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Abstract
The main goal is to summarize known properties of generalized trigonometric functions and
apply them on computation of integrals with these functions. Other important parts are code
implementation in Matlab, visualization of the functions and analysis of the numerical part of
the problem.
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1 Introduction

1.1 Analytic point of view
A trigonometric function sinx is a 2π-periodic function bounded by 1 and −1. The inverse
function, arcsinx, is described by the following formula:

arcsinx =

∫ x

0

1√
1− t2

dt, 0 ≤ x ≤ 1. (1)

We can generalize this function for 1 < p <∞ :

arcsinp x =

∫ x

0

1
p
√

1− tp
dt, 0 ≤ x ≤ 1, (2)

which is an injective function from 〈0, 1〉 to 〈0, πp
2
〉.

We will describe πp by the following equalities:∫ 1

0

1√
1− t2

dt = [arcsin t]10 =
π

2
⇒ π = 2

∫ 1

0

1√
1− t2

dt,

πp = 2

∫ 1

0

1
p
√

1− tp
dt. (3)

We can tell from the relation above that π2 = π.
The inverse function to arcsinp x on 〈0, πp

2
〉 is sinp x. Let sinp x be extended on x ∈ 〈πp

2
, πp〉

symetrically:

sinp x = sinp(πp − x).

The function sinp x is odd, that extends it for x ∈ 〈−πp, 0〉 and a 2πp-periodic function, that
defines it for whole R. As we can see, sin2 x = sinx.
These definitons for sinp x and πp are analogous to Edmunds’ and Lang’s [5] and to Elbert’s [6].
But the definition of cosp x is different: Edmunds’ and Lang’s [5] definition is

cosp x
def
=

d

dx
sinp x (4)

and Elbert’s [6] definition is

cosp x
def
=

∫ πp
2

x

sinp y dy. (5)

In this thesis the first definition will be used. The function cosp x is even and 2πp-periodic and
cos2 x = cosx.
We will define tanp x just as tanx is defined:

tanp x
def
=

sinp x

cosp x
, (6)
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then tanp x is odd and πp-periodic and tan2 x = tan x. We have to mention that tanp x is not
defined for x = (k + 1

2
)πp, k ∈ Z.

The definitions of functions sec, cosec and cotan follow:

cosecpx
def
=

1

sinp x
, (7)

secp x
def
=

1

cosp x
, (8)

cotanpx
def
=

1

tanp x
. (9)

Now we can examine if some well known properties of sinx, cosx and tanx fit for generalized
trigonometric functions too:

sinp(−x) = − sinp x, x ∈ R (sinp x is odd) (10)
cosp(−x) = cosp x, x ∈ R (cosp x is even) (11)
tanp(−x) = − tanx, x ∈ R (tanp x is odd) (12)

| sinp x|p + | cosp x|p = 1, x ∈ R (sinp x and cosp x are symmetric and periodic) (13)

| secp x|p − | tanp x|p = 1, x ∈ R \ (k +
1

2
)πp, k ∈ Z (14)

We will prove (14):
Let x ∈ R \ (k + 1

2
)πp, k ∈ Z:

| sinp x|p + | cosp x|p = 1⇒ | cosp x|p = 1− | sinp x|p.

By dividing the equation by | cosp x|p and supposing | cosp x|p 6= 0 we obtain

1 = 1−| sinp x|p
| cosp x|p = 1

| cosp x|p − | tanp x|p ⇒ | secp x|p − | tanp x|p = 1.

1.2 Boundary and corresponding initial value problem
Let us consider following boundary value problem:

(|u′|p−2u′)′ + λ|u|p−2u = 0, (15)
u(0) = u(πp) = 0, (16)

where p > 1, λ > 0 are given real numbers. We will show the origin of arcsinp(x) and sinp(x)
by rewriting (15):

(|u′|p−1)′u′ + λ|u|p−2uu′ = 0

(p− 1)|u′|p−2u′′u′ + λ|u|p−2uu′ = 0

p− 1

p− 1
(|u′(x)|p − |u′(0)|p) +

λ

p− 1
(|u(x)|p − |u(0)|p) = 0

|u′(x)|p + |u(x)|p λ

p− 1
= 1
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We assume λ = p− 1.

|u′(x)|p + |u(x)|p = 1

We assume x ∈
[
0, πp

2

]
.

