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Abstract: This paper deals with the application of phase change materials (PCM) for thermal management of integrated 
circuits as a viable alternative to active forced convection cooling systems.The paper presents an analytical description 
and solution of heat transfer, melting and freezing process in 1D which is applied to inorganic crystalline salts. There 
are also results of numerical simulation of real 3D model. These results were obtained by means of the finite element 
method (FEM). Results of 3D numerical solutions were verified experimentally. 
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INTRODUCTION 

Phase change materials can store large amounts of 
heat without undergoing significant temperature changes 
because of their high latent heat of fusion. There are 
known the following basic PCM classification [9] 

1) Inorganic 
Advantages – high latent heat, good thermal 
conductivity, non-flammable, cheap 
Disadvantages – corrosive effect on most metals, 
phase decomposition and loss of hydrate, 
supercooling. 
Examples – CaCl2.6H2O, Na2SO4.10H2O etc. 

2) Organic 
Advantages – high latent heat, chemically stable, l
 ittle or no supercooling, cheap, non-corrosive, 
non-toxic 
Disadvantages – low thermal conductivity, big 
volume changes during phase change, flammability 
Examples – paraffin wax, polyethylenglycol, high-
density polyethylene, stearic acid (C18H36O2), 
palmitic acid (C16H32O2) etc. 

3) Compounds, combinations of amorphous and 
crystalline substances, clathrates etc. 
The amounts of stored energy are given by the 
calorimetric equation 
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where ρ is the density, V the volume, c the specific heat, 
∆hm the specific enthalpy, Q the heat, T0, Tm, Te, the 
initial, phase change and the final temperature of 
inorganic compounds during the accumulation process 
(see Fig. 1). 
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Fig. 1. Heating process of different PCMs and water 

(density of stored energy) 



 

 

The PCM may be used for active or passive electronic 
cooling applications with high power at the package level 
(see [1]). 
 

 
Fig. 2. Example of processor cooler with phase 

change material 

1 ANALYTICAL DESCRIPTION AND SOLUTION 
OF HEAT TRANSFER AND PHASE CHANGE 
We deal with the problem of heat transfer in 1D body 

during melting and freezing process with an external heat 
flux or heat convection, which is given by boundary 
conditions. The solution of this problem is known 
(Neumann, 1864) for solidification of metals [10]. We 
tried to apply this theory to melting of crystalline salts. 
The 1D body could be a semifinite plane, cylinder or 
sphere [3]. As the solid and the liquid part of PCM have 
different temperatures, there is a heat transfer on the 
interface. According to Fig. 3 the origin of x is the axis of 
pipe, centre of sphere or the origin of plate. Liquid starts 
to solidify if the surface is cooled by flowing fluid (Tw < 
Tm). 

 
Fig. 3. Heat transfer on the interface between the solid 

and the liquid parts 

The equation describing the solid state is 
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where for the plate n = 0, cylinder n = 1 and sphere n = 2, 
as is the thermal diffusion coefficient in the solid state. 
For x = x0 we can assume these boundary conditions 
 
constant temperature 

wTT =  (3)) 
 

or constant heat flux 
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or for convective cooling 
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where qw is the specific heat flux and λs is the thermal 
conductivity coefficient. Initial condition (t = 0) for (2) is 
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For the interface between the solid and the liquid we 
obtain 
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The analytical solution is exact but we consider several 
simplifying assumptions. The most important of them is 
that we can solve the solidification of PCM only in one 
dimensional body. 

 
Fig. 4. Solidification of semi-infinite plate of PCM 

We consider semi-infinite mass of liquid PCM at initial 
temperature T0 which has been cooled by a sudden drop 
of surface temperature Tp = 0 °C. This temperature is 
constant during the whole process of solidification. The 
simplifying assumptions are 
 
• body is semi-infinite plane 
• heat flux is one-dimensional in the x-axis 
• interface between the solid and the liquid is planar 
• there is an ideal contact on the interface 
• temperature of surface is constant (Tp = 0 °C) 
• crystallization of PCM is at a constant temperature 

Tm 
• thermophysical properties of the solid and the liquid 

are different but they do not depend on temperature 
• there is no natural convection in the liquid. 
 
