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Abstract: The paper presents the proposal of using artificial neural networks for simulation investigations of synchronous 
generators working as autonomous supply sources. The comparative analysis of the neural model and that based on the synchronous 
generator R-L parameters is performed. A three-stage hybrid algorithm consisting of  genetic, Nelder-Mead and gradient algorithms 
was applied to learning the artificial neural network. 
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INTRODUCTION 

The development in the field of computer science 
engineering makes it possible to use advanced procedures 
for optimal selection of supply systems (for instance 
polyoptimisation [7]), in particular automatic control 
ones. Analytical methods for selecting regulation systems 
are insufficient. Due to it, iterative algorithms requiring 
accurate and time-consuming computer simulations are 
used in most procedures for optimal choice of these 
systems. 

The accuracy of simulation computations depends, 
first of all, on two factors: the kind of the mathematical 
model applied (for instance: linear or nonlinear) and the 
accuracy of identifying the used model parameters. 

The paper presents results of the analysis of the 
synchronous generator model taking into account 
nonlinearity of the generator magnetizing characteristic. 

The proposed synchronous generator model is based 
on the theory of recurrent, multilayer neural networks [5]. 
The comparative analysis of the neural model worked out 
and circuit models of the synchronous generator was 
performed. In the investigations presented the voltage 
waveforms of a Gce32b salient pole generator of 4 kW 
power and 400 V rated voltage at 3000 rot/min were 
assumed to be the standards for the neural model.  

 

1 SYNCHRONOUS GENERATOR CIRCUIT 
MODEL 

The basis of a mathematical circuit model is the 
synchronous generator physical model [3, 6] – Fig.1. It 
can be assumed, generally, that two processes: 
mechanical and electromagnetic, related to each other, 
occur in the generator [3, 6]. They are connected with 
rotation of the driving motor shaft and flow of currents in 
the synchronous generator windings. 
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Fig.1: Synchronous generator physical model 



 
In order to simplify the analysis, the following 

assumptions were taken [6]: the symmetric, three-phase 
stator winding is sinusoidally distributed, magnetic 
permeability of the stator and rotor cores is constant, 
losses in the stator and rotor cores can be neglected, the 
rotor is of two-axis symmetry, the rotor has a damper 
cage in d and q axis, interactions of eddy currents in the 
rotor are replaced with the increased interactions of 
damper cages in the particular machine axis, the 
generator is loaded with a symmetric, three-phase load, 
the rotation speed is constant. 

It is convenient to write the equations of state of the 
synchronous generator in the cartesian coordinate system 
d, q rotating with the rotor electric angular speed, and so 
motionless in relation to the rotor. For the physical model 
the d and q axes are the magnetic symmetry axes. 

 ΨΩΨIRU ⋅++⋅=
td

d      (1) 

      (2) ILΨ ⋅=

Graphical interpretation of the equations of state of 
the synchronous generator (1) and (2) is the so-called 
circuit model presented for particular model types in Fig. 
2. In the paper there are analysed the model of type: (2, 1) 
– i.e. with one damper circuit in the d and q axis. 
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Fig.2: Synchronous generator circuit models 

In simulation investigations the circuit models of the 
type presented above were implemented in the Matlab-
Simulink program. The simulation model were 
constructed basing on matrix and integration operation 
blocks (Fig. 3). 

 

Fig.3: Synchronous generator simulation model 

2 SYNCHRONOUS GENERATOR NEURAL 
MODEL 

Artificial neural networks (ANN) are nowadays 
widely used in control and modelling technique. Different 
kinds of networks, including unidirectional and recurrent 
ones, are used for modelling physical phenomena  [1, 2, 
5, 8]. 

In modelling with the use of ANN there is usually 
employed the neural network ability to approximate and 
generalise, whereas the modelled object is treated as a 
black box. During the learning process there are used 
supervising learning algorithms [5], whereas the signals 
to be learned are the input and output signals of the 
modelled object. The generator model applied to the 
voltage regulator optimisation has the following input 
parameters: the field voltage and load impedance while 
its output is the armature voltage [5]. With so defined 
input and output parameters, during the initial tests it was 
stated that treating the synchronous generator as a black 
box and learning the network basing only on the input 
and output signals do not deliver satisfactory results. The 
supervising learning process in spite of the correct 
functioning (i.e. obtaining the satisfactory error value of 
reconstructing the given signals) did not always result in 
obtaining the network operating correctly, since the 
learned network was unstable in some cases.  

In the presented investigations there was proposed a 
neural model being combination of two models learned 
independently of each other [8]. It was assumed that the 
synchronous generator armature voltage can be 
reconstructed on the basis of two voltages, namely: the 
armature voltage in no-load state U0ANN and virtual 
voltage drop along the generator internal impedance 
UwANN (Fig. 4, where the virtual voltage drop cannot be 
physically interpreted for a real generator. 
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Fig.4: Circuit interpretation of the neural model 

According to Fig. 4, the armature voltage U(t) is 
given by: 
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where f0ANN and fwANN are unknown functions represented 
by artificial neural networks. 