(u′(x))p + (u(x))p = 1

u′(x) = (1− up(x))
1
p

u′(x)

(1− up(x))
1
p

= 1∫ t

0

u′(x)

(1− up(x))
1
p

dx = t

Let us substitute y = u(x), dy = u′(x)dx.∫ u(t)

0

1

(1− yp)
1
p

dy = t,

which we have already mentioned in (2).
Let us find the corresponding initial value problem to (15)-(16). We will apply following substi-
tution:

v = u,

w = |u′|p−2u′ = |v′|p−2v′ = |v′|p−1 sgn(v′).

Obviously sgn(w) = sgn(v′), then:

|w| = |v′|p−1 ⇒ |w|
1
p−1 = |v′| ⇒ v′ = |w|

1
p−1 sgn(w).

By substitution w = |u′|p−2u′ in (15) we obtain:

w′ + λ|v|p−2v = 0⇒ w′ = −λ|v|p−1 sgn(v).

From boundary conditions (16) we obtain:

v(0) = 0,

w(0) = α,

where α must be chosen according to condititon v(πp) = 0. This requirement meets α = 1.
Previously we have asuumed λ = p− 1. The final corresponding initial value problem follows:

v′ = |w|
1
p−1 sgn(w), (17)

w′ = (1− p)|v|p−1 sgn(v),

v(0) = 0,

w(0) = 1.

Using Matlab function ode45 we solved Equation (17).
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1.3 Generalized trigonometric functions with two parameters
In this thesis we will also consider sine and cosine functions with two parameters, p and q. A
version of the boundary value problem (15)-(16) for two parameters follows:

(|u′|p−2u′)′ + λ|u|q−2u = 0, (18)
u(0) = u(πp,q) = 0, (19)

where p > 1, q > 1, λ > 0 are given real numbers.
Using steps according to Section 1.2 we obtain following corresponding initial value problem:

v′ = |w|
1
p−1 sgn(w), (20)

w′ = λ|v|q−1 sgn(v),

v(0) = 0,

w(0) = 1.

Takeuchi [12] showed, that sinp,q x is the solution of (18) for λ = q(p−1)
p

.
Definition of πp,q follows:

πp,q
def
= 2

∫ 1

0

1
p
√

1− tq
dt. (21)

1.4 Structure of the thesis
In Chapter 2, we present graphs of sinp x, whose origin is based on (15)-(16), and cosp x. We will
also introduce πp,q, whose value we found by experiment using (20). In Chapter 3, we study inte-
grals of generalized trigonometric functions and assemble them into the form of classical "Table
of Integrals" by e.g. Gradshteyn and Ryzhik [7] and/or Prudnikov, Brychkov, Marichev [10],
[11]. In Chapter 4, we make a remark about the numerical part of the problem and in Chapter 5,
we introduce our Matlab codes, which were a significant part of the research.
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2 Graphs
We will introduce figures of our Matlab codes. As we know from Matlab documentation [9], the
plot function connects points by line segments. This fact could affect final graph.
We will focus on Matlab codes and computation of values of πp,q, sinp x and cosp x in the Imple-
mentation section.
As we can see, the curve of sinp x has specific shape for p approaching one and infinity [3].

Figure 1: sinp x, p −→ 1 on the left, p = 2 in between, p −→∞ on the right

Figure 2: sinp x
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Figure 3: cosp x

It is not a surprise that for different p there is a different period of the trigonometric function.
Generally, sinp x and cosp x have period 2πp. For the visualization of sine and cosine function
above we have π6 = 2π

3
, π1.2 = 10π

3
and of course π2 = π. In the code below you can see the

computation in Matlab as well as the code for plotting πp. We used the formula from (3).

Listing 1: Values and graph of πp
syms x;
format long
pi6=2*int(sf(6),x,0,1)
%pi_p definition, p=6
pi12=2*int(sf(1.2),x,0,1)
%pi_p definition, p=1.2
pi2=2*int(sf(2),x,0,1)
%pi_p definition, p=2
Y=zeros(1,37);
%matrix will be used for saving pi_p values
i=1;
f o r p=2:0.5:20

Y(1,i)=2*int(sf(p),x,0,1);
i=i+1;

end
paxis=2:0.5:20;
%values on p-axis
axis([2 20 2 3.2]);
hold on;
plot(paxis,Y(1,:),'black--o','LineWidth',2.2),xlabel('p'),ylabel('\pi_p');
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Listing 2: Function sf
f u n c t i o n fun = sf(p)
%support function for computation of integral in pi_p definition
syms x;
fun=1/((1 - x^p)^(1/p));
end

We used codes in Listing 1 and Listing 2 to compute several values of πp and to visualize πp as
a function of p. You can see the final graph in Figure 4 below.