Initial and boundary conditions: 
 
• initial temperature T0 for x ≥ 0 at time 0 
• temperature equals Tm on the interface between the 

solid and the liquid (x = s) 
constTTTtsx mls ===⇒>∧= 0  (8) 

• evolved latent heat during a motion of interface (the 
thickness of volume element ds, area 1 m2, time 1 s) 

dt
dshdQ lmhm

1ρ∆=∆
 (9) 

 



 

 

• position of interface is a function of time 
,2)( tatss sε==  (10) 

this dependence is called the parabolic law of 
solidification, where ε is the root of equation describing 
the freezing.. 

• boundary and initial condition for phase change 
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If we solve the Fourier relations of heat conduction 
with conditions above for the solid and the liquid, we get 
the following equations which allow calculating 
temperatures in solid, liquid PCM and the location of 
interface. The results are in figures 5-8 which are related 
to equations 10, 15, 16. 

ms

slm

l

s

a
a

m

m

l

s

s

l

T
ah

a
a

e
T

TT
a
ae l

s

λ
περ

ε
λ
λ

ε

ε
ε

∆
=

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

−
−

erfc
)(erf

2
2

0

 (14) 

 
We get ε = 0.3514 for CaCl2.6H2O, ε = 0.3257 for 
Na2CO3.10H2O and ε = 0.3319 for Na2HPO4.12H2O. 
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Fig. 6. Dependence of temperature on distance 

(CaCl2.6H2O) 
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Fig. 7. Dependence of temp. on distance 
(Na2CO3.10H2O) 
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Fig. 8. Dependence of temp. on distance 

(Na2HPO4.12H2O) 
 
If we compare results of the analytical solution with 
experimental measuring of those materials [4], we can see 
a good agreement. 
 
 
 
 
 
 
 



 

 

2 MATHEMATICAL AND NUMERICAL MODEL 
The thermal model is derived in detail in [6]. The 

mathematical model of air velocity distribution uses fluid 
equations which were derived for incompressible fluid 
with the condition (for the detailed description see [5]) 

0=vdiv  (17) 
for a steady state of flow holds the continuity equation 

0=vρdiv  (18) 
We assume a turbulent flow 

ωv 2=rot  (19) 
where ω is the angular velocity of fluid. If we use the 
Stokes theorem, the Helmoholtz theorem for moving 
particle and continuity equation, we can formulate from 
the equilibrium of forces the Navier-Stokes equation for 
the fluid element [11] 
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where A is the external acceleration and υ the vector of 
kinematic viscosity and (grad v) has the dimension of 
tensor. In the equation (20) we substitute pressure losses 
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where K are the suppressed pressure losses, f the 
resistance coefficient, Dh the hydraulic diameter of ribs, 
C the air permeability of system, µ the dynamic viscosity 
and u the unit vector of the Cartesian coordinate system. 
The resistance coefficient is got from the Boussinesq 
theorem 

baRef −=  (22) 
where Re is Reynolds number and a, b are coefficients 
from [14]. The model of short deformation field is 
formulated from condition of steady-state stability, which 
is expressed  

∫
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where f are the specific forces in domain Ω, and t 
pressures, tensions and shear stresses on the interface area 
Γ. By means of the transformation into local coordinates 
we obtain the differential form for the static equilibrium 

