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Abstract: In the work presented an algorithm for evaluation of inverse Discrete Fourier Transform (DFT) and Bessel
functions have been elaborated with the purpose of determining of the time – harmonic electromagnetic field
distribution in a quasi-3D system with rotational symmetry. An object-oriented programming in C++ language is used
for an implementation of a computational algorithm.
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INTRODUCTION

In the paper the application of certain modification of
inverse Discrete Fourier Transform and the FFT
algorithm to the analysis of harmonic electromagnetic
field of axial symmetry. The computer program has been
elaborated in C++ programming language. A program
class has been defined with the methods designed for
characterisation of the computers of the magnetic and the
electric field by their Fourier transform.

1. EQUATIONS OF THE TIME-HARMONIC
ELECTROMAGNETIC FIELD OF THE
SYSTEM COMPRISED FROM ANNULAR
CYLINDER AND A COIL WOUND ON IT.
Consider a current-driven coil is represented by the

surface current of angular frequency ω and density( ) ( )z,rJz,r ϕϕ1J = .

Fig. 1. A current-driven coil represented by the
surface current and concentrically placed conducting ring.

The conducting ring, having the conductivity and the
permeability is placed concentrically with the solenoid.
The whole problem has the following description. In the
non-conducting regions the magnetic vector potential( ) ( )z,rAz,r ϕϕ1A =  fulfills the following equation [1]:
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In the paper [4] the Fourier Transforms of the magnetic
and electric field strength components, in the region of
coil and outside it, have been presented.
In the conducting regions the equation for the magnetic
vector potential has the form [1]:
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where γωµα =
2 . (2)

The solution of the above partial differential equation has
been obtained by means of performing the Fourier
transform of the magnetic vector potential in z direction.
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Work [4] describes in details how the solution of this
equation is obtained.

2. NOTES ON THE PROBLEM SOLUTION



The current of angular frequency ω of the coil creates the
distribution of the electromagnetic field of the same
frequency, and this in turn induces the eddy currents in
conducting material [3]. The magnetic vector potential is
determined in four diferrent regions:
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where ( ) ( ) ( ) ( ) ( ) ( )ξξξξξξ 654321 F,F,F,F,F,F  are
determined using the following continuity conditions:
1 for tangential component of electromagnetic field
strength and so the magnetic potential as well as for the
magnetic field strength at the interface boundary  limited
by cylwewR ,
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2 for tangential component of electromagnetic field
strength and so the magnetic potential as well as for the
magnetic field strength at the interface boundary  limited
by cylzewR
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3 for tangential component of electric field strength  at
the interface boundary limited by  cyewkiR .
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Additionaly the discontinuity condition at the same
interface boundary, of te following form, was used:
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Using equations (8) - (13) yields in the folowing system:
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The above system of equations was solved using the
method of pseudosolution based on the orthogonal
multiplications.

3.  APPLICATION OF DFT FOR   
DETERMINATION OF THE
ELECTROMAGNETIC FIELD DISTRIBUTION

 In the program the components of electromagnetic field
(

rz
HHE ,,ϕ ) in the corresponding regions are

determined as well the flux of complex Poynting vector.
The elaborated algorithm was tested on the following
problem. The coil has length of ]mm[500lc = , diameter
of ]mm[250Dc = , and consists of 100wc = turns. Each
turn carries current of I=10 [A], f=1000[Hz]. The
conducting ring has the diameter of

][180 mmDcylwew = and ][200 mmDcylzew =  the relative
permeability 200w =µ  and the conductivity

]m/MS[8=γ .
In this work we only present the plot of an absolute value
of )z,r(P2

r component of the Poynting vector over the
surface of the cylinder (see Fig.2), the Fourier transforms
value of ( )( )zrH z ,

2  (see Fig.3), and the Fourier
transforms value of ( )( )zrH z ,

3  (see Fig.4),

Fig. 2 The absolute value of ( ) ( )z,rP 2
r component of the

Poynting vector
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Fig. 3 The Fourier transforms value of ( )( )zrH
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The value of real part of flux penetrating cylinder P
equals to 302,013 Watt, whereas the value of imaginary
part Q, to 302,616 Var.
4.  EQUATIONS OF THE TIME-HARMONIC
ELECTROMAGNETIC FIELD OF THE SYSTEM
COMPRISING FROM CONDUCTING CYLINDER
AND A COIL WOUND ON IT.

Consider a current-driven coil is represented by
the surface current of angular frequency ω and density( ) ( )zrJzr ,, ϕϕ1J = . The conducting cylinder, having the
conductivity γ and the permeability µ concentrically with
the solenoid. The whole problem has the following
description.