Figure 4: πp

As we can see from the graph above, limp→1 πp =∞ and limp→∞ πp = 2, see [5].
In this context, there is an interesting fact about generalized sine and cosine function. We know
that sin(π

4
) = cos(π

4
). But for generalized sine and cosine the equation does not hold true. We

can see it in Figure 5, where we chose p = 6, and in Figure 6, where we chose p = 1.2. The
values of sine and cosine in πp

4
are circled in the graph. We used format long with 15 digits after

the decimal point and we obtained following values:

sin6(
π6
4

) = 0.523341103807184,

cos6(
π6
4

) = 0.996546124063566,

sin1.2(
π1.2
4

) = 0.982849501600393,

cos1.2(
π1.2
4

) = 0.039257643812817.
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Figure 5: sin6 x and cos6 x

Figure 6: sin1.2 x and cos1.2 x

In figures above we set the scale of the x-axis to πp. According to this we can get an idea of
the intersection point of sine and cosine functions. The exact computation could be an object of
further research.
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Figure 7: πp,q with fixed values of q

In Figure 7 we can see a graph of πp,q as a function of q. This means, that we fixed the value of
p and plotted the values of πp,q for q ∈ {2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6}.

Figure 8: πp,q with fixed values of p

In figure 8 there is a graph of πp,q as a function of p. We found the values of both graphs above
by experiment, which will be fully described in Chapter 5.
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3 Integrals with generalized trigonometric functions
While solving integrals with trigonometric functions we usually use substitution. There are sim-
ple rules how to substitute in the table below.

Table 1: Basic substitutions
Type of integral Substitution

z dz dx∫
f(sinx) cosx dx sinx cosx dx dz

cosx∫
f(cosx) sinx dx cosx − sinx dx − dz

sinx∫
f(tanx)

1

cos2 x
dx tanx dx

cos2 x
cos2 x dz

We will study whether these methods are applicable for integrals with generalized trigonometric
functions. Firstly, we will find solutions of several derivatives. We will use them later in the
integral computations. These solutions have been already showed in [13] and [1], but we will
show them step by step. We will also use the identity (13) and its variation with two parameters:
| sinp x|p + | cosp x|q = 1, see [13]. We assume x ∈ (0, πp

2
).

d

dx
cosp x =

d

dx
(1− sinpp x)

1
p = − cosp x · p · sinp−1p x · 1

p
· (1− sinpp x)

1−p
p = (22)

= − cos2−pp x · sinp−1p x = −
sinp−1p x

cosp−1p x
cosp x = − tanp−1p cosp x

d

dx
tanp x =

d

dx

sinp x

cosp x
=

cos2p x− sinp x cos′p x

cos2p x
= 1− sinp x

cosp x

− tanp−1p cosp x

cosp x
= (23)

= 1 + tanpp x

d

dx
cosp,q x =

d

dx
(1− sinpp,q x)

1
q = −1

q
(1− sinpp,q x)

1−q
q · p · sinp−1p,q x · cosp,q x = (24)

= −p
q

cos2−qp,q x sinp−1p,q x

From the results above we assume that the methods of computing integrals with generalized
trigonometric functions will be a bit different from those in the chart.
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3.1 Basic substitutions
Let p > 1, n > 0. An equal sign with a star means computation by Wolfram Mathematica.

3.1.1
∫

cosp x dx = sinp x

[Holds for x ∈ (0,
πp

2 ) by definition, then for x ∈ (−πp

2 ,
πp

2 ) by cosine property cosp x = cosp(−x) (cosine is
even) and for R by 2πp-periodicity.]

3.1.2
∫
f(sinp x) cosp x dx

∣∣∣∣ z = sinp x,
dz = cosp x dx

∣∣∣∣ =

∫
f(z) dz = F (sinp x)

[Where x ∈ (−πp

2 ,
πp

2 ), f : (0, 1)→ R, F ′(x) = f(x).]

3.1.2a
∫ πp

2

0

f(sinp x) cosp x dx

∣∣∣∣ z = sinp x,
dz = cosp x dx

∣∣∣∣ =

∫ sinp
πp
2

0

f(z) dz =

∫ 1

0

f(z) dz =

= F (1)− F (0)
[Where x ∈ (−πp

2 ,
πp

2 ), f : (0, 1)→ R, F ′(x) = f(x).]