0v
2 =+ Tf div  (24) 

where div2 states for div operator of tensor quantity and 
Tv is the tensor of internal tension 
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where X, Y, Z are the stress components which act on 
elements of area. It is possible to add a form of specific 
force from (17)-(20) to the condition of static 
equilibrium. The form of specific force is obtained by 

means of an external acceleration A, on condition that 
pressure losses and shear stresses τ are given as 
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where F1 are the discrete forces and div2 is the divergence 
operator of tensor. The model, which covers the forces, 
viscosity, and pressure losses is 
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We can prepare the discretization of equation (20) by 
means of the approximating of velocity v and acceleration 
a 
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where vv, av are the instantaneous node values, W is the 
base function, Nϕ is the number of mesh nodes. If we 
apply the approximation (26) and the Galerkin principle 
in (27), we get the semidiscrete solution and after another 
rewriting we obtain the model of air flow 
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On the interface there are boundary conditions formulated 
0)( =⋅ vn  (30) 

on the border Γair where n is a normal vector to direction 
of air flow 

0)( =⋅ pn  (31) 
on the border ΓCu where Γair ⊂ ΓCu is the interface 
between the solid body and air. Boundary conditions for 
thermal model are 
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and initial conditions 
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out of domain W is the air velocity and pressure null. 
 

 
Fig. 9. Geometric model of Cu-cooler with mesh of 

elements 

We can write the form for an element of mesh 
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Matrixes Cij
f, Kij

sx, Kij
Fx, Kij

cx, Kij
gx, Fij

bx, Kij
Fx, Fij

sx are 
related to coefficients of equations (29). 
For the solution we used the SST model (Shear Stress 
Transport Model) which is offered by the commercial 
software ANSYS FLOTRAN. The SST model combines 
and switches between k-ε and k-ω model automatically in 
order to get the best result (see [2], [7], [10]). The k-ε 
model gives good results in the distance from walls and 
k-ω is more exact near walls. For the description of 
different turbulent models you can see [12], [13], [14]. 
 

air flow

T
0,air = 20 °C

,  v
0,air = 0.1 m

.s -1

 
Fig. 10. Geometric model of Cu-cooler with mesh of 

elements 

The progress of numerical solution consists of two parts. 
Firstly, we solve the turbulence model and get heat 
transfer coefficients on the surface of ribs. Those results 
are the input of second part when the thermal model is 

calculated. We obtain the time dependence of 
temperature distribution in PCM. There is the geometric 
model of copper cooler in Fig.10. The CaCl2.6H2O is 
closed inside of the bottom plate (see Fig. 2). The size of 
plate is 30x30x5 mm and ribs are 20 mm high. The PCM 
volume is about 3,8.10-6 m3. The plate takes heat from 
processor up and crystalline salt starts to melt at Tm. The 
air flows through ribs and extracts heat from the cooler. 
 

 
Fig. 11. The distribution of air velocity module 

 
Fig. 12. Temperature distribution in the cooler (the cross 

section) 

In Fig. 11 there is the distribution of air velocity 
module. We can see the effective rise of air flow velocity 
on the bottom of ribs (the detail A in Fig. 10, 11). 
Temperature distribution in ribs is shown in Fig 12. The 
Fig. 13 compares results of numerical simulation with the 
measuring in the middle of PCM enclosure. We measured 
the temperature by means of the probe. The differences 
between the simulation and the measuring are due to the 
inaccuracy of model with respect to reality. We used 
tabular values of pure CaCl2.6H2O but we modified 
hexahydrate with 1,2% of BaCO3 in order to avoid 
supercooling and deformations of cooling curves after 
more cycles of melting and freezing. In order to obtain 



 

 

exact results, we would need to know the temperature 
dependence of thermal conductivity, specific heat, and 
density during the phase change (see [8]). 
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Fig. 13. Time dependence of temperature in CaCl2.6H2O 

3 CONCLUSION 
This paper dealt with the application of phase change 

materials for thermal management of integrated circuits. 
We presented analytical description and solution of heat 
transfer and phase change in 1D and also mathematical 
and numerical model of air turbulence. The model of real 
3D copper cooler was solved by means of FEM in 
ANSYS software. We computed the problem of air flow 
turbulence, heat transfer, heat conduction and convection, 
and also phase change. If we compare results of 
simulation with the experimental measuring, we see good 
agreement. Exact knowledge of material properties has 
crucial effect on accuracy of numerical model.  
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