The actual value of the function f0ANN is determined 
by a neural network on the basis of information on the 
field voltage uf and the difference (in the previous 
computation step) between the field and reconstructed 



 
voltage relative values. Whereas the actual value of the 
function fwANN depends on the load impedance value Zobc, 
the voltage value in no-load state U0ANN and the armature 
voltage value in the previous computation step. For 
reconstruction of the searched functions there were used 
networks with one hidden layer with three neurons of 
sigmoidal activation function [5]. The model assumed for 
reconstruction of the synchronous generator armature 
voltage is shown in Fig. 5. 
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Fig.5: Circuit interpretation of the neural model 

It was stated that the commonly used algorithm of 
back error propagation [5] did not deliver the correct 
results in the case analysed. Despite obtaining the 
satisfactory value of the reconstruction error of 
waveforms to be learnt, the learnt recurrent network was 
not always stable. Due to it, a sequent, hybrid algorithm 
was applied to the learning of the both component models 
of the generator. 

The proposed sequent algorithm consisted of three 
stages. The first one was a genetic algorithm used for 
initial determining the neural network parameters. The 
second stage was the Nelder-Mead algorithm, while the 
final values of the network parameters were determined 
at the third stage by the Newton gradient algorithm. Such 
algorithm structure allowed combining the advantages of 
the particular algorithms while their basic disadvantages 
could be eliminated. 

Application of the genetic algorithm at the first step 
enables initial searching the range of predicted values of 
the network parameters. Meeting the number of 
generations (50 generations for population of 20 members 
at 10-bit chromosome) was assumed to be the stopping 
condition of the genetic algorithm. For such genetic 
algorithm parameters, the algorithm result was the 
optimal solution approximation. The solution delivered 
by the genetic algorithm was the starting point for the 
Nelder-Mead algorithm. The use of the Nelder-Mead 
algorithm improved the result obtained from the genetic 
algorithm bringing it closer to the optimal solution in 
such a way that the final gradient algorithm could quickly 
deliver the satisfactory solution. Meeting 500 
computational loops was assumed to be stopping 
condition at the second and third stage of computations. 

3 COMPARATIVE ANALYSIS OF 
SYNCHRONOUS GENERATOR NEURAL AND 
CIRCUIT MODELS 

For the analysis of the neural generator models there 
were learnt 10 different models reconstructing the voltage 
in no-load state and 10 models reconstructing the virtual 
voltage drop along the generator internal impedance. 
Each of the models was learnt for a randomly generated 
starting point. At the second stage there were generated 
10 complete models of the synchronous generator by 
combination of component models (Fig 5). 

The bands of the reconstructed quantity waveforms 
were determined by recording the waveforms of the 
armature voltage modeled during repeated simulations of 
the generated models. The errors for the standard and test 
waveforms differing from the waveforms applied to the 
neural model learning process were analysed. The results 
obtained are shown in Figs. 6 and 7. 
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Fig.6: Bands of standard voltage waveforms (a) and their 
reconstruction errors (b) for the complete generator 

model 
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Fig.7: Bands of test voltage waveforms (a) and their 
reconstruction errors (b) for the complete generator 

model 

In order to compare the results obtained for the neural 
model, the analysis of the circuit model was carried out. 
The results obtained (for the test waveform) are shown in 
Fig. 8. 
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Fig.8: Bands of test voltage waveforms (a) and their 
reconstruction errors (b) for the complete generator 

model 

4 SUMMARY 
The following conclusions can be drawn from the 

analysis results presented above: 
- The algorithm applied to determining the neural 

model parameters delivers correct results. The limitation 
of the iteration number of the particular algorithm steps 
does not considerably influence the quality of the model 
obtained. 

- The cascade neural model structure used is stable 
and enables independent learning of component models, 
which reduces the number of simultaneously searched 
parameters and shortens the time of their determination. 

- The error values for the neural model obtained from 
investigations do not exceed 5% for the learning voltages 
(Fig. 6b) and 6% for the test ones (Fig.7b). They are 
comparable with the errors of the circuit model (which 
does not take into account nonlinearity of the 
magnetizing characteristic) regarding the maximum 
values (Fig. 8). However, the average values and error 
waveforms are considerably better for the neural model. 

On the basis of the results presented above one can 
state that the neural model described in the paper is an 
alternative for circuit models. 

However, the use of the neural model requires the 
application of the complex and time-consuming 
algorithm for determining the neural network parameters 
which, next, limits the range of the model use for 
computations requiring large number of simulations (for 
instance polyoptimisation [7]). 
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