3.1.2b
∫ πp

2

0

sinp x cosp x dx

∣∣∣∣ z = sinp x,
dz = cosp x dx

∣∣∣∣ =

∫ 1

0

z dz =

[
z2

2

]1
0

=
1

2

3.1.3
∫

sinnp x dx

∣∣∣∣∣∣
z = sinp x,
dz = cosp x dx,

cosp x = (1− sinpp x)
1
p

∣∣∣∣∣∣ =

∫
zn

(1− zp)
1
p

dz =∗

=∗
zn+1

2F1

(
1
p
, n+1

p
; n+1

p
+ 1; zp

)
n+ 1

=
sinn+1

p x

n+ 1
2F1

(
1

p
,
n+ 1

p
;
n+ 1

p
+ 1; sinpp x

)
[Where x ∈ (−πp

2 ,
πp

2 ).]

3.1.3a
∫ πp

2

0

sinnp x dx

∣∣∣∣∣∣
z = sinp x,
dz = cosp x dx,

cosp x = (1− sinpp x)
1
p

∣∣∣∣∣∣ =

∫ 1

0

zn

(1− zp)
1
p

dz =∗
Γ
(
p−1
p

)
Γ
(
n+1
p

)
nΓ
(
n
p

)
3.2 Further computations

3.2.1
∫

tanp−1p x dx =

∫
sinp−1p x

cosp−1p x
dx

∣∣∣∣∣∣
z = cosp x,
dz = − cos2−pp x sinp−1p x dx,
dz = −z2−p sinp−1p x dx

∣∣∣∣∣∣ =

=

∫
sinp−1p x

zp−1(−z2−p) sinp−1p x
dz = −

∫
1

z
dz = − ln z = − ln cosp x

[Where x ∈ (0,
πp

2 ). See (22) and [2].]

3.2.2
∫

tanpp x dx = tanp x− x
[Where x ∈ (0,

πp

2 ). See (23) and [2].]
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3.2.3
∫

cos2p x sinp−1p x dx

∣∣∣∣∣∣
z = cosp x,
dz = − cos2−pp x sinp−1p x dx,
dz = −z2−p sinp−1p x dx

∣∣∣∣∣∣ = −
∫
z2

sinp−1p x

z2−p sinp−1p x
dz =

= −
∫
zp dz = − zp+1

p+ 1
= −

cosp+1
p x

p+ 1
[Where x ∈ (0,

πp

2 ). See (22).]

3.3 Functions with two parameters

3.3.1
∫

tanp−1p,q x dx =

∫
sinp−1p,q x

cosp−1p,q x
dx

∣∣∣∣∣∣
z = cosp,q x,
dz = −p

q
cos2−qp,q x sinp−1p,q x dx,

dz = −p
q
z2−q sinp−1p,q x dx

∣∣∣∣∣∣ =

=

∫
sinp−1p,q x

−zp−1 p
q
z2−q sinp−1p x

dz = −q
p

∫
1

zp−q+1
dz = −q

p

∫
zq−p−1 dz = − qzq−p

p(q − p)
=

=
q

p(p− q)
cosq−pp,q x

[Where x ∈ (0,
πp

2 ). See (24).]

3.3.2
∫

cos2p,q x sinp−1p,q x dx

∣∣∣∣∣∣
z = cosp,q x,
dz = −p

q
cos2−qp,q x sinp−1p,q x dx,

dz = −p
q
z2−q sinp−1p,q x dx

∣∣∣∣∣∣ =

∫
z2 sinp−1p,q x

−p
q
z2−q sinp−1p,q x

dz =

= −q
p

∫
zq dz = −q

p

zq+1

q + 1
= − q

p(q + 1)
cosq+1

p,q x

[Where x ∈ (0,
πp

2 ). See (24).]
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4 Numerical part
For computing values of sinp x, cosp x and sinp,q x we used Matlab solver ode45. From Matlab
documentation [9] we know that the solver ode45 is based on Runge-Kutta (4,5) formula, the
Dormand-Prince pair.