Fig. 5. A current-driven coil represented by the surface
current and concentrically placed conducting cylinder.

In the non-conducting regions the magnetic vector
potential ( ) ( )zrAzr ,, ϕϕ1A =  fulfills the following equation
(15):
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In the paper [4,5] the Fourier Transforms of the magnetic
and electric field strength components, in the region of
coil and outside it, have been presented.
In the conducting regions the equation for the magnetic
vector potential has the form [1]:
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where γωµα =
2 . (16)

The solution of the above partial differential equation has
been obtained by means of performing the Fourier
transform of the magnetic vector potential in z direction.
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Work [4] describes in details how the solution of this
equation is obtained.

5. NOTES ON THE PROBLEM SOLUTION

The current of angular frequency ω of the coil
creates the distribution of the electromagnetic field of the
same frequency, and this in turn induces the eddy
currents in conducting cylinder [3]. The magnetic vector
potential ( )( )zrA m ,ϕ  and the z component of the magnetic
field ( )( )zrH m

z ,  were determined in three different
regions. In order to distinguish between appropriate
electric and magnetic components the following notation
was introduced. In the air-gap between cylinder and coil
the superscript m=1 was used, m = 2 and m=3 inside
cylinder and outside coil, respectively. The knowledge of
the electromagnetic field distribution allowed for
determination of Poynting vector, which is of special
importance in the conducting cylinder.
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When using inverse DFT the integration with respect to
ξ  is performed in the range from zero to infinity, and it
is thus necessary to know all the functions integrated and
also the Fourier transforms of the electric and magnetic
field strength in all regions considered. This information
provides a more practical hint on how the finite
integration bounds can be determined.

6. APPLICATION OF DFT FOR
DETERMINATION OF THE
ELECTROMAGNETIC FIELD DISTRIBUTION

The elaborated algorithm was tested on the
following problem. The coil has length of ][500 mmlc = ,
diameter of ][250 mmDc = , and consists of 100=cw turns.
Each turn carries current of I=10 [A], f=5000[Hz]. The
conducting cylinder has the diameter of ][200 mmDW = ,
the relative permeability 200w =µ  and the conductivity

]m/MS[8=γ . The range of integration is restricted to
100max =ξ . The analytical description of the absolute

value of the z component of the magnetic field strength
has the form: ( ) ( ) ( ) ( )prIFprH z 03

2
, ξµξ =  for WRr ≤≤0 ,

where γωµξ jp += 2  and 0I  – is modified Bessel
function of 0-th order. ( ) ( )ξ,2 rH

z
 is shown plotted in

Fig. 6.



Fig. 6 The absolute value of the z-th component  of the
magnetic field strength ( ) ( )zrH

z
,

2

R0= 100 [mm]
R1= 103,125 [mm]
R2= 106,25 [mm]
R3= 109,375 [mm]
R4= 112,5 [mm]
R5= 115,625 [mm]

 Składowa Hz pola magnetycznego pomiędzy wsadem a cewką

z [cm] 
454035302520151050

Hz
 [k
A/
m
]

1,9
1,8
1,7
1,6
1,5
1,4
1,3
1,2
1,1
1

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0

Fig. 7 The absolute value of compnent of the magnetic
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Fig. 8 The absolute value of compnent of the magnetic
field  ( )( )zrH
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The ohers of components of the magnetic field  ( ) ( )zrH
z

,

1

and ( )( )zrH
z

,

3  shown Fig 7 and Fig 8.
Next, accordingly to the conception of the modification
of the DFT given in [4], the lengths ξ∆ , ϕ∆  and the
numbers ξN  and zN  of the integration steps are selected
so that iz lk ϕξ ∆= , where lki =  ; zkzk ∆= ; ξξ ∆= ll ;

zNk ,..,2,1,0= ; ξNl ,..,2,1,0= . The following vectors are
evaluated when the discretisation is done.
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where 1010 K,K,I,I are modified Bessel and Kelvin
functions, respectively and  ( ) ( ) ( ) ( )llll FFFF ξξξξ 4321 ,,,

are the integration constans. To determine the integrationconstants the continuity conditions of the tangentialcomponent of the electric field strength were used (and sothe continuity of the magnetic vector potential) as well asthe magnetic field strength at region interfaces in WRdirection.Forming out of these vectors for a given radius rallows for determination of the following distributions ofthe electric and the magnetic field quantities and thePoynting vector with respect to previously chosen
discretisation points zkzk ∆=  (k=1,..,Nz):
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r zrH , ,
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m

k
m
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*
⋅= ϕ  where m=1,2 or 3.
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