neural networks
	Applications of convolutional neural networks
	Siamese neural networks

	My contribution
	Hashing algorithm based on method proposed by Yang
	Siamese NN
	Implemented models
	Model modification
	Model verification
	Training dataset
	Experimental results
	Time consumption

	Video matching
	Video matching algorithm
	Sequence verification
	Results for Yang algorithm

	Preprocessing
	Dataset
	Flowchart

	Conclusion
	Summary
	Future work

	Appendix