4.1 Runge-Kutta method
Runge-Kutta methods have properties similar to the Taylor expansion, but they do not require
analytic derivation. General Runge-Kutta method can be described by following equations [8]:

k1 = hf(xn, yn)

k2 = hf(xn + α1h, yn + β11k1)

k3 = hf(xn + α2h, yn + β21k1 + β22k2)
...

kj+1 = hf(xn + αjh, yn + βj1k1 + βj2k2 + . . .+ βjjkj)

yn+1 = yn + γ1k1 + γ2k2 + . . .+ γj+1kj+1,

where y′ = f(x, y), y(x0) = y0 is the initial value problem, h is step size.
Coefficients αj and βjj are usually given in the following form.

Table 2: Dormand-Prince coefficients scheme
0
α1 β11
α2 β21 β22
α2 β31 β32 β33
...
α6 β61 β62 β63 β64 β65 β66

γ1 γ2 γ3 γ4 γ5 γ6 γ7
γ∗1 γ∗2 γ∗3 γ∗4 γ∗5 γ∗6 γ∗7

Coefficients γj give the fifth-order accurate method, coefficients γ∗j give the fourth-order accurate
method. Dormand’s and Prince’s [4] research brought three sets of coefficients αj and βjj . For
ode45 following coefficients are used.
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Table 3: Dormand-Prince coefficients
0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

−2187
6784

11
84

35
384

0 500
1113

125
192

−2187
6784

11
84

0

5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

4.2 Matlab ode solvers comparison
There are other solvers for numerical computing differential equations in Matlab. We will com-
pare ode23, ode45, ode113 and ode23t. We will solve differential equation

v′ = |w|
1
p−1 sgn(w),

w′ = (p− 1)|v|p−1 sgn(v),

v(0) = 0,

w(0) = 1

and we will compare values of sinp x for p = 6 and x = π6 and values of sinx for x = π. The
exact solutions are sin6(π6) = 0 and sin(π) = 0. Matlab solutions follow in the tables below.
We used format long with 15 digits after the decimal point.

Table 4: Matlab ode solutions for sin6(π6)
Solver sin6(π6) Error
ode23 −2.832196283053534 · 10−14 2.832196283053534 · 10−14

ode23t −9.167072030227972 · 10−9 9.167072030227972 · 10−9

ode45 1.508248387294131 · 10−12 1.508248387294131 · 10−12

ode113 7.151747709928367 · 10−11 7.151747709928367 · 10−11
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Table 5: Matlab ode solutions for sin(π)
Solver sin(π) Error
ode23 −3.965825335228851 · 10−13 3.965825335228851 · 10−13

ode23t 1.655499162146904 · 10−7 1.655499162146904 · 10−7

ode45 −2.307345287055895 · 10−12 2.307345287055895 · 10−12

ode113 −1.738804369060178 · 10−10 1.738804369060178 · 10−10

Difference between exact values and computed values is quite small. The least precise solver is
ode23t. The reason might be the fact, that ode23t is determined to solve stiff equations. Other
used solvers, ode23, ode45 and ode113, are set to solve non-stiff equations. We will not discuss
stiffness of the equations in this thesis.
We also compared values of sinx for x = π

4
. The exact solution is sin(π

4
) =

√
2
2

.

Table 6: Matlab ode solutions for sin(π
4
)

Solver sin(π
4
) Error

ode23 0.707106781122869 6.367839588961033 · 10−11

ode23t 0.707106751914025 2.927252262807656 · 10−8

ode45 0.707106781180183 6.364797577873560 · 10−12

ode113 0.707106781176126 1.042177455445881 · 10−11

According to the tables above we can note that the error of ode45 solutions is for each example
on the 12th digit after the decimal point. In the first two examples, ode23 is the most precise
solver, but in the third example the most precise one is ode45.
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5 Implementation
We will introduce codes which were used to visualize generalized trigonometric functions in this
thesis. We used MATLAB R2014a, version 8.3 on processor Intel(R) Core(TM)i3-3110M CPU
@ 2.40 GHz. By using ode45 we solved the initial value problem (17).
Using odeset function we set relative tolerance

RelTol =
|X − Y |

min(|X|, |Y |)

and absolute tolerance

AbsTol = |X − Y |

to 10−16. By choosing the tolerances we control the errors:

|e(i)| ≤ max(RelTol · |y(i)|, AbsTol(i)),

where e(i) is error at step i and y(i) is current solution [9].

5.1 Values and graph of sinp x and cosp x

The code in Listing 3 computes values of sinp x on 〈0, 20〉 for different values of p. Functions p1
(Listing 5) and p2 (Listing 6) stand for the initial value problem (17) with p = 6 and p = 1.2.
The code in Listing 4 is analogous to the code in Listing 3, but computes values of cosp x on
〈0, 20〉. By solving first order differential equations we obtain two columns. The first column
Y (:, 1) stands for sinp x. As we have defined in Chapter 1, cosp x

def
= d

dx
sinp x. The second

column is Y (:, 2), we will name it y2. Then we obtain:

cosp x = sgn(y2)|y2|
1
p−1 .

The final graphs we can see in Figure 2 and Figure 3.
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Listing 3: Values and graph of sinp x

% initial value problem:
% y1'=sign(y2)|y2|^(1/(p-1))
% y2'=-lambda*sgn(y1)|y1|^(p-1)
% y1(0)=0,y2(0)=1
options=odeset('RelTol',1e-16,'AbsTol',1e-16);
t=[0,20];
init_y1=0;
init_y2=1;
figure('name', 'Sine');
axis([0 20 -1 1]);
hold on;
[T,Y]=ode45(@p1,t,[init_y1 init_y2],options);
%function p1 sets p=6
plot(T,Y(:,1),'black-','LineWidth',2.2),ylabel('sin_px'),xlabel('x');
%graph of sin_6(x)
[T,Y]=ode45(@p2,t,[init_y1 init_y2],options);
%function p2 sets p=1.2
plot(T,Y(:,1),'black:','LineWidth',2.2),ylabel('sin_px'),xlabel('x');
%graph of sin_1.2(x)
x=linspace(0,20,100);
y=sin(x);
plot(x,y,'black-.','LineWidth',2.2),ylabel('sin_px'),xlabel('x');
%graph of sin(x)
legend('sin_6x','sin_{1.2}x','sin x','Location','northeast');
hold off;
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Listing 4: Values and graph of cosp x

% initial value problem:
% y1'=sign(y2)|y2|^(1/(p-1))
% y2'=-lambda*sgn(y1)|y1|^(p-1)
% y1(0)=0,y2(0)=1
options=odeset('RelTol',1e-16,'AbsTol',1e-16);
t=[0,20];
init_y1=0;
init_y2=1;
figure('name','Cosine');
axis([0 20 -1 1]);
hold on;
[T,Y]=ode45(@p1,t,[init_y1 init_y2],options);
y2=Y(:,2);
%root y2, see initial value problem
c=(sign(y2)).*(abs(y2)).^(1/(6-1));
%c is equivalent to cosine, see y1' in initial value problem
plot(T,c,'black-','LineWidth',2.2),ylabel('cos_px'),xlabel('x');
%graph of cos_6(x)
[T,Y]=ode45(@p2,t,[init_y1 init_y2],options);
y2=Y(:,2);
c=(sign(y2)).*(abs(y2)).^(1/(1.2-1));
plot(T,c,'black:','LineWidth',2.2),ylabel('cos_px'),xlabel('x');
%graph of cos_1.2(x)
y=cos(x);
plot(x,y,'black-.','LineWidth',2.2),ylabel('cos_px'),xlabel('x');
%graph of cos(x)
legend('cos_6x','cos_{1.2}x','cos x','Location','northeast');
hold off;
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Listing 5: Function p1
f u n c t i o n dy = p1(t,y)
%support function for ode45
p=6;
lambda=p-1;
dy=[(sign(y(2))).*(abs(y(2))).^(1/(p-1));

-1*lambda*(sign(y(1))).*(abs(y(1))).^(p-1)];
end

Listing 6: Function p2
f u n c t i o n dy = p2(t,y)
%support function for ode45
p=1.2;
lambda=p-1;
dy=[(sign(y(2))).*(abs(y(2))).^(1/(p-1));

-1*lambda*(sign(y(1))).*(abs(y(1))).^(p-1)];
end
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5.2 Values and graph of πp,q
We wanted to find values of πp,q and plot the graph for several fixed values of p and q. We know
that sinp,q x = 0 for x = kπp,q, k ∈ Z. We used bisection method with accuracy 10−3. The
boundaries s and t were set to 1 and 4. The while method continues till the current accuracy
(mis = |t−s|

2
) is bigger than 10−3. The variable tEnd (current x) is set to s+t

2
. The boundaries

change according to value of sinp,q x in current tEnd.
In Listing 7, p ∈ {2, 2.5, 3, 3.5, 4}, q ∈ {2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6}.
In Listing 8, q ∈ {2, 2.5, 3, 3.5, 4}, p ∈ {2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6}.
Both codes use the same functions search, containing the bisection method, and pq, the support
function for ode45. We chose the figures for only p, q ∈ {2, 3.5, 4}. The final graphs are in
Figure 7 and Figure 8. Other (easier) method of plotting graph of πp,q is to visualize it according
to definition (21). However, the method we used would be suitable if the definition was unknown.

Listing 7: Values and graph of πp,q with fixed p
g l o b a l p;
g l o b a l q;
M=zeros(5,9);
k=1;
%k values are used for indexing rows of M
f o r j=2:0.5:4

%for each p is made a vector of pi_p(q)
l=1;
%l values are used for indexing columns of M
f o r i=2:0.5:6

p=j;
q=i;
tEnd=search(1,4);
M(k,l)=tEnd;
l=l+1;

end
k=k+1;

end
m=2:0.5:6;
axis([2 6 2 3.2]);
hold on;
%values on x-axis
plot(m,M(1,:),'black--o','LineWidth',2.2);
%graph of pi_p,q as a function of q, p=2
hold on
plot(m,M(4,:),'black-.o','LineWidth',2.2);
%graph of pi_p,q as a function of q, p=3.5
hold on
plot(m,M(5,:),'black:o'),xlabel('q'),ylabel('\pi_{p,q}','LineWidth',2.2);
%graph of pi_p,q as a function of q, p=4
legend('p=2','p=3.5','p=4')
hold off
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Listing 8: Values and graph of πp,q with fixed q
g l o b a l p;
g l o b a l q;
M=zeros(5,9);
k=1;
%k values are used for indexing rows of M
f o r j=2:0.5:4

%for each q is made a vector of pi_q(p)
l=1;
%l values are used for indexing columns of M
f o r i=2:0.5:6

p=i;
q=j;
tEnd=search(1,4);
M(k,l)=tEnd;
l=l+1;

end
k=k+1;

end
m=2:0.5:6;
axis([2 6 2 3.2]);
hold on;
%values on x-axis
plot(m,M(1,:),'black--o','LineWidth',2.2);
%graph of pi_p,q as a function of p, q=2
hold on
plot(m,M(4,:),'black-.o','LineWidth',2.2);
%graph of pi_p,q as a function of p, q=3.5
hold on
plot(m,M(5,:),'black:o'),xlabel('p'),ylabel('\pi_{p,q}','LineWidth',2.2);
%graph of pi_p,q as a function of p, q=4
legend('q=2','q=3.5','q=4')
hold off
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Listing 9: Function search
f u n c t i o n [tEnd] = search(s,t)
%finds value of pi_p,q by bisection method
tEnd=0;
acc=0.001;
%accuracy
mis=10;
%mistake
options = odeset('RelTol',1e-16,'AbsTol',1e-16);
whi le mis>acc

tEnd=(s+t)/2;
[T,Y]=ode45(@pq,[0,tEnd],[0,1],options);
mis=abs(t-s)/2;
i f Y(length(Y),1)<0

%Y(length(Y),1) is a value of sin_p,q in tEnd
t=tEnd;

e l s e s=tEnd;
end

end
end

Listing 10: Function pq
f u n c t i o n dy = pq(t,y)
%support function for ode45
g l o b a l p;
g l o b a l q;
lambda=q*(p-1)/p;
dy=[(sign(y(2))).*(abs(y(2))).^(1/(p-1));

-1*lambda*(sign(y(1))).*(abs(y(1))).^(q-1)];
end
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6 Conclusion
We explained the terms sinp x, cosp x, sinp,q x, πp and πp,q and showed them from different points
of view, especially in graphs. We also compared properties of generalized trigonometric func-
tions with properties of their basic forms and tried to apply well known methods of computing
integrals with trigonometric functions to computations of integrals with generalized trigonomet-
ric functions. According to the results of Chapter 3 we can say that the only rule, which can be
applied on integrals with both functions, basic and generalized, is the rule for

∫
f(sinx) cosx dx

(Table 1). We also showed the implementation of the problem in Matlab and described it in the
numerical context.
This thesis might initiate further research of the intersection of generalized sine and cosine func-
tion for different values of p. Other follow-up might be a discussion of stiffness of the initial
value problem. Finally, more extensive research of the ode solvers in this context might be also
useful.